首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A ‘phase-shift’ translation fusion vector was constructed in which mutually compatible restriction sites BamHI, BelI and BglII are positioned in such a manner that the cut point is in a different reading frame, immediately following the ATG start codon and ribosome-binding site of the λ cro gene. The λ cro gene is expressed from promoter pR and controlled by a thermosensitive (cI857) λ repressor. The usefulness of the expression vector was demonstrated using a gal gene lacking the ATG start codon and fusing this to the pR promoter and ATG start codon of the λ cro gene, resulting in cI857-regulated expression of galactokinase. The vector is of general use for foreign gene expression in Escherichia coli when the target gene has a compatible cohesive end (5′-GATC-3′) at the N terminus (provided, for example, by a BamHI linker). The A λ cI857-pR-cro-galK cassette was cloned into pJRD215, a wide-host-range plasmid and transferred by conjugation to a variety of Gram-negative bacteria. In all cases, thermosensitive regulation of galactokinase could be demonstrated, though the levels of induction varied considerably. These results show that the powerful λ pR promoter and the efficient A repressor can be used to regulate expression of foreign genes in Gram-negative organisms other than E. coli.  相似文献   

2.
We have searched among E. coli M72 (D, bio11cI857H1) temperature resistant survivors and have found two bacterial mutants, gro100 and gro101 which block λiλ and λi434 phage development but allow growth of their N-independent derivatives λiλ nin and λi434nin. It is not known yet whether these two mutants interfere with the production of the N gene product or with its function. At least part of the gro genotype maps at 12′ of the E. coli genetic map and is co-transductible by Pl with the lac locus.  相似文献   

3.
Lytic Replication of Coliphage Lambda in Salmonella typhosa Hybrids   总被引:2,自引:0,他引:2       下载免费PDF全文
Hybrids between Escherichia coli K-12 and Salmonella typhosa which conserved a continuous K-12 chromosomal diploid segment extending from pro through ara to the strA locus were sensitive to plaque formation by wild-type λ. These partially diploid S. typhosa hybrids could be lysogenized with λ and subsequently induced to produce infectious phage particles. When the K-12 genes were segregated from a lysogenic S. typhosa hybrid, phage-productive ability was no longer detectable due to loss of a genetic region necessary for vegetative replication of λ. However, λ prophage was shown to persist in a quiescent state in the S. typhosa hybrid segregant with phage-productive ability being reactivated after replacement of the essential K-12 λ replication region. Low-frequency transduction and high-frequency transduction lysates containing the gal+ genes of S. typhosa were prepared by induction of λ-lysogenic S. typhosa hybrids indicating that the attλ site is chromosomally located in S. typhosa in close proximity to the gal locus as in E. coli K-12. After propagation in S. typhosa hybrids, λ was subject to restriction by E. coli K-12 recipients, thus establishing that S. typhosa does not perform the K-12 modification of λ deoxyribonucleic acid. Hybrids of S. typhosa, however, did not restrict λ grown previously on E. coli K-12. The K-12 genetic region required for λ phage production in S. typhosa was located within min 66 to min 72 on the genetic map of the E. coli chromosome. Transfer of an F-merogenote encompassing the 66 to 72 min E. coli chromosomal region to λ-insensitive S. typhosa hybrids enabled them to replicate wild-type λ. The λ-insensitive S. typhosa hybrid, WR4255, which blocks λ replication, can be mutagenized to yield mutant strains sensitive to λvir and λimm434. These WR4255 mutants remained insensitive to plaque formation by wild-type λ.  相似文献   

4.
A new mutation inEscherichia coli K12,isfA, is described, which causes inhibition of SOS functions. The mutation, discovered in a ΔpolA + mutant, is responsible for inhibition of several phenomena related to the SOS response inpolA + strains: UV- and methyl methanesulfonate-induced mutagenesis, resumption of DNA replication in UV-irradiated cells, cell filamentation, prophage induction and increase in UV sensitivity. TheisfA mutation also significantly reduces UV-induced expression of β-galactosidase fromrecA::lacZ andumuC′::lacZ fusions. The results suggest that theisfA gene product may affect RecA* coprotease activity and may be involved in the regulation of the termination of the SOS response after completion of DNA repair. TheisfA mutation was localized at 85 min on theE. coli chromosome, and preliminary experiments suggest that it may be dominant to the wild-type allele.  相似文献   

5.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

6.
7.
Summary To measure the degree of phr gene induction by DNA-damaging agents, the promoter region was fused to the coding region of the lacZ gene in plasmid pMC1403. The new plasmids were introduced into Escherichia coli cells having different repair capabilities. More efficient induction of phr gene expression was detected in a uvrA strain as compared with the wild-type strain. In addition, obvious induction was detected in uvrA cells treated by 4-nitroquinoline 1-oxide and mitomycin C. Nalidixic acid, an inhibitor of DNA gyrase, also induced phr gene expression. In contrast, little induced gene expression was noted in UV-irradiated lexA and recA strains. It is suggested from these results that induction of the phr gene is one of the SOS responses. Possible nucleotide sequences which could be considered to constitute an SOS box were found at the regulator region of the phr gene.Abbreviations phr photoreactivation - UV ultraviolet light - 4NQO 4-nitroquinoline 1-oxide - MMC mitomycin C - PRE photoreactivating enzyme - E. coli Escherichia coli  相似文献   

8.
Summary The umuDC operons of Escherichia coli and Salmonella typhimurium and the analogous plasmid operons mucAB and impCAB have been previously characterized in terms of their roles in DNA repair and induced mutagenesis by radiation and many chemicals. The interrelationships of these mutagenic DNA repair operons were examined in vivo in functional tests of interchangeability of operon subunits in conferring UV resistance and UV mutability phenotypes to wild-type S. typhimurium and umu mutants of E. coli. This approach was combined with DNA and protein sequence comparisons between the four operons and a fifth operon, samAB, from the S. typhimurium LT2 cryptic plasmid. Components of the E. coli and S. typhimurium umu operons were reciprocally interchangeable whereas impCA and mucA could not function with umuC in either of these species. mucA and impB could also combine to give a mutagenic response to UV. These active combinations were associated with higher degrees of conservation of protein sequence than in other heterologous gene combinations and related to specific regions of sequence that may specify subunit interactions. The dominance of the E. coli umuD44 mutation over umuD was revealed in both wild-type E. coli and S. typhimurium and also demonstrated against impCAB. Finally interspecies transfer showed that the apparently poor activity of the S. typhimurium umuD gene in situ is not the result of an inherent defect in umuD but is due to the simultaneous presence of the S. typhimurium umuC sequence. It is suggested that the limitation of umuD activity by umuC in S. typhimurium is the basis of the poor induced mutability of this organism.  相似文献   

9.
Some phages survive irradiation much better upon multiple than upon single infection, a phenomenon known as multiplicity reactivation (MR). Long ago MR of UV-irradiated λ red phage in E. coli cells was shown to be a manifestation of recA-dependent recombinational DNA repair. We used this experimental model to assess the influence of helicase II on the type of recombinational repair responsible for MR. Since helicase II is encoded by the SOS-inducible uvrD gene, SOS-inducing treatments such as irradiating recA+ or heating recA441 cells were used. We found: i) that MR was abolished by the SOS-inducing treatments; ii) that in uvrD background these treatments did not affect MR; and iii) that the presence of a high-copy plasmid vector carrying the uvrD+ allele together with its natural promoter region was sufficient to block MR. From these results we infer that helicase II is able to antagonize the type of recA-dependent recombinational repair acting on multiple copies of UV-damaged λ DNA and that its antirecombinogenic activity is operative at elevated levels only.  相似文献   

10.
Summary Sequence changes in mutations induced by ultraviolet light are reported for the chromosomal Escherichia coli gpt gene in almost isogenic E. coli uvr + and excision-deficient uvrA cells. Differences between the mutagenic spectra are ascribed to preferential removal of photoproducts in the transcribed strand by excision repair in uvr + cells. This conclusion is confirmed by analysis of published results for genes in both uvr + and uvr cells, showing a similar selective removal of mutagenic products from the transcribed strand of the E. coli lacI gene and of the lambda phage cl repressor gene. Comparison of these data with published results for ultraviolet mutagenesis of gpt on a chromosome in Chinese hamster ovary cells showed that a mutagenic hot spot in mammalian cells is not present in E. coli; the possibility is suggested that the hot spot might arise from localized lack of excision repair. Otherwise, mutagenesis in hamster cells appeared similar to that in E. coli uvr + cells, except there appears to be a smaller fraction of single-base additions and deletions (frameshifts) in mammalian than in bacterial cells. Phenotypes of 6-thioguanine-resistant E. coli showed there is a gene (or genes) other than gpt involved in the utilization of thioguanine by bacteria.  相似文献   

11.
-Amino-acid amidases, which catalyze the stereospecific hydrolysis of -amino-acid amide to yield -amino acid and ammonia, have attracted increasing attention as catalysts for stereospecific production of -amino acids. We screened for the enzyme variants with improved thermostability generated by a directed evolution method with the goal of the application of evolved enzyme to the production of -amino acids. Random mutagenesis by error-prone PCR and a filter-based screening was repeated twice, and as a result the most thermostable mutant BFB40 was obtained. Gene analysis of the BFB40 mutant indicated that the mutant enzyme had K278 M and E303 V mutations. To compare the enzyme characteristics with the wild-type enzyme, the mutant enzyme, BFB40, was purified from the Escherichia coli (E. coli) transformant. Both the thermostability and apparent optimum temperature of the BFB40 were shifted upward by 5 °C compared with those of the wild-type enzyme. The apparent Km value for -phenylalaninamide of BFB40 enzyme was almost the same with that of the wild-type enzyme, whereas Vmax value was enhanced about three-fold. Almost complete hydrolysis of -phenylalaninamide was achieved in 2 h from 1.0 M of racemic phenylalaninamide–HCl using the cells of E. coli transformant expressing BFB40 enzyme, the conversion of which was 1.7-fold higher than the case using cells expressing wild-type enzyme after the same reaction time.  相似文献   

12.
Summary Random Tn5 mutagenesis was used to isolate two independent Azorhizobium sesbaniae ORS571 mutants disturbed in ammonium assimilation (Asm-). Both Asm- mutant strains were shown to lack NADPH-glutamate synthase (NADPH-GOGAT) activity and to carry Tn5 insertions ca. 1.5 kb apart in the ORS571 chromosome. The Tn5-containing region of one of the GOGAT- mutant strains was cloned in pACYC184 and used to identify the wild-type glt (GOGAT) locus in a phage clone bank of ORS571. The cloned region was shown to have DNA homology with the Escherichia coli glt locus and to complement the Asm- phenotype of E. coli and ORS571 GOGAT- strains. The ORS571 GOGAT- mutations were found to interfere with free-living as well as symbiotic nitrogen fixation. Expression of ORS571 NADPH-GOGAT activity was shown to be independent of the nitrogen regulation (ntr) system.  相似文献   

13.
Bacteria live in unstructured and structured environments, experiencing feast and famine lifestyles. Bacterial colonies can be viewed as model structured environments. SOS induction and mutagenesis have been observed in aging Escherichia coli colonies, in the absence of exogenous sources of DNA damage. This cAMP-dependent mutagenesis occurring in Resting Organisms in a Structured Environment (ROSE) is unaffected by a umuC mutation and therefore differs from both targeted UV mutagenesis and recA730 (SOS constitutive) untargeted mutagenesis. As a recB mutation has only a minor effect on ROSE mutagenesis it also differs from both adaptive reversion of the lacI33 allele and from iSDR (inducible Stable DNA Replication) mutagenesis. Besides its recA and lexA dependence, ROSE mutagenesis is also uvrB and polA dependent. These genetic requirements are reminiscent of the untargeted mutagenesis in λ phage observed when unirradiated λ infects UV-irradiated E. coli. These mutations, which are not observed in aging liquid cultures, accumulate linearly with the age of the colonies. ROSE mutagenesis might offer a good model for bacterial mutagenesis in structured environments such as biofilms and for mutagenesis of quiescent eukaryotic cells. Received: 30 April 1997 / Accepted: 1 July 1997  相似文献   

14.
Genetic and biochemical evidence suggests that λ Orf is a recombination mediator, promoting nucleation of either bacterial RecA or phage Redβ recombinases onto single-stranded DNA (ssDNA) bound by SSB protein. We have identified a diverse family of Orf proteins that includes representatives implicated in DNA base flipping and those fused to an HNH endonuclease domain. To confirm a functional relationship with the Orf family, a distantly-related homolog, YbcN, from Escherichia coli cryptic prophage DLP12 was purified and characterized. As with its λ relative, YbcN showed a preference for binding ssDNA over duplex. Neither Orf nor YbcN displayed a significant preference for duplex DNA containing mismatches or 1-3 nucleotide bulges. YbcN also bound E. coli SSB, although unlike Orf, it failed to associate with an SSB mutant lacking the flexible C-terminal tail involved in coordinating heterologous protein-protein interactions. Residues conserved in the Orf family that flank the central cavity in the λ Orf crystal structure were targeted for mutagenesis to help determine the mode of DNA binding. Several of these mutant proteins showed significant defects in DNA binding consistent with the central aperture being important for substrate recognition. The widespread conservation of Orf-like proteins highlights the importance of targeting SSB coated ssDNA during lambdoid phage recombination.  相似文献   

15.
From an E. coli cell harboring plasmid pPJ3b (= pPJ3a::Tn2301) and infected with phage λ, we have isolated two defective phages having inserted pPJ3a DNA and Tn2301 in their genomes. One of them has been extensively characterized: it behaves like a cosmid, i.e., upon injection into the cell, its DNA circularizes and replicates as a plasmid (pPJ10); it can be packaged again in λ heads, provided the presence of a phage helper. Furthermore, heteroduplex analysis has shown that in pPJ10, the transposon Tn2301 is inverted compared to its direction in pPJ3b. We give evidence suggesting that this type of inversion is in part mediated by Tn2301.  相似文献   

16.
An infectious extracistronic mutant of phage Qβ has been prepared by site-directed mutagenesis. Qβ RNA minus strands containing the mutagenic base analog N4-hydroxy-CMP instead of UMP at position 39 from the 5′ end were synthesized in vitro and used as template for Qβ replicase to synthesize one generation of plus strands. E. coli spheroplasts were infected with the newly synthesized plus strands and phage recovered from single plaques. RNA sequence analysis revealed that four out of the eighteen phage clones analyzed contained RNA with an A → G transition at position 40 from the 3′-end (which corresponds to position 39 of the minus strand). Thus, the viability of phage Qβ does not depend on a unique nucleotide sequence in the 3′-extracistronic RNA segment.Upon in vivo propagation of mutant 40, spontaneous true revertants arose with high frequency and overgrew the parental clone within about 10 passages, indicating a selective disadvantage of the extracistronic mutant. Replication of mixtures of wild type and mutant RNA in vitro resulted in a decrease of the proportion of mutated RNA in the progeny plus strands. The fact that Qβ RNA containing an A → G transition in nucleotide −40 of Qβ RNA is less efficiently replicated in vitro may explain the selective disadvantage of the mutant phage in vivo.The preparation of an infectious mutated RNA by site-directed mutagenesis shows that the method is suitable to produce specific nucleotide exchanges without impairing the biological competence of the RNA.  相似文献   

17.
Coding sequences for a hammerhead ribozyme designed to cleave lexA mRNA in a targeted manner was cloned under phage T7 promoter and expressed in E. coli strain BL-21 (DE3) expressing T7 RNA polymerase under the control of IPTG-inducible lac UV-5 promoter. Ribozyme expression in vivo was demonstrated by RNase protection assay. Also, total RNA extracted from these transformed cells following induction by IPTG, displays site-specific cleavage of labeled lexA RNA in an In vitro reaction. The result demonstrates the active ribozyme in extracts of cell transformed with a recombinant cassette and goes beyond the earlier demonstration of the stability of In vitro synthesized ribozyme in cell extracts. The observed rise in lexA mRNA rules out any role for protease activity or resulting fragments of lexA protein in de-repression of RNA. (Mol Cell Biochem 271: 197–203, 2005)  相似文献   

18.
19.
In Escherichia coli, the origin of DNA replication, oriC, becomes transiently hemimethylated at the GATC sequences immediately after initiation of replication and this hemimethylated state is prolonged because of its sequestration by a fraction of outer membrane. This sequestration is dependent on a hemimethylated oriC binding protein such as SeqA. We previously isolated a clone of phage λgtll called hobH, producing a LacZ fusion protein which recognizes hemimethylated oriC DNA. Very recently, Thaller et al. (FEMS Microbiol. Lett. 146 (1997)191–198)found that the same DNA segment encodes a non-specific acid phosphatase, and named the gene aphA. We show here that the interruption of the aphA reading frame by kanamycin resistance gene insertion, abolishes acid phosphatase (NAP) activity. Interestingly, in the membrane of the null mutant, the amount of SeqA protein is about six times higher than that in the parental strain, suggesting the existence of a regulatory mechanism between SeqA and NAP expression.  相似文献   

20.
We have characterized 202 lacI mutations, and 158 dominant lacId mutations following treatment of Escherichia coli strains NR6112 and EE125 with 1-nitroso-6-nitropyrene (1,6-NONP), an activated metabolite of the carcinogen 1,6-dinitropyrene. In all, 91% of the induced point mutations occurred at G:C residues. The −(G:C) frameshifts were the dominant mutational class in the lacI collections of both NR6112 and EE125, and in the lacId collection of NR6112. Frameshift mutations occurred preferentially in runs of guanine residues, and their frequency increased with the length of the reiterated sequence. In strain EE125, which contained the plasmid pKM101, there was a marked stimulation in the frequency of base substitution mutations that was particularly apparent in the lacId collection. This study completes a comprehensive analysis of 1194 lacI and 348 lacId mutations induced by either 1,6-NONP or its positional isomer 1-nitroso-8-nitropyrene (1,8-NONP) in strains of E. coli that differ with regard to their ability to carry out nucleotide excision repair and/or their ability to express the translesion synthesis DNA polymerase RI (MucAB) encoded by plasmid pKM101. Among the mutations are 763 frameshift mutations, 367 base substitutions and 47 deletions; these mutations have been characterized at more than 300 distinct sites in the lacI gene. Our studies provide detailed insight into the DNA sequence alterations and mutational mechanisms associated with dinitropyrene mutagenesis. We review the mutational spectra, and discuss cellular lesion repair or tolerance mechanisms that modulate the observed mutational specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号