首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Coxsackievirus B3 (CVB3) infections induce myocarditis in humans and mice. Little is known about the molecular characteristics of CVB3 that activate the cellular immunity responsible for cardiac inflammation. Previous experiments have identified an antibody escape mutant (H310A1) of a myocarditic variant of CVB3 (H3) that attenuates the myocarditic potential of the virus in mice in spite of ongoing viral replication in the heart. We have cloned full-length infectious cDNA copies of the viral genome of both the wild-type myocarditic H3 variant of CVB3 and the antibody escape mutant H310A1. Progeny viruses maintained the myocarditic and attenuated myocarditic potential of the parent viruses, H3 and H310A1. The full sequence of the H3 viral cDNA is reported and compared with those of previously published CVB3 variants. Comparison of the full sequences of H3 and H310A1 viruses identified a single nonconserved mutation (A to G) in the P1 polyprotein region at nucleotide 1442 resulting in an asparagine-to-aspartate mutation in amino acid 165 of VP2. This mutation is in a region that corresponds to the puff region of VP2. Nucleotide 1442 of the H3 and H310A1 cDNA copies of the viral genome was mutated to change amino acid 165 of VP2 to aspartate and asparagine, respectively. The presence of asparagine at amino acid 165 of VP2 is associated with the myocarditic phenotype, while an aspartate at the same site reduces the myocarditic potential of the virus. In addition, high-level production of tumor necrosis factor alpha by infected BALB/c monocytes is associated with asparagine at amino acid 165 of VP2 as has been previously demonstrated for the H3 virus. These findings identify potentially important differences between the H3 variant of CVB3 and other previously published CVB3 variants. In addition, the data demonstrate that a point mutation in the puff region of VP2 can markedly alter the ability of CVB3 to induce myocarditis in mice and tumor necrosis factor alpha secretion from infected BALB/c monocytes.  相似文献   

2.
Infectious bursal disease viruses (IBDVs), belonging to the family Birnaviridae, exhibit a wide range of immunosuppressive potential, pathogenicity, and virulence for chickens. The genomic segment A encodes all the structural (VP2, VP4, and VP3) and nonstructural proteins, whereas segment B encodes the viral RNA-dependent RNA polymerase (VP1). To identify the molecular determinants for the virulence, pathogenic phenotype, and cell tropism of IBDV, we prepared full-length cDNA clones of a virulent strain, Irwin Moulthrop (IM), and constructed several chimeric cDNA clones of segments A and B between the attenuated vaccine strain (D78) and the virulent IM or GLS variant strain. Using the cRNA-based reverse-genetics system developed for IBDV, we generated five chimeric viruses after transfection by electroporation procedures in Vero or chicken embryo fibroblast (CEF) cells, one of which was recovered after propagation in embryonated eggs. To evaluate the characteristics of the recovered viruses in vivo, we inoculated 3-week-old chickens with D78, IM, GLS, or chimeric viruses and analyzed their bursae for pathological lesions 3 days postinfection. Viruses in which VP4, VP4-VP3, and VP1 coding sequences of the virulent strain IM were substituted for the corresponding region in the vaccine strain failed to induce hemorrhagic lesions in the bursa. In contrast, viruses in which the VP2 coding region of the vaccine strain was replaced with the variant GLS or virulent IM strain caused rapid bursal atrophy or hemorrhagic lesions in the bursa, as seen with the variant or classical virulent strain, respectively. These results show that the virulence and pathogenic-phenotype markers of IBDV reside in VP2. Moreover, one of the chimeric viruses containing VP2 sequences of the virulent strain could not be recovered in Vero or CEF cells but was recovered in embryonated eggs, suggesting that VP2 contains the determinants for cell tropism. Similarly, one of the chimeric viruses containing the VP1 segment of the virulent strain could not be recovered in Vero cells but was recovered in CEF cells, suggesting that VP1 contains the determinants for cell-specific replication in Vero cells. By comparing the deduced amino acid sequences of the D78 and IM strains and their reactivities with monoclonal antibody 21, which binds specifically to virulent IBDV, the putative amino acids involved in virulence and cell tropism were identified. Our results indicate that residues Gln at position 253 (Gln253), Asp279, and Ala284 of VP2 are involved in the virulence, cell tropism, and pathogenic phenotype of virulent IBDV.  相似文献   

3.
将编码柯萨奇B3病毒(CVB3)衣壳蛋白VP1和VP2的基因,分别克隆到具有7.5k启动子的痘苗病毒表达载体pGJP5上;将CVB3衣壳蛋白全基因克隆到具有T7启动子的痘苗表达载体pTM1上,并筛先到相应的重组痘苗病毒VVP1、VVP2和VVP/4/2/3/1。VVP1和VVP2稳定表达产物为CVB3衣壳蛋白VP1和VP2,而VVP4/2/3/1为一无分泌性的多聚蛋白,且这三种表达产物均属无分泌性  相似文献   

4.
The coxsackievirus group B (CVB) of the genus Enterovirus and the species human enterovirus B is a nonenveloped virus containing a single-stranded positive-sense RNA genome. Coxsackievirus has icosahedral symmetry and four capsid proteins, VP1, VP2, VP3, and VP4. Specific antibodies against each viral protein are prerequisites for various studies. In this study, we developed seven peptide-derived antibodies directed against coxsackievirus VP1 (NO1-NO5), VP2 (B3), and VP3 (GL3). We developed a type-specific antibody (NO1) and broadly cross-reactive antibodies (NO3 and NO5) to VP1. Anti-VP2 and anti-VP3 antibodies (B3 and GL3, respectively) are also cross-reactive to human enterovirus B such as CVB and echoviruses. Their sensitivities and reactivities are likely to be better than those of the commercial VP1 monoclonal antibody (MAb). The dot-blot analysis also showed that NO5 against VP1 is able to detect less than 1 microg [2x10(6) plaque-forming unit (pfu) of CVB3] of viruses, suggesting that it could be used to develop a diagnostic kit that can directly detect human enterovirus B. The antibodies produced here may allow us to undertake several studies, such as those involving viral trafficking, expression kinetics, and the roles of viral proteins in infection, and the development of diagnostic kits.  相似文献   

5.
Most poliovirus (PV) strains, including PV PV-1/Mahoney, are unable to cause paralysis in mice. Determinants for restriction of PV-1/Mahoney in mice have been identified by manipulating PV-1 cDNA and located on the viral capsid protein VP1. These determinants consist of a highly exposed amino acid sequence on the capsid surface corresponding to the B-C loop (M. Murray, J. Bradley, X. Yang, E. Wimmer, E. Moss, and V. Racaniello, Science 241:213-215, 1988; A. Martin, C. Wychowski, T. Couderc, R. Crainic, J. Hogle, and M. Girard, EMBO J. 7:2839-2847, 1988) and of residues belonging to the N-terminal sequence located on the inner surface of the protein shell (E. Moss and V. Racaniello, EMBO J. 10:1067-1074, 1991). Using an in vivo approach, we isolated two mouse-neurovirulent PV-1 mutants in the mouse central nervous system after a single passage of PV-1/Mahoney inoculated by the intracerebral route. Both mutants were subjected to two additional passages in mice, plaque purified, and subsequently characterized. The two cloned mutants, Mah-NK13 and Mah-NL32, retained phenotypic characteristics of the parental PV-1/Mahoney, including epitope map, heat lability, and temperature sensitivity. Mah-NK13 exhibited slightly smaller plaques than did the parental virus. The nucleotide sequences of the mutant genomes were determined, and mutations were identified. Mutations were independently introduced into the parental PV-1/Mahoney genome by single-site mutagenesis. Mutated PV-1/Mahoney viruses were then tested for their neurovirulence in mice. A single amino acid substitution in the capsid proteins VP1 (Thr-22-->Ile) and VP2 (Ser-31-->Thr) identified in the Mah-NK13 and Mah-NL32 genomes, respectively, conferred the mouse-virulent phenotype to the mouse-avirulent PV-1/Mahoney. Ile-22 in VP1 was responsible for the small-plaque phenotype of Mah-NK13. Both mutations arose during the first passage in the mouse central nervous system. We thus identified a new mouse adaptation determinant on capsid protein VP1, and we showed that at least one other capsid protein, VP2, could also express a mouse adaptation determinant. Both determinants are located in the inside of the three-dimensional structure of the viral capsid. They may be involved in the early steps of mouse nerve cell infection subsequent to receptor attachment.  相似文献   

6.
The study of four isolates of chrysanthemum B-virus (CVB) has shown the virus to have a single 40 Kd structural protein able to dissociate under the definite conditions forming the truncated (for 3 and 6 Kd) polypeptides having preserved their whole antigenic determinants. The human plasma is shown to contain antibodies reacting with the structural protein B-BX and, approximately 10 times weaker with the structural protein of another carlavirus, potato M-virus. Interaction of antibodies with CVB is found to take place due to F(ab)2 fragments. The analogous reaction with the proteins of other plant viruses or retroviruses has never been registered. Antibodies reacting with CVB protein are also present in the plasma of green monkey, rabbit, mouse and goat but in lesser quantities than in human plasma. Two possible explanations are proposed for the presented data, either immunization of mammalians by the protein or peptide containing its antigenic determinant, or the accidental coincidence of CVB antigenic determinant with some viral, bacterial or fungal determinant widespread in mammalians.  相似文献   

7.
Encephalomyocarditis virus (EMCV) infection leads to many diseases including encephalitis, myocarditis and diabetes in its natural host, the mouse. In this study, we generated four cDNA clones with a point mutation at position 100 of VP1. The amino acids isoleucine, alanine, serine and proline were substituted with threonine in the four different clones of EMCV strain BJC3 by site-specific mutagenesis, and viable viruses were rescued. Although all mutants and wild-type viruses display different plaque morphologies, they replicate comparably in BHK-21 cells. The pathogenicity of the mutated viruses was systematically analyzed to investigate the importance of this amino acid in the viral pathogenicity and disease phenotype of EMCV infection in mice. The results showed that the isoleucine- (T1100I) and proline-mutated viruses (T1100P) exhibited a reduced mortality, lower cerebral virus loads and alleviated brain damage while the viruses with serine (T1100S) and alanine (T1100A) substitutions displayed similar properties as the wild-type virus. These findings indicate that the amino acid at position 100 of VP1 is important for EMCV in vivo infection, and its mutation alters the pathogenicity of viral infection in mice.  相似文献   

8.
The DA strain of Theiler's virus persists in the central nervous system of mice and causes chronic inflammation and demyelination. On the other hand, the GDVII strain causes an acute encephalitis and does not persist in surviving animals. Series of recombinants between infectious cDNA clones of the genomes of DA and GDVII viruses have been constructed. The analysis of the phenotypes of the recombinant viruses has shown that determinants of persistence and demyelination are present in the capsid proteins of DA virus. Chimeric viruses constructed by the different research groups gave consistent results, with one exception. Chimeras GD1B-2A/DAFL3 and GD1B-2C/DAFL3, which contain part of capsid protein VP2, capsid proteins VP3 and VP1, and different portions of P2 of GDVII in a DA background, were able to persist and cause demyelination. Chimera R4, whose genetic map is identical to that of GD1B-2A/DAFL3, was not. After exchanging the viral chimeras between laboratories and verifying each other's observations, new chimeras were generated in order to explain this difference. Here we report that the discrepancy can be attributed to a single amino acid difference in the sequence of the capsid protein VP2 of the two parental DA strains. DAFL3 (University of Chicago) and the chimeras derived from it, GD1B-2A/DAFL3 and GD1B-2C/DAFL3, contain a Lys at position 141, while TMDA (Institut Pasteur) and R4, the chimera derived from it, contain an Asn in that position. This amino acid is located at the tip of the EF loop, on the rim of the depression spanning the twofold axis of the capsid. These results show that a single amino acid change can confer the ability to persist and demyelinate to a chimeric Theiler's virus, and they pinpoint a region of the viral capsid that is important for this phenotype.  相似文献   

9.
The coxsackieviruses type B3 (CVB3) are members of the genus Enterovirus of the family Picornaviridae. They are the commonest cause of chronic myocarditis and dilated cardiomyopathy. However, there is still no effective method for diagnosing CVB3 infection in humans. Here, a fast and accurate system that uses a capsid‐protein‐specific peptide sequence to detect CVB3 in the sera of patients with viral myocarditis was established. The peptide sequence was selected from the whole CVB3 capsid protein sequence by computationally predicting fragments with high antigenicity and low hydrophobicity. Two of eight possible peptide sequences were selected and commercially synthesized. The synthesized peptides encoded either the VP2 or VP1 capsid protein and induced immunoglobulin G antibody expression in immunized rabbits. Anti‐VP2 and anti‐VP1 sera detected the viral proteins extracted from CVB3‐infected HeLa cells. The newly synthesized peptides successfully induced antibody production. These peptides, applied in an ELISA system, detected anti‐CVB3 antibodies in virus‐infected mouse serum. Moreover, an ELISA system based on the VP2 peptide detected CVB3 infection in patients with positively identified CVB3‐induced fulminant myocarditis. These results indicate that these new peptides specifically interact with anti‐CVB3 IgG antibodies in mouse and human sera. This ELISA system should be useful for the clinical diagnosis of enterovirus‐induced myocarditis.  相似文献   

10.
Coxsackievirus B3 (CVB3) is a principal viral cause of acute myocarditis in humans and has been implicated in the pathogenesis of dilated cardiomyopathy. The natural genetic determinants of cardiovirulence for CVB3 have not been identified, although using strains engineered in the laboratory, it has been demonstrated elsewhere that, for several wild-type CB3 strains, the primary molecular determinant of cardiovirulence phenotype localizes to the 5′ nontranslated region (5′NTR) and capsid. Stable RNA tetraloop motifs are found frequently in biologically active RNAs. These motifs carry out a wide variety of functions in RNA folding, in RNA–RNA and RNA–protein interactions. A great deal of knowledge about the structures and functions of tetraloop motifs has accumulated largely due to intensive theoretical, biochemical, and biophysical studies on one most frequently occurring family of tetraloop sequences, namely, the GNRA sequence, especially the GNAA sequence conserved in all enteroviruses. Here in this study, through construction of CVB3 chimeric mutants, the predicted stem loop (SL) V within the 5′NTR has been identified as important in determining viral cardiovirulence. Replication assays in HeLa cell monolayers revealed that wild-type CVB3 virus and two of the six mutants constructed here grow efficiently, whereas other mutant viruses replicate poorly. Furthermore, the in vitro translation products from these mutants and wild-type CVB3, demonstrated that the two mutants who replicate efficiently, translated at relatively equivalent amount than the wild-type. However, other mutants demonstrated a low efficiency in their production of protein when translated in a Rabbit Reticulocytes Lysats.  相似文献   

11.
M Caggana  P Chan    A Ramsingh 《Journal of virology》1993,67(8):4797-4803
To identify the molecular determinants of virulence for coxsackievirus B4, a panel of recombinant, chimeric viruses were constructed from cDNA clones of a virulent virus, CB4-V, and a nonvirulent virus, CB4-P. Initial studies mapped a major determinant of virulence to the 5' end of the viral genome, which contained the 5' untranslated and the P1 regions (A. Ramsingh, A. Hixson, B. Duceman, and J. Slack, J. Virol. 64:3078-3081, 1990). To determine whether the 5' untranslated region contributed to the virulent phenotype, a chimeric virus (vCB403) containing this region of the virulent virus on an avirulent background was tested in mice. The vCB403 construct displayed a phenotype similar to that of CB4-P, suggesting that the 5' untranslated region did not significantly contribute to virulence. Analysis of the sequence data of the P1 regions of both CB4-V and CB4-P revealed five mutations that resulted in amino acid substitutions in VP1, VP2, and VP4 (A. Ramsingh, H. Araki, S. Bryant, and A. Hixson, Virus Res. 23:281-292, 1992). Analysis of individual mutations in both VP1 and VP2 revealed that a single residue (Thr-129 of VP1) determined the virulent phenotype.  相似文献   

12.
Clinical and laboratory investigations have demonstrated the involvement of viruses and bacteria as potential causative agents in cardiovascular disease and have specifically found coxsackievirus B3 (CVB3) to be a leading cause. Experimental data indicate that cytokines are involved in controlling CVB3 replication. Therefore, recombinant CVB3 (CVB3rec) variants expressing the T-helper-1 (T(H)1)-specific gamma interferon (IFN-gamma) or the T(H)2-specific interleukin-10 (IL-10) as well as the control virus CVB3(muIL-10), which produce only biologically inactive IL-10, were established. Coding regions of murine cytokines were cloned into the 5' end of the CVB3 wild type (CVB3wt) open reading frame and were supplied with an artificial viral 3Cpro-specific Q-G cleavage site. Correct processing releases active cytokines, and the concentration of IFN-gamma and IL-10 was analyzed by enzyme-linked immunosorbent assay and bioassays. In mice, CVB3wt was detectable in pancreas and heart tissue, causing massive destruction of the exocrine pancreas as well as myocardial inflammation and heart cell lysis. Most of the CVB3wt-infected mice revealed virus-associated symptoms, and some died within 28 days postinfection. In contrast, CVB3rec variants were present only in the pancreas of infected mice, causing local inflammation with subsequent healing. Four weeks after the first infection, surviving mice were challenged with the lethal CVB3H3 variant, causing casualties in the CVB3wt- and CVB3(muIL-10)-infected groups, whereas almost none of the CVB3(IFN-gamma)- and CVB3(IL-10)-infected mice died and no pathological disorders were detectable. This study demonstrates that expression of immunoregulatory cytokines during CVB3 replication simultaneously protects mice against a lethal disease and prevents virus-caused tissue destruction.  相似文献   

13.
The 5’ non-translated region (NTR) is an important molecular determinant that controls replication and virulence of coxsackievirus B (CVB)3. Previous studies have reported many nucleotide (nt) sequence differences in the Nancy strain of the virus, including changes in the 5’ NTR with varying degrees of disease severity. In our studies of CVB3-induced myocarditis, we sought to generate an infectious clone of the virus for routine in vivo experimentation. By determining the viral nt sequence, we identified three new nt substitutions in the clone that differed from the parental virus strain: C97U in the 5’ NTR; a silent mutation, A4327G, in non-structural protein 2C; and C5088U (resulting in P1449L amino acid change) in non-structural protein 3A of the virus leading us to evaluate the role of these changes in the virulence properties of the virus. We noted that the disease-inducing ability of the infectious clone-derived virus in three mouse strains was restricted to pancreatitis alone, and the incidence and severity of myocarditis were significantly reduced. We then reversed the mutations by creating three new clones, representing 1) U97C; 2) G4327A and U5088C; and 3) their combination together in the third clone. The viral titers obtained from all the clones were comparable, but the virions derived from the third clone induced myocarditis comparable to that induced by wild type virus; however, the pancreatitis-inducing ability remained unaltered, suggesting that the mutations described above selectively influence myocarditogenicity. Because the accumulation of mutations during passages is a continuous process in RNA viruses, it is possible that CVB3 viruses containing such altered nts may evolve naturally, thus favoring their survival in the environment.  相似文献   

14.
本研究探索柯萨奇病毒B3(Coxsackievirus B3,CVB3)感染引起的自噬与病毒复制之间的关系。CVB3感染HeLa细胞,并在病毒感染后6 h、8 h和10 h时检测LC3-Ⅰ蛋白、LC3-Ⅱ蛋白和p62蛋白的表达水平。结果显示CVB3病毒感染促使LC3-Ⅱ/LC3-Ⅰ比值升高,同时降低p62蛋白的表达。分别将自噬诱导剂雷帕霉素(Rapamy-cin)、自噬抑制剂3-甲基腺嘌呤(3-Methyladenine,3MA)或溶酶体抑制剂阿洛司他丁(Aloxistatin,E46D)预处理HeLa细胞2 h,CVB3感染药物处理细胞并在病毒感染6 h后收集细胞、检测CVB3病毒VP1蛋白的表达。结果显示雷帕霉素和E64D促使CVB3病毒VP1蛋白表达增加,而3MA降低CVB3病毒VP1蛋白的表达。本研究得出结论 CVB3病毒感染诱导自噬进而促进病毒复制。  相似文献   

15.
To identify determinants of attenuation in the poliovirus type 1 Sabin vaccine strain, a series of recombinant viruses were constructed by using infectious cDNA clones of the virulent type 1 poliovirus P1/Mahoney and the attenuated type 1 vaccine strain P1/Sabin. Intracerebral inoculation of these viruses into transgenic mice which express the human receptor for poliovirus identified regions of the genome that conferred reduced neurovirulence. Exchange of smaller restriction fragments and site-directed mutagenesis were used to identify the nucleotide changes responsible for attenuation. P1/Sabin mutations at nucleotides 935 of VP4, 2438 of VP3, and 2795 and 2879 of VP1 were all shown to be determinants of attenuation. The recombinant viruses and site-directed mutants were also used to identify the nucleotide changes which are involved in the temperature sensitivity of P1/Sabin. Determinants of this phenotype in HeLa cells were mapped to changes at nucleotides 935 of VP4, 2438 of VP3, and 2741 of VP1. The 3Dpol gene of P1/Sabin, which contains three amino acid differences from its parent P1/Mahoney, also contributes to the temperature sensitivity of P1/Sabin; however, mutants containing individual amino acid changes grew as well as P1/Mahoney at elevated temperatures, suggesting that either some combination or all three changes are required for temperature sensitivity. In addition, the 3'-noncoding region of P1/Sabin augments the temperature-sensitive phenotype conferred by 3Dpol. Although nucleotide 2741, 3Dpol, and the 3'-noncoding region of P1/Sabin contribute to the temperature sensitivity of P1/Sabin, they do not contribute to attenuation in transgenic mice expressing the poliovirus receptor, demonstrating that determinants of attenuation and temperature sensitivity can be genetically separated.  相似文献   

16.
Mice infected with coxsackievirus B1 (CVB1) develop a chronic hindquarter muscle weakness which resembles human polymyositis. In this study, we used in situ hybridization to screen for persistent viral RNA in hamstring and quadriceps muscles from mice that displayed various degrees of clinical weakness. At 28 to 31 days postinfection, when chronic myositis is well developed but infectious virus can no longer be recovered, persistent CVB1 RNA was found in hindquarter skeletal muscle of all 12 infected animals examined. Persistent CVB1 showed a multifocal distribution within muscle and was associated with three different histopathology patterns (HPPs). These three HPPs (HPP-1, HPP-2, and HPP-3) represent potentially different stages in the mechanism of persistence. They are based on the pattern of grains, the location of hybridization signal within the muscle, and the accompanying histopathology. In HPP-1, virus persisted in nonnecrotic muscle fibers and was not directly associated with foci of inflammatory cells. HPP-2 consisted of virus contained within necrotic myocytes that were surrounded by inflammatory cells. HPP-3 was rare and showed virus inside infiltrating mononuclear cells in a region where muscle tissue had been extensively destroyed. Persistent CVB1 occurred more frequently in severely diseased animals and in tissue sections displaying intense inflammation. Moreover, HPP-2 showed a stronger association with tissue inflammation and hindquarter weakness than did HPP-1. These data demonstrate that CVB1 persists in skeletal muscle for at least 28 to 31 days postinfection and support the concept that this persistence plays a role in the development of murine polymyositis.  相似文献   

17.
The minute virus of mice, prototype strain MVMp, productively infects cultured murine fibroblasts but not T cells. The immunosuppressive strain, MVMi, shows the converse tropism. These reciprocal tropisms are mediated by the viral capsids, in which their determinants have been mapped to a few specific amino acids in the primary sequence shared by VP1 and VP2. Which of these proteins is relevant in presenting these determinants during infection is not known. We have approached this question using a recombinant parvovirus system in which a LuIII-derived transducing genome, containing the luciferase reporter in place of viral coding sequences, can be packaged by capsid proteins from separate helper sources. We generated transducing virions by using helper constructs expressing either VP1 or VP2, containing the MVMp or MVMi tropic determinant region, in various combinations. The virions were used to infect human NB324K cells and murine A9 fibroblasts. Transduction of the human cells (permissive for both MVMp and MVMi) required both VP1 and VP2 and was successful with all combinations of these proteins. In contrast, significant transducing activity for A9 cells was detected only with recombinant virions containing VP2 of MVMp, while the use of either source of VP1 had little effect. We conclude that VP2 from MVMp is necessary to enable infection of murine A9 fibroblasts.  相似文献   

18.
Most poliovirus (PV) strains, such as PV type 1/Mahoney, cannot infect the mouse central nervous system. We previously identified two determinants of mouse adaptation of PV type 1/Mahoney at positions 22 and 31 of the viral capsid proteins VP1 and VP2, respectively (T. Couderc, J. Hogle, H. Le Blay, F. Horaud, and B. Blondel, J. Virol. 67:3808-3817, 1993). These residues are located on the interior surface of the capsid. In an attempt to understand the molecular mechanisms of adaptation of PV to mice, we investigated the effects of these two determinants on the viral multiplication cycle in a human cell line. Both determinants enhanced receptor-mediated conformational changes leading to altered particles of 135S, one of the first steps of uncoating, and viral internalization. Furthermore, the residue at position 22 of VP1 appears to facilitate RNA release. These results strongly suggest that these determinants could also facilitate conformational changes mediated by the PV murine receptor and internalization in the mouse nerve cell, thus allowing PV to overcome its host range restriction. Moreover, both mouse adaptation determinants are responsible for defects in the assembly of virions in human cells and affect the thermostability of the viral particles. Thus, these mouse adaptation determinants appear to control the balance between the viral capsid plasticity needed for the conformational changes in the early steps of infection and the structural requirements which are involved in the assembly and the stability of virions.  相似文献   

19.
Yue Y  Xu W  Xiong S 《DNA and cell biology》2012,31(4):479-488
Induction of potent mucosal immune response is a goal of current vaccine strategies against mucus-infectious pathogens such as Coxsackievirus B3 type (CVB3). We previously showed that administration of lymphotactin (LTN) as an adjuvant could enhance the specific immune responses against a mucosal gene vaccine, chitosan-pVP1, against CVB3. To optimize the coadministration mode of the mucosal adjuvant, we compared the mucosal immune responses induced by chitosan-DNA vaccine with different combinations of the target VP1 antigen gene and the adjuvant LTN gene. The two genes were either cloned in separate vectors or coexpressed as a fusion or bicistron protein in the same vector before encapsulation in chitosan nanoparticles. Four doses of various adjuvant-combined chitosan-DNA were intranasally administrated to mice before challenge with CVB3. The results indicated that chitosan-formulated pVP1-LTN fusion plasmid exhibited very weak improvement of CVB3-specific immune responses. Although the bicistronic coexpression of LTN with VP1 was expected to be powerful, this combination had enhanced effects on serum IgG and systemic T cell immune responses, but not on mucosal T cell immunity. Coimmunization with VP1 and LTN as separate chitosan-DNA formulation remarkably enhanced antibody and T cell immune responses both in systemic and mucosal immune compartments, leading to the most desirable preventive effect on viral myocarditis. Taken together, how the adjuvant is combined with the target antigen has a strong influence on the mucosal immune responses induced by mucosal DNA vaccines.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号