首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brain ischemia was produced in gerbils (Meriones unguiculatus) by the bilateral ligation of the carotid arteries. Definite changes in the energy status of brain demonstrated that carotid occlusion was effective. Five minutes before ligation, an intraventricular injection of either saline or cytidine diphosphate choline (CDP-choline, 0.6 mol/brain, 3l) was given to groups of animals. Control animals, with and without CDP-choline, together with the ischemic groups, were decapitated directly into liquid nitrogen; 10 min after arterial ligation. Brain free fatty acids, neutral lipids and phospholipids, which were labeled in vivo by the intraventricular injection of [1-14C] arachidonic acid (0.4–0.6 Ci, 6–9 nmol) 2 hr prior to ligation, were extracted, purified, and separated by thin-layer chromatographic procedures. The CDP-choline treatment noticeably corrected the increase of total and individual fatty acids due to ischemia and the increase of their radioactivity content. The changes in neutral lipids, particularly in the diacyl glycerol fraction, were also corrected by the injection of the nucleotide. CDP-choline partially reversed the decrease of brain phosphatidylcholine and of its labeling, which was due to ischemia. All the data indicate that the prior injection of CDP-choline stimulates the choline phosphotransferase reaction of brain towards synthesis of phosphatidylcholine and prevents the release of free fatty acids, particularly of arachidonic acid, associated with ischemia.  相似文献   

2.
The effects of cerebral ischemia, induced for 10 min by bilateral common carotid ligation in the Mongolian gerbil, on the brain and synaptosomal content of phospholipids and free fatty acids were measured. Moreover, the incorporation of arachidonic acid and oleoyl-CoA into phospholipids, as well as the respiration and the accumulation of45Ca, norepinephrine, dopamine, choline, glutamate, and -aminobutyrate in the ischemic brain synaptosomal fraction were studied. Analyses of lipids showed a drop in phospholipids content with concomitant increase of lysocompounds and free fatty acids in ischemic cerebral cortex. Disturbances in lipid metabolism including rapid phospholipids hydrolysis and changes in the incorporation of arachidonic acid into inositol and choline phosphoglycerides were also shown in the synaptosomal fraction of ischemic brain. The uptake of neurotransmitter substances, expressed as a percent of control value, was reduced 21% for norepinephrine, 40% for dopamine, 20% for choline, 24% for glutamate and 13% for -aminobutyrate in ischemic synaptosomes. There was no significant effect of ischemia on synaptosomal respiration and45Ca uptake in both control and high potassium media. the inhibition of neurotransmitter uptake in ischemic brain synaptosomes may be caused by the disturbance of fatty acid metabolism.  相似文献   

3.
Brain ischemia in gerbils was induced by ligation of both common carotid arteries for 1 min or 10 min. Sham-operated animals served as controls. Intracerebral injection of [3H]inositol into gerbil brain 16 hr before ischemic insult resulted in equilibration of the label between inositol lipids and water-soluble inositol phosphate.A short ischemic period (1 min) resulted in a statistically significant increase in the radioactivity of inositol triphosphate (IP3) and inositol monophosphate (IP), by about 48% and 79%, respectively, with little change in that of the intermediate inositol biphosphate (IP2), which increased by about 16%. When the ischemic period was prolonged (10 min), an increase in the radioactivity of inositol monophosphate exclusively, by about 84%, was observed. The level of radioactivity in inositol phosphates IP2 and IP3 decreased by about 50%, probably as a consequence of phosphatase activation by the ischemic insult.The agonist of the cholinergic receptor, carbachol, injected intracerebrally (40 g per animal) increased accumulation of radioactivity in all inositol phosphates. The level of radioactivity in IP3, IP2, and IP was elevated by about 40, 23, and 147%, respectively.The muscarinic cholinergic antagonist, atropine, injected intraperitoneally in doses of 100 mg/kg body wt. depressed phosphoinositide metabolism in control animals. The level of radioactivity in water-soluble inositol metabolites in the brain of animals pretreated with atropine was evidently about 32% lower than in untreated animals.Pretreatment with atropine decreased the radioactivity of all inositol phosphates in the brain of animals subjected to 1-min ischemia and the radioactivity of IP in the case of 10-min brain ischemia. Gammabutyrolactone (GBL) administered intraperitoneally in the anesthetic dose 300 mg/kg body wt. diminished inositol monophosphate accumulation induced by either ischemic condition.Results from these in vivo studies are evidence that the blockage of cholinergic receptors by atropine depresses the response of phosphoinositides to physiological and particularly pathological stimuli.The results suggest that stimulation of the cholinergic receptor system is involved in the degradation of polyphosphoinositides during ischemia.  相似文献   

4.
The effects of membrane lipid disturbances induced by ischemia and exogenously added lipids on the uptake of GABA and Ca2+ were investigated in gerbil brain synaptosomes. Ischemia was produced by bilateral ligation of common carotid arteries in Mongolian gerbil for 10 min. The level of the free fatty acids (FFA) increased significantly in ischemic synaptosomes. Incorporation of [1-14C]arachidonate into membrane phosphatidylinositol and phosphatidylcholine was decreased by about 20–35%. Furthermore ischemia exerted an inhibitory effect on GABA uptake but remained without effect on calcium accumulation. Thiopental application in dose of 100 mg per kg body weight 30 min before ischemia caused a protective effect on membrane lipid disturbances induced by ischemia and enhanced GABA uptake. Unsaturated fatty acids (arachidonate and docosahexanoate) in concentration of 10−5−10−4 mol/l and lysocompounds (lysophosphatidylcholine and lysophosphatidylethanolamine) in concentrations higher than 10−4 mol/l decreased GABA and Ca2+ uptake in synaptosomes from normoxic brains. No effect was seen with saturated stearic acid. These results suggest that the inhibition of GABA uptake into ischemic synaptosomes resulted from an action of unsaturated fatty acids, arachidonic and docosahexanoic acids which were liberated during ischemia. Moreover the transient higher local concentration of lysophospholipids close to GABA carrier system may also have contributed to the inhibition observed during ischemia.  相似文献   

5.
Brain ischemia was produced in gerbils (Meriones unguiculatus) by the bilateral ligation of the carotid arteries with reported procedures. Changes in the energy status of brain demonstrated that carotid ligation was effective. At different time intervals from ligation, groups of gerbils were given either saline of S-Adenosyl-L-methionine (SAMe) by the intraventricular (i.v.) route (1.6 mg/Kg body wt. twice, at each 10 min interval), or by the intraperitoneal (i.p.) administration (200 mg/Kg body wt.) or subcutaneously (s.c.) with 40 mg/Kg body wt, daily, for two weeks. Control animals, with and without SAMe, together with the ischemic groups, were decapitated directly into liquid nitrogen, 10 min after ligation. Brain neutral and polar lipid, together with free fatty acids, which were all labeled in vivo by the intraventricular injection of [1-14C]arachidonic acid 2 hr prior to ligation, were extracted, purified and separated by conventional procedures. SAMe when injected i.v. or i.p. noticeably corrected the changes in polar lipid by reversing the decrease of brain phosphatidylcholine and choline plasmalogen, as well as of their labeling, which was due to ischemia. Concurrently with this action, SAMe treatment (i.v. and i.p.) also provided to some extent to re-establish the normal level of labeling of ethanolamine lipids. When SAMe was given s.c., no effect was present. SAMe had no effect on the increase of free fatty acid and diglyceride due to ischemia. The prevention by SAMe of the changes of choline lipids suggests that a stimulation of the methyltransferase reaction may occur in the ischemic brain, due to increased substrate (SAMe) availability. This effect may be important for cell survival, since membrane phospholipid derangements alter the properties of the membrane.  相似文献   

6.

Background

This paper presents quantitative analysis of blood flow shear stress by measuring the carotid arterial wall shear stress (WSS) and the intima-media thickness (IMT) of experimental rabbits fed with high-fat feedstuff on a weekly basis in order to cause atherosclerosis.

Methods

This study is based on establishing an atherosclerosis model of high-fat rabbits, and measuring the rabbits’ common carotid arterial WSS of the experimental group and control group on a weekly basis. Detailed analysis was performed by using WSS quantification.

Results

We have demonstrated small significant difference of rabbit carotid artery WSS between the experimental group and the control group (P<0.01) from the 1st week onwards, while the IMT of experimental group had larger differences from 5th week compared with the control group (P<0.05). Next, we have shown that with increasing blood lipids, the rabbit carotid artery shear stress decreases and the rabbit carotid artery IMT goes up. The decrease of shear stress appears before the start of IMT growth. Furthermore, our receiver operator characteristic (ROC) curve analysis showed that when the mean value of shear stress is 1.198 dyne/cm2, the rabbit common carotid atherosclerosis fatty streaks sensitivity is 89.8%, and the specificity is 81.3%. The area under the ROC curve is 0.9283.

Conclusions

All these data goes to show that WSS decreasing to 1.198 dyne/cm2 can be used as an indicator that rabbit common carotid artery comes into the period of fibrous plaques. In conclusion, our study is able to find and confirm that the decrease of the arterial WSS can predict the occurrence of atherosclerosis earlier, and offer help for positive clinical intervention.
  相似文献   

7.
The cholinergic agonist, arecoline, was used to examine the effects of cholinergic stimulation upon incorporation of radiolabeled arachidonic acid from blood into cerebral microvessels of awake rats. Animals received a single I.P. injection of arecoline (1 mg/kg) followed 3 to 5 minutes later by a 5 minute intravenous infusion of [1-14C]arachidonic acid (AA) (170 Ci/kg) via the femoral vein. Timed arterial blood samples were collected over 20 minutes following the start of infusion, after which the animal was killed, and the brain was removed. The incorporation coefficient k* for [1-14C] AA was approximately 2-fold higher in microvessels isolated from arecoline-injected than from sham-injected animals. The data demonstrate in an in vivo paradigm, that activation of cholinergic pathways within the rat CNS stimulates arachidonic acid turnover in cerebral microvessels. This suggests a direct involvement of this fatty acid in second messenger function within microvessel endothelial cells and possibly attached pericytes.  相似文献   

8.
The reperfusion of previously ischemic brain is associated with exacerbation of cellular injury. Reperfusion occasionally potentates release of intracellular enzymes, influx of Ca2+, breakdown of membrane phospholipids, accumulation of amyloid precursor protein or amyloid -(like) proteins, and apolipoprotein E. In this study, the effect of reperfusion injury on the activity of cerebral cortex enzymes acting on phosphatidyl [3H] inositol (PI) and [l4C-arachidonoyl] PI was investigated. Moreover the effect of amyloid 25–35 on PI degradation by phospholipase(s) of normoxic brain and subjected to ichemia-reperfussion injury was determined. Brain ischemia in gerbils (Meriones unguiculatus) was induced by ligation of both common carotid arteries for 5 min and then brains were perfused for 15 min, 2 h and 7 days. Statistically significant activation of enzyme(s) involved in phosphatidylinositol degradation in gerbils subjected to ischemia-reperfusion injury was observed. Nearly all gerbils showed a higher activity of cytosolic PI phos-pholipase C (PLC) at 15 min after ischemia. Concomitantly, the significant enhancement of the level of DAG and AA radioactivity at this short reperfusion time confirmed the active PI degradation by phospholipase(s) in cerebral cortex and hippocampus. After a prolonged reperfusion time of 7 days after ischemia, both cytosolic and membrane-bound forms of PI-PLC were activated. The question arises if alteration of membranes by the degradation of phospholipids occurring after an ischemic episode potentates the effect of A on membrane-bound enzymes. A neuro-toxic fragment of amyloid, A 25–35, incubated in the presence of endogenous Ca2+, increased significantly the PI-PLC activity of normoxic brain. In its non-aggregated form, A 25–35 activates PI-PLC but in the aggregated form the enzymatic activity decreased. Thus, A 25–35 exerts a similar effect on the membrane-bound PI-PLC from normoxic brain or subjected to ischemia reperfussion injury. We conclude that the degradation of phosphatidylinositol by cytosolic phosphoinositide-phospholipase C may contribute to the pathophysiology of delayed neuronal death following cerebral ischemia. Thus, a specific inhibitor of this enzyme(s) may offer therapeutic strategies to protect the brain from damage triggered by ischemia. Ischemia-reperfusion injury had no effect on A-evoked alterations of synaptic plasma membrane-bound PI-PLC.  相似文献   

9.
Global cerebral ischemia induced to Mongolian gerbils by ligation of common carotid arteries (CCAs) is known to result in injury to the hippocampal CA1 region. In this study, we examined whether neuronal injury can be depicted by measuring levels of mRNA encoding inositol 1,4,5-trisphosphate receptor type 1 (IP3R1), neuron specific enolase (NSE) and -actin and whether these measurements can be use to assess ischemic tolerance. Gerbils were subjected either to cerebral ischemia induced by ligation of both CCAs for 5 min, or to an ischemic tolerance paradigm in which a 2 min ischemic preconditioning was performed 24 hr prior to the 5 min ischemia. At 48 hr after the 5 min ischemic insult, significant decreases in mRNA levels for IP3R1 (26%), NSE (38%) and -actin (50%) could be observed in the hippocampal CA1 region. Although levels of mRNA in the preconditioning group were decreased as compared to the sham control, the levels were significantly higher than those in the ischemic group. These results indicate the feasibility of using mRNA measurement as a parameter to assess cerebral ischemic damage. In addition, based on the differences in the decline in mRNA levels between the ischemia group and the preconditioned ischemia group, it can be concluded that this ischemic tolerance paradigm could offer partial protection (around 45%) against the injury due to the 5 min cerebral ischemic insult.  相似文献   

10.
目的:通过对动物模型的制作模拟新生儿围产期缺氧缺血性脑损伤,研究其脑组织病理变化,为新生儿缺氧缺血性脑损伤的病理生理的研究以及进一步有效的治疗提供实验基础。方法:将40只7d新生昆明小鼠分四组,分别为正常组(A组)、单侧颈总动脉结扎组(B组)、单侧颈总动脉结扎+缺氧组(C组)和双侧颈总动脉结扎组(D组)。单侧颈总动脉结扎组(B组)行右侧颈总动脉结扎;单侧颈总动脉结扎+缺氧组(C组)行右侧颈总动脉结扎后将其置于20℃的恒温50mL密闭容器中,分不同的时间将其取出;双侧颈总动脉结扎组(D组)行双侧颈总动脉结扎,各组术后均送回母鼠身边继续母乳喂养,三天后再作病理检测。结果:行单侧颈总动脉结扎加缺氧60min时,小鼠结扎侧皮质及海马区出现病理改变,随着缺氧时间延长(90rain、100min、120min)病变范围逐渐扩大,病理改变越明显。结论:本实验显示单侧颈总动脉结扎同时缺氧一定时间可以导致小鼠脑组织损伤,脑细胞发生病理改变,且皮层及海马区域的神经细胞对缺氧缺血最为敏感,从而为进一步研究新生儿缺氧缺血性脑损伤提供了较为可靠的模型。  相似文献   

11.

Background

18F-Fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging of atherosclerosis in the clinic is based on preferential accumulation of radioactive glucose analog in atherosclerotic plaques. FDG-PET is challenging in mouse models due to limited resolution and high cost. We aimed to quantify accumulation of nonradioactive glucose metabolite, FDG-6-phosphate, in the mouse atherosclerotic plaques as a simple alternative to PET imaging.

Methodology/Principal Findings

Nonradioactive FDG was injected 30 minutes before euthanasia. Arteries were dissected, and lipids were extracted. The arteries were re-extracted with 50% acetonitrile-50% methanol-0.1% formic acid. A daughter ion of FDG-6-phosphate was quantified using liquid chromatography and mass spectrometry (LC/MS/MS). Thus, both traditional (cholesterol) and novel (FDG-6-phosphate) markers were assayed in the same tissue. FDG-6-phosphate was accumulated in atherosclerotic lesions associated with carotid ligation of the Western diet fed ApoE knockout mice (5.9 times increase compare to unligated carotids, p<0.001). Treatment with the liver X receptor agonist T0901317 significantly (2.1 times, p<0.01) reduced FDG-6-phosphate accumulation 2 weeks after surgery. Anti-atherosclerotic effects were independently confirmed by reduction in lesion size, macrophage number, cholesterol ester accumulation, and macrophage proteolytic activity.

Conclusions/Significance

Mass spectrometry of FDG-6-phosphate in experimental atherosclerosis is consistent with plaque inflammation and provides potential translational link to the clinical studies utilizing FDG-PET imaging.  相似文献   

12.
Cold cytidine was intraventricularly administered into the brain of young rats, and its effect on CDP-choline, CDP-ethanolamine, and CMP pools followed for different time intervals and with various amounts of administered cytidine. The injected nucleoside produces a measureable increase of the concentrations of all three nucleotides. The increase produced by injecting 2.5 mol of cytidine for brain does not essentially change with higher doses of injected nucleoside, except for CMP, whose increase reaches a maximum with 5 mol of cytidine. A clear time dependence on cytidine administration was shown. The increases of the three nucleotide concentrations do not show a maximum till 60 min from administration of cytidine. The results indicate that administered cytidine is directly converted into CMP and CDP-bases and measurably increases their endogenous brain pools. The compound is likely to enter metabolic events connected with phospholipid metabolism in brain.  相似文献   

13.
Abstract— Rats were exposed to 5 atmospheres absolute of oxygen, and [1-14C]acetate was injected into the jugular vein either before or at the onset of electroencephalogram-defined convulsions. Levels of 14C observed 2.2 min after the injection were reduced in the total lipids of brain and elevated in the blood of convulsed rats when compared to the nonconvulsed controls. These differences between convulsed and nonconvulsed animals were less pronounced when measured 15 and 60 min after injection. Convulsions did not change the amount of 14C incorporated into the total lipids of plasma during the 60 min period studied. Six fractions obtained from total lipid extracts of brain by TEAE-cellulose showed similar 14C distributions in convulsed and control animals. The results suggest that oxygen-induced convulsions cause an impaired utilization of systemically administered acetate for fatty acid incorporation into the lipids of brain.  相似文献   

14.
The premise of neuroprotective therapy for acute ischemic stroke is based upon the possibility to interfere with the cellular ischemic cascade, so the understanding of the mechanisms and consequences of cerebral ischemia is necessary. The relationship between lipid peroxidation and acidosis was investigated in several regions of rat brain following ischemia without reperfusion. Male Wistar rats (280-300 g) were anaesthetised (Ketalar 33 mg/kg and Rompun 6.66 mg/kg) or not and underwent a four-vessel occlusion for 5 minutes. Then, thiobarbituric acid-reactive substances (TBARS) and lactate levels were measured in different brain regions (cerebellum, bulb, striatum, hippocampus, cortex). Induction of ischemia by ligation of two common carotid arteries and two vertebral arteries resulted in a production of TBARS (40-120%, p < 0.05) and lactate (20-60%, p < 0.05) in all cerebral regions of awake rats, especially in striatum, suggesting a potential link between lipid peroxidation and acidosis. When ischemia was realised on anaesthetised animals, an increase of lactate levels (30-50%, p < 0.05) was shown in all brain regions but TBARS were produced only in striatum (82%, p < 0.05). These data showed the particular vulnerability of striatum to ischemia and the possible opposite effects of an anaesthesia.  相似文献   

15.
Abstract: Intracerebral injection of [3H]inositoi into gerbil brain resulted in labeling of phosphoinositides and inositolphosphates in various subcellular membrane fractions. Phosphatidylinositol (PI) comprised >90% of the radioactivity of inositol lipids. However, the level of labeled poly-PI (with respect to PI) was higher in synaptosomes than in other membrane fractions. Ischemia induced in gerbils by ligation of the common carotid arteries resulted in a 30% decrease in labeled poly-PI in brain homogenates and this decrease was largely attributed to the poly-PI in synaptosomes (50% decrease). Among the inositol phosphates, the ischemia induction resulted in a decrease in labeling of inositol trisphosphate (63%) and inositol bisphosphate (38%), but labeling of inositol phosphate (IP) was increased by 59%. The results suggested a rapid turnover of the inositol phosphates in the gerbil brain. In general, changes in inositol lipids and inositol phosphates due to ischemia were attenuated after pretreatment with lithium (3 meq/kg) injected intraperitoneally 5 h prior to ligation. Surprisingly, lithium treatment alone did not cause an increase in IP labeling in the gerbil brain.  相似文献   

16.
We examined the dose response, time course and reversibility of the effect of methyl 2-tetradecylglycidate (McN-3716, methyl palmoxirate or MEP), an inhibitor of -oxidation of fatty acids, on incorporation of radiolabeled palmitic acid ([U-14C]PA) from plasma into brain lipids of awake rats. MEP (0.1, 1 and 10 mg/kg) or vehicle was administered intravenously from 10 min to 72 hr prior to infusion of [U-14C]PA. Two hr pretreatment with MEP (0.1 to 10 mg/kg) increased brain organic radioactivity 1.2 to 1.8 fold and decreased brain aqueous radioactivity by 1.2 to 3.0 fold when compared to control values. At 10 mg/kg, MEP significantly increased brain organic fraction from 40% in controls to 85%, 30 min to 6 hr pretreatment, and resulted in a redistribution of the radiolabeled fatty acid toward triacylglycerol. MEP changed the lipid/aqueous brain ratio of incorporated [U-14C]PA from 0.67 to 5.7. The incorporation rate coefficient, k*, was significantly increased by MEP (10 mg/kg) at 2 hr (31%), 4 hr (59%) and 6 hr (34%). All effects were reversed by 72 hr, consistent with a half-life of 2 days for carnitine palmitoyl transferase I. These results indicate that intravenous MEP may be used with [1-11C]palmitic acid for studying brain lipid metabolism in vivo by positron emission tomography, as it significantly reduces the large unincorporated aqueous fraction that would result in high background radioactivity.  相似文献   

17.
Summary Dieary lipids strongly influence the pattern of torpor and the body lipid composition of mammalian hibernators. The object of the present study was to investigate whether these diet-induced physiological and biochemical changes also occur in species that show shallow, daily torpor. Deer mice, Peromyscus maniculatus, were fed with rodent chow (control diet) or rodent chow with either 10% sunflower seed oil (unsaturated diet) or 10% sheep fat (saturated diet). Animals on the unsaturated diet showed a greater occurrence of torpor (80–100% vs 26–43%), longer torpor bouts (4.5 vs 2.25 h), a lower metabolic rate during torpor (0.96 vs 2.25 ml O2·g-1·h-1), and a smaller loss of body mass during withdrawal of food (2.35 vs 3.90 g) than animals on the saturated diet; controls were intermediate. These diet-induced physiological changes were associated with significant alterations in the fatty acid composition of depot fat, leg muscle and brain total lipids, and heart mitochondrial phospholipids. Significant differences in the total unsaturated fatty acid (UFA) content between animals on saturated and unsaturated diet were observed in depot fat (55.7% vs 81.1%) and leg muscle (56.4% vs 72.1%). Major compositional differences between diet groups also occurred in the concentration of n6 and/or n3 fatty acids of brain and heart mitochondria. The study suggests that dietary lipids may play an important role in the seasonal adjustment of physiology in heterothermic mammals.Abbreviations EDTA ethylenediaminetetra-acetic acid - HEPES N-2 hydroxyethylpiperazine-N1-2-ethanesulphonic acid - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - RMR Testing metabolic rate - SD standard deviation - SFA saturated fatty acids - SNK Student-Newman-Keuls test - T1 air temperature - Tb body temperature - UFA unsaturated fatty acids - rate of oxygen consumption Dedicated to the late John K. Raison  相似文献   

18.
This paper describes a new method for the rapid fixation of labile lipid pools in the brain. Perfusion of the brain with 0.9% saline containing esterase inhibitors (p-bromphenacyl-bromide and diisopropyl fluorophosphate), an antioxidant (nordihydroguaiaretic acid) and a Ca2+ chelator (EDTA) resulted in a substantial reduction in the levels of free fatty acids, a biochemical marker for the degradation of labile membrane lipids. Levels of unesterified polyunsaturated fatty acids in whole brain were decreased by 90–96% as compared to levels in brains perfused with saline alone. Levels of docosahexaenoic acid approximated levels obtained after microwave irradiation. Unlike microwave irradiation, this perfusion technique perserves the cellular structure of the brain, thereby allowing subcellular fractionation with minimal postmortem changes in lipid pools. The release of arachidonic acid during isolation of the P2 (synaptosomal) fraction was completely inhibited by the presence of the metabolic inactivators. The results of this study demonstrate a new and useful technique for the postmortem inactivation of enzymes responsible for the degradation of labile lipids in the brain. Further, the data underscore the key role of phospholipase A2 and Ca2+ in mediating the release and accumulation of free fatty acids in the ischemic brain.Abbreviations 204 arachidonic acid - 226 docosahexaenoic acid - 160 palmitic acid - 180 stearic acid - 181 oleic acid - 182 linoleic acid - NDGA nordihydroguaiaretic acid - pBPB p-bromphenacylbromide - EDTA ethylenediamine-tetraacetic acid - DFP diisopropyl fluorophosphate - FFA free fatty acids - TLC thin layer chromatography - GLC gas liquid chromatography  相似文献   

19.
Post-ischemic changes in energy metabolites and natural antioxidant compounds have been measured in rat brain in vitro concurrent with two different assays for peroxidized lipids. No exogenous free radical initiators were employed. In vitro oxygenation of minced brain preparations for periods of 10 minutes to 4 hours, following 5 minutes of preparatory ischemia, yielded increased levels of lipid conjugated dienes and TBA-reactive material, in contrast to anaerobically incubated preparations. However, either aerobic or anaerobic incubation of brain minces facilitated increased ratios of lactate: pyruvate and glutathione (oxidized): glutathione (reduced), as well as increased total ubiquinone content and loss of -tocopherol. Observation of lipid radical formation in vivo was then attempted using rats given embolic stroke in one hemisphere and left in the post-ischemic condition for times up to 24 hours. Conjugated dienes were found in lipids extracted from the ipsilateral hemisphere but not from the contralateral hemisphere. These observations of conjugated dienes in vivo (formed presumably during post-ischemic reperfusion) and in vitro (facilitated by oxygenation of brain minces), indicate that lipid radical intermediates and associated chain peroxidation processes are potentiated by ischemia and occur during tissue reoxygenation.  相似文献   

20.
Combined fractionation and RNA metabolism studies were made on homologous cell types (neurons and glia) banded from rat brain cerebral cortex and hippocampus tissue at 40, 000 rev/min for 50 minutes in a Beckman Ti 14 zonal rotor loaded with a discontinuous methyl cellulose (Methocel) and sucrose density gradient. Comparisons were made on the cellular fractions recovered from animals intracisternally injected with 15 μCi tritiated cytidine (3HCR) RNA precursor one hour before sacrifice and tissue cellular filtrate preparation. Immediate3H pool-correction of extracted3HRNA from the three cellular Bands recovered made possible a mathematically valid measure of3HCR-precursor incorporation into RNA of the different cell types. Comparison of the cellular3HRNA data by analysis of variance revealed the occurrence of differential tritium labelling of RNA in the same cell types banded from different brain regions. In particular, an important advance was demonstrated by the procedures developed in these studies for the quantitative cellular assay of brain in vivo (differential) RNA metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号