首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Purification of the glucocorticoid receptor from rat liver cytosol.   总被引:12,自引:0,他引:12  
The [3H]-triamcinolone acetonide-labeled glucocorticoid receptor from rat liver cytosol was purified to 85% homogeneity according to sodium dodecyl sulfate gel electrophoresis. It consisted of one subunit with a molecular weight of 89,000 and had one ligand-binding site per molecule. The purification involved sequential chromatography on phosphocellulose, DNA-cellulose twice, and Sephadex G-200. Between the two chromatography steps on DNA-cellulose, the receptor was heat activated. The receptor was affinity eluted from the second DNA-cellulose column with pyrodixal 5'-phosphate. The purification achieved in the first three chromatographic steps varied between 60 and 95% homogeneity in different experiments. After chromatography on the second DNA-cellulose column, the steroid.receptor complex had a Stokes radius of 6.0 nm and a sedimentation coefficient of 3.4 S in 0.15 M KCl. In the absence of KCl, the sedimentation coefficient was 3.6 S. After concentration on hydroxylapatite, the steroid.receptor complex was analyzed by isoelectric focusing in polyacrylamide gel. The radioactivity was shown to focus together with the major protein band with pI 5.8. Following limited proteolysis with trypsin, the radioactivity, together with the major protein band, focused at pI 6.2 as previously described for the unpurified steroid.receptor complex.  相似文献   

2.
Formaldehyde dehydrogenase was purified to electrophoretic and column chromatographic homogeneity from rat liver cytosolic fraction by a procedure which includes ammonium sulfate precipitation, DEAE-cellulose-, hydroxyapatite-, Mono Q-chromatography, and gel filtration. Its molecular mass was estimated to be 41 kDa by gel filtration and SDS-PAGE, suggesting that it is a monomer. It utilized neither methylglyoxal nor aldehydes except formaldehyde as a substrate. It has been reported that liver class III alcohol dehydrogenase and formaldehyde dehydrogenase are the same enzyme and oxidize formaldehyde and long chain primary alcohols. However, the enzyme examined here did not use n-octanoi as a substrate. The Km values for formaldehyde and NAD+ were 5.09 and 2.34 microM at 25 degrees C, respectively. The amino acid sequences of 10 peptides obtained from the purified enzyme after digestion with either V8 protease or lysyl endopeptidase were determined. From these results, the enzyme was proved to be different from the previously described mammalian formaldehyde dehydrogenase and is the first true formaldehyde dehydrogenase to be isolated from a mammalian source.  相似文献   

3.
4.
Two protein type factors which stimulate the reduction of vitamin K1-2,3-epoxide to vitamin K1 have been separated from the 105,000g-supernatant fraction (cytosol) of rat liver homogenates. One of these factors is rather labile. However the other factor was sufficiently stable to permit 900-fold purification following sequential column chromatography on DEAE-Sephacel, QAE-Sephadex, CM-Sephadex, and Sephacryl S-200. Four milligrams of this purified material were obtained in 32% yield from 11 g of soluble cytosolic protein. This factor appeared to be homogeneous as determined by gel electrophoresis and has a molecular weight of about 38,000 as determined by gel filtration. The final preparation had no vitamin K epoxide reductase activity in the presence or absence of either NADH or dithiothreitol. The results of kinetic studies using this factor were consistent with its acting as a nonessential activator of the microsome catalyzed reduction of vitamin K1-2,3-epoxide. The factor did not cause a large change in the apparent Km (2.2–2.5 μm) of vitamin K epoxide reductase, but the apparent Vmax was increased about fourfold.  相似文献   

5.
Three forms of alpha-D-mannosidase have previously been identified in rat liver, and each is localized in a different subcellular fraction: lysosomes, Golgi membranes, and cytosol. This communication reports the purification and characterization the cytosolic form. The enzyme was purified 12,000-fold in good yield to approximately 90% purity with the aid of the competitive inhibitor mannosylamine and dithioerythritol as stabilizers. The molecular weight of the enzyme is in the range of 372,000 to 490,000 depending on the method used. Since the subunit molecular weight is 110,000 by sodium dodecyl sulfate polyacrylamide electrophoresis, the enzyme is probably a tetramer. The pH optimum was shown to be between 5.5 and 5.9 (in the presence of 1 mM CoCl2) with the substrate p-nitrophenyl-alpha-D-mannoside. Normal Michaelis-Menten kinetics were observed with a Km of 0.14 mM. Mannosylamine was a competitive inhibitor with a Ki of 0.007 mM. The purified enzyme, stabilized by Co2+, Mn2+, and Fe2+ under some conditions, was unstable at low protein concentrations. Since an electrophoresed sample showed a positive periodic acid-Schiff stain, the enzyme may contain carbohydrate. The availability of purified cytosolic alpha-D-mannosidase should now make it possible to carry out substrate specificity, immunological, and structural studies which may shed light on the biological role of this enzyme.  相似文献   

6.
7.
8.
9.
Role of the nuclear envelope in the regulation of mRNA transport   总被引:1,自引:0,他引:1  
The export of processed RNA molecules from the nucleus is an intricately regulated process, subject to various developmental and physiological controls. The structural and biochemical properties of the nuclear envelope that are involved in this process are described here.  相似文献   

10.
Three enzymes esterifying cholesterol with long-chain fatty acids were purified approximately 31 000-fold to apparent homogeneity from the cytosol of normal rat liver. The enzymatic activity was tested by incubation of active fractions with tritiated cholesterol and separation of newly formed esters from non-reacted cholesterol by a passage through silica gel cartridges with subsequent assay for radioactivity by liquid scintillation. For the purification of enzymes, active proteins were precipitated by (NH4)2SO4 to 35% saturation. The bulk of inactive proteins was removed by size-exclusion chromatography on TSK G3000 SW. The active fraction was subsequently separated on Separon HEMA BIO 1000 DEAE in gradients of 0–500 mM KCl into three enzymatic activities differing in their retention and these proteins were finally purified by affinity HPLC on columns of cholesterol immobilized on HEMA BIO 1000 E-H. Final purified enzymes showed the same single band in polyacrylamide gel electrophoresis corresponding to 16.5 kDa. Combination of individual enzymes did not increase the overall yield of cholesteryl esters but the reaction-rate was significantly accelerated. These proteins are apparently subunits of a larger complex (Mr 65 000) that can be demonstrated by electrophoresis in the absence of 2-mercaptoethanol. Results presented in this paper indicate that because of good and rapid separation of active proteins, HPLC may be a method of choice for enzyme purifications.  相似文献   

11.
Fluorescence photobleaching was used to measure the effect of epidermal growth factor (EGF), insulin, and glucagon on the nuclear transport of fluorescent-labeled dextrans across the nuclear pore complex. EGF and insulin were found to stimulate transport approximately 200%, while boiling these polypeptide growth factors greatly diminished this enhancement activity. Glucagon demonstrated no enhancement effect. The nuclear transport enhancement effects were observed at EGF and insulin concentrations that elicit the various physiological responses, e.g., nanomolar range.  相似文献   

12.
The localization of NAD+ glycohydrolase [EC 3.2.2.5] (NADase) in purified rat liver nuclei has been examined. Subnuclear fractionation revealed that at least 70% of the NADase in nuclei was associated with the nuclear envelope fraction. The nuclear envelope fraction was practically free of microsomal contamination as judged by electron microscopic morphometry and assays of microsomal marker enzymes. Therefore, NADase was found to be an integral component of the nuclear envelope. The enzymological properties of the nuclear envelope NADase were compared with those of the microsomal enzyme. The nuclear envelope NADase was identical to the microsomal enzyme in its Km for NAD+ (60 muM), pH optimum (pH 6.5), ratio of transglycosidase activity to NADase activity (about 0.5), thermal stability and sensitivity to various inhibitors. Thus, NADase is a common enzymic component of both the nuclear envelope and the endoplasmic reticulum.  相似文献   

13.
14.
15.
Rat liver nuclear protein kinase NI, which appears in the flowthrough of DEAE-Sephadex columns, has been purified approximately 15,000-fold from soluble nuclear protein with yields of up to 10%. The method of purification involved chromatography of the DEAE-flowthrough protein successively on phosvitin-Sepharose and casein-Sepharose followed by rechromatography on phosvitin-Sepharose. The purified enzyme has an s20,w and molecular weight of 3.7 and 47,000, respectively, as determined by sucrose density gradient centrifugation in 0.4 M NaCl. A similar molecular weight of 42,000 was determined by gel filtration using Sephadex G-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed a single polypeptide with a molecular weight of 25,000. Protein kinase NI therefore consists of a dimer of two identical subunits. Protein kinase NI exhibits maximal activity on casein substrate and is not stimulated by 10(-5) to 10(-4) M cAMP or cGMP when either casein or histone H2b is used as a substrate.  相似文献   

16.
Gel filtration of male rat liver cytosol preincubated with radiolabeled lithocholic, chenodeoxycholic, and glycochenodeoxycholic acids, and taurocholic acid revealed two major peaks of radioactivity, one co-eluting with the glutathione S-transferases and the other with a separate fraction, respectively. Chromatofocusing of the pooled fractions containing the new bile acid binding activity resulted in a separation of bile acid binding from the previously described organic anion binding activity in this fraction. Two binding peaks for lithocholic acid (pI 5.6, Binder I, and pI 5.5, Binder II) were identified on chromatofocusing and were further purified to apparent homogeneity by hydroxyapatite chromatography. The two Binders were monomers having identical molecular weight (33,000) and similar amino acid compositions. Bile acid binding to purified Binders I and II and glutathione S-transferases A, B, and C was studied by inhibition of the fluorescence of bound 1-anilino-8-naphthalenesulfonate (ANS). Confirmatory experiments using equilibrium dialysis produced comparable results. Glutathione S-transferase B had greater affinity for bile acids than transferases A or C. Binder II, which had greater affinity than Binder I for most bile acids, had greater affinity for chenodeoxycholic acid than transferase B but comparable or lower affinities for the other bile acids. All bile acids studied diminished ANS fluorescence with Binder II. Taurocholic and cholic acids increased ANS fluorescence with Binder I without affecting KANS, whereas lithocholic and chenodeoxycholic acids diminished ANS fluorescence with Binder I. In summary, we have identified and isolated two proteins (Binders I and II) which, along with glutathione S-transferase B, are the major hepatic cytosol bile acid binding proteins; these proteins have overlapping but distinct specificities for various bile acids.  相似文献   

17.
The effects of oleate, spermine and chlorpromazine were assayed in the presence or absence of 0.15 M KCl on the translocation of phosphatidate phosphohydrolase activity from cytosol to endoplasmic reticulum membranes in liver homogenates obtained from rats aged 1, 30, 60, 180 and 360 days. Marked age-associated decreases in phosphatidate phosphohydrolase distribution onto the membranes were demonstrated under nearly all conditions. In liver homogenates taken from 1-day-old rats and incubated with 0.15 M KCl, most of the enzyme was active (associated with the membranes). Physiological salt concentration (0.15 M KCl) produced a 2-fold increase of oleate-induced translocation of phosphatidate phosphohydrolase activity in liver homogenates from 1-day-old rats; it had no effect on those from 60-day-old rats, and produced a notable decline in liver homogenates obtained from 180- and 360-day-old rats. The promoting effect of spermine on oleate-induced translocation of this enzyme activity was higher in younger rats when incubated in the absence of 0.15 M KCl. Chlorpromazine did not show its usual antagonizing effect on oleate-induced translocation of phosphatidate phosphohydrolase when added to homogenates taken from 1-day-old rats. The antagonizing effect was slightly apparent in liver homogenates from 30-day-old rats and was more pronounced in those from 60-day-old rats in which the values diminished to one-half and to one-third either in the presence or absence of 0.15 M KCl.  相似文献   

18.
Protein Z was purified from rabbit liver cytosol by affinity chromatography on oleic acid-agarose and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After removal of sodium dodecyl sulfate, the renatured protein was found to bind heme and bilirubin with a Kd of approximately 1 microM which produced large red shifts in their absorption spectra. On isoelectric focusing, rabbit protein Z exhibited two main bands with pI around 6.0.  相似文献   

19.
After cortisone injection, virtually identical increases in rat liver cytosol alanine-2-oxoglutarate aminotransferase and glutamate-glyoxylate aminotransferase activities were observed. The two activities were co-purified to homogeneity from rat liver cytosol. The purified enzyme was specific for L-alanine with 2-oxoglutarate as amino acceptor. With glyoxylate, however, the enzyme utilized various L-amino acids as amino donors in the following order of activity: glutamate greater than alanine greater than glutamine greater than methionine. The ratio of alanine-2-oxoglutarate aminotransferase activity to glutamate-glyoxylate aminotransferase activity remained constant during purification and was unchanged by a variety of treatments of the purified enzyme. These results suggest that glutamate-glyoxylate aminotransferase is identical with alanine-2-oxoglutarate aminotransferase. Evidence was obtained that the two enzyme activities in the cytosol of dog, cat and human liver are also properties of the same protein.  相似文献   

20.
Nuclei and microsomes were prepared from the livers of normal, phenobarbital (PB)-treated and beta-naphthoflavone (beta-NF)-treated rats, and the contents of several enzymes in both subcellular fractions were examined. In normal rats, the enzyme activities in the nuclear fraction were about one-third of those of microsomes on a phospholipid basis. The induction of some particular enzymes by the drugs was observed with nuclei as well as with microsomes. Cytochrome P-450 and NADPH-cytochrome c reductase were increased by PB treatment and cytochrome P-448 was induced by beta-NF treatment both in nuclei and in microsomes. The extents of inhibition of nuclear enzyme activities by the antibodies against corresponding microsomal enzymes were almost the same as those of the microsomal activities. It was concluded that a microsomal type electron transport system exists in rat liver nuclei, and that nuclear drug-oxidizing activities are inducible by PB or beta-NF as their microsomal counterparts are.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号