首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem and trunk growth, axillary bud break and branching habits are extremely important parameters of wood production in forest trees. The possibility of altering tree form by transformation with genes responsible for hormone biosynthesis and/or activity is most attractive. We examined four different phenotypically selected transgenic clones of a model tree –Populus tremula– expressing rol genes from Agrobacterium rhizogenes under their native promoters. Several of the observed phenotypic modifications were correlated with rol-gene expression, including breaking of stem apical dominance which resulted in the development and branching of up to four axillary buds per explant, as compared to a lack of axillary bud break in a uidA (β-glucuronidase-encoding)-transgenic aspen line and control (non-transformed) plants. rol-Transgenic plants also exhibited a higher cumulative stem length and enhanced growth rate, and hence a higher stem production index. During their first and second years in the greenhouse, rol-transgenic aspen plants exhibited enhanced growth and delayed winter dormancy relative to non-transformed plants. Although initially rol-transgenic plants had smaller, wrinkled leaves, these changes were not observed in the 2-year-old plants, which exhibited a phenotypically true-to-type leaf shape. Received: 13 September 1998 / Accepted: 15 April 1999  相似文献   

2.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

3.
An efficient protocol for shoot regeneration and genetic transformation was applied to root segments of a new Lotus corniculatus L. cultivar Bokor. The shoots, that regenerated on root segments, were inoculated with Agrobacterium rhizogenes A4M70GUS, and produced hairy roots, which on media with 0.2 mg dm−3 benzylaminopurine, regenerated shoots. After rooting and acclimation, the transformed plants were planted in the experimental field. Their morphological traits were compared to controls. No signs of the rol genes phenotype were present. The transformants were significantly taller than controls, while there were no significant differences in the leaf area. The glucuronidase activity and the presence of uidA gene was demonstrated in transformed plants of T0 and in seedlings of T1 generations. It is concluded that A. rhizogenes could be a vector of choice for the transfer of desirable genes into the bird's foot trefoil genome. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Mature plants were regenerated via protoplasts fromAgrobacterium rhizogenes-transformed root cultures ofHyoscyamus muticus L., and chemical analyses were performed on 34 individual plants. The regenerated plants showed strong phenotypic differences from clone to clone as well as from the control plants. Polymerase chain reaction studies revealed that the plants exhibiting the strongest phenotypic alterations contained therol (A, B and C) genes, whereas the plants with fewer alterations had lost them. The plants produced hyoscyamine, scopolamine and a range of different calystegins, and considerable somaclonal variation was observed. Alkaloid production in the plants transgenic for therol genes was clearly reduced. The pattern of calystegins was similar within all the regenerated plants lackingrol genes. Among the plants withrol genes, the calystegin B1 was not detectable. It seems clear that the presence ofrol genes is detrimental to the alkaloid accumulation in the transgenic plants in contrast to hairy root cultures.Abbreviation PCR Polymerase chain reaction  相似文献   

5.
Use of ri-mediated transformation for production of transgenic plants   总被引:12,自引:0,他引:12  
Summary Agrobacterium rhizogenes-mediated transformation has been used to obtain transgenic plants in 89 different taxa, representing 79 species from 55 genera and 27 families. A diverse range of dicotyledonous plant families is represented, including one Gymnosperm family. In addition to the Ri plasmid, over half these plants have been transformed with foreign genes, including agronomically useful traits. Plants regenerated from hairy roots often show altered plant morphology such as dwarfing, increased rooting, altered flowering, wrinkled leaves and/or increased branching due to rol gene expression. These altered phenotypic features can have potential applications for plant improvement especially in the horticultural industry where such morphological alterations may be desirable. Use of A. rhizogenes and rol gene transformation has tremendous potential for genetic manipulation of plants and has been of particular benefit for improvement of ornamental and woody plants.  相似文献   

6.
Summary An elite aspen hybrid (Populus × canescens × P. grandidentata) was transformed with Agrobacterium tumefaciens strain EHA105 that harbored a binary vector (pBI121) carrying the nptII gene under the nos promoter and tandem rolB-uidA (GUS) genes with the CaMV 35S or heat shock promoter. Among 32 independent kanamycin-resistant plants, 25 plants were confirmed by polymerase chain reaction and Southern blot analyses to contain all three genes, whereas five plants contained only nptII or/and uidA genes and two plants had both the rolB and nptII or uidA genes. Integration of the rolB gene significantly increased rooting ability of hardwood cuttings. Heat shock-rolB-transformed plants rooted at significantly higher percentage than the CaMV 35S-rolB-transformed plants. Heat shock treatment further enhanced rooting of heat shock-rolB-transformed plants. Exposure to exogenous auxin did not significantly increase the rooting percentage of transgenic hardwood cuttings, but increased the number of roots induced. This research shows great potential to improve rooting of hardwood cuttings of difficult-to-root woody plants which are commercially important to the horticultural and forestry industry. The transgenic plants with gain-of-function in hardwood-cutting rooting can facilitate research in the understanding of adventitious rooting from hardwood cuttings of recalcitrant woody plants.  相似文献   

7.
The organogenetic competence of roots and Agrobacterium rhizogenes-induced hairy roots of twelve Lycopersicon genotypes was investigated. Both roots and hairy roots of L. peruvianum, L. chilense, L. hirsutum and two L. peruvianum-derived genotypes regenerated shoots after 2–4 weeks of incubation on zeatin-contained medium. Anatomical analysis showed that shoot regeneration in roots could be direct or indirect, depending on the genotype considered. Hairy roots showed considerable differences in their morphogenetic responses, when compared to the corresponding non-transgenic roots. The differences observed may reflect the influence of the introduced rol genes on hormonal metabolism/sensitivity. Hairy root-derived T0 plants had shortened internodes, wrinkled leaves and abundant root initiation, and most produced flowers and fruits with viable seeds. The hairy root syndrome was detected early in germinating T1 seedlings as a strong reduction in the hypocotyl length. Our data point to the possibility of the use of A. rhizogenes, combined with regenerating Lycopersicon genotypes, in a very simple protocol, based on genetic capacity instead of special procedures for regeneration, to produce transgenic tomato plants expressing rol genes, as well as, genes present in binary vectors. Furthermore, the regeneration differences observed in each Lycopersicon genotype and in transgenic materials expressing rol genes open the possibility for their use in the analysis of both the biochemical and the genetic background of organogenetic competence. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Transformed root lines were obtained after infection of leaf segments and tuber discs of tetraploid potato cvs Bintje and Desirée with Agrobacterium rhizogenes. In response to shoot induction, about 10% of the root lines produced shoots through callus formation. The tests for opine suggest that all 26 shoot lines of cv Bintje (Ri-Bintje) and 13 of Desirée (Ri-Desirée) were transformed. All shoot lines were tetraploid except for one octoploid subshoot line of cv Desirée; no aneuploids were observed. With the exception of two shoot lines derived from the same root line, all other Ri-Bintje plants showed a pattern of phenotypic variation, generally observed among transformed plants. In contrast, the phenotype of Ri-Desirée plants was uniform and normal; variation was observed in tuber form and size. Phenotypic variation observed among Ri-plants appeared to be mainly root line-dependent, particularly for height of plants and tuber size and form. Variation was also observed within root and shoot lines and was more pronounced among the Ri-Bintje plants. Segregation of phenotypic characteristics was observed among transformed plants, resulting in the occurrence of phenotypes resembling the control. Chromosomal stability and the frequent reversion to normal phenotype of Ri-plants make A. rhizogenes particularly suitable as a virulence vector in the binary transformation system for the transfer of desirable genes.  相似文献   

9.
The Ngrol genes, which have high similarity in sequence to the rol genes of Agrobacterium rhizogenes, are present in the genome of untransformed plants of Nicotiana glauca. It is thought that bacterial infection resulted in the transfer of the Ngrol genes to plants early in the evolution of the genus Nicotiana, since several species in this genus contain rol-like sequences but others do not. Plants transformed with the bacterial rol genes exhibit various developmental and morphological changes. The presence of rol-like sequences in plant genomes is therefore thought to have contributed to the evolution of Nicotiana species. This paper focuses on studies of the Ngrol genes in present-day plants and during the evolution of the genus Nicotiana. The functional sequences of several Ngrol genes may have been conserved after their ancient introduction from a bacterium to the plant. Resurrection of an ancestral function of one of the Ngrol genes, as examined by physiological and evolutionary analyses, is also described. The origin of the Ngrol genes is then considered, based on results of molecular phylogenetic analyses. The effects of the horizontal transfer of the Ngrol genes and mutations in the genes are discussed on the plants of the genus Nicotiana during evolution.Seishiro Aoki is the recipient of the Botanical Society Award for Young Scientist, 2002.  相似文献   

10.
The presence of marker genes conferring antibiotic or herbicide resistance in transgenic plants has been a serious problem for their public acceptance and commercialization. MAT (multi-auto-transformation) vector system has been one of the strategies to excise the selection marker gene from transgenic plants. Agrobacterium tumefaciens strain EHA105 harboring a rol-type MAT vector, pMAT101, was used to produce morphologically normal transgenic Petunia hybrida ‘Dainty Lady’ employing rol gene as the selection marker gene. LacZ gene was used as a model gene of interest. Infected explants were cultured on plant growth regulator (PGR)- and antibiotic-free half-strength MS medium. Sixty-five percent of the infected explants produced hairy roots. The hairy roots were separated and proliferated on 1/2 MS hormone-free medium. Shoots produced from the hairy roots on 1/2 MS medium supplemented with benzylaminopurine (BA) and naphthalene acetic acid (NAA) exhibited hairy root syndrome (Ri syndrome) such as dwarfed, reduced apical dominance, short internodes and increased rooting, but subsequently produced normal-looking marker-free shoots. Molecular analysis of DNA from the hairy roots, shoots with Ri syndrome and morphologically normal shoots revealed that the normal shoots had only LacZ gene, and the removable cassette consisting of rol, R (recombinase) and GUS genes was excised. From this study it can be concluded that the chimeric rol genes can be used as a selection marker for Agrobacterinum-mediated transformation of Petunia hybrida and that the production of marker-free normal transgenic plants is possible without using selective chemical agents employing rol-type MAT vector.  相似文献   

11.
AnAgrobacterium rhizogenes-mediated procedure for transformation of papaya (Carica papaya) was developed. Transgenic plants were obtained from somatic embryos that spontaneously formed at the base of transformed roots, induced from leaf discs infected withA. rhizogenes. Transformation was monitored by autonomous growth of roots and somatic embryos, resistance to kanamycin, β-glucuronidase activity (GUS), and Southern hybridization analysis. Over one-third of the infected leaf explants produced transformed roots with GUS activity, from which 10% spontaneously produced somatic embryos. Histological analysis ofA. rhizogenes-transformed embryos showed that they have an altered symmetry between the shoot apex and the root meristem when compared to somatic embryos induced with hormone treatment from control explants. Transgenic papaya plants containingA. rhizogenes rol genes were more sensitive to auxins, developed wrinkled leaves, and grew slower than nontransformed plants.  相似文献   

12.
Activation tagging is a powerful technique for generating gain-of-function mutants in plants. We developed a new vector system for activation tagging of genes in “transformed hairy roots”. The binary vector pHR-AT (Hairy Root-Activation Tagging) and its derivative pHR-AT-GFP contain a cluster of rol (rooting locus) genes together with the right border facing four tandem repeats of the cauliflower mosaic virus (CaMV) 35S enhancer element on the same T-DNA. Transformation experiments using Arabidopsis, potato, and tobacco as model plants revealed that upon inoculating plants with Agrobacterium tumefaciens harboring these vectors, a large number of independently transformed roots could be induced from explants within a short period of time, and root culture lines were subsequently established. Molecular analyses of the pHR-AT-GFP-transformed Arabidopsis lines showed that expression of the genes adjacent to the T-DNA insertion site was significantly increased. This system may facilitate application of the activation-tagging approach to plant species that are recalcitrant to the regeneration of transgenic plants. High-throughput metabolic profiling of activation-tagged root culture lines will offer opportunities for identifying regulatory or biosynthetic genes for the production of valuable secondary metabolites of interest.  相似文献   

13.
14.
15.
Plants belonging to genus Drosera (family Droseraceae) contain pharmacologically active naphthoquinones such as ramentaceone and plumbagin. Hairy root cultures obtained following Agrobacterium rhizogenes-mediated transformation have been reported to produce elevated levels of secondary compounds as well as exhibit desirable rapid biomass accumulation in comparison to untransformed plants. The aim of this study was to establish hairy root or teratoma cultures of Drosera capensis var. alba and to increase the level of ramentaceone in transformed tissue by application of abiotic and biotic elicitors. The appearance of transformed tissues—teratomas but not hairy roots was observed 18 weeks after transformation. The transformation efficiency was 10% and all teratoma cultures displayed about 3 times higher growth rate than non-transformed cultures of D. capesis. The transformation was confirmed by PCR and Southern hybridization using primers based on the A. rhizogenes rolB and rolC gene sequences. HPLC analysis of ramentaceone content indicated 60% higher level of this metabolite in teratoma tissue in comparison to non-transformed cultures. Among the elicitors tested jasmonic acid (2.5 mg l−1) turned out to be the most effective. The productivity of ramentaceone in elicited teratoma cultures was about sevenfold higher than in liquid cultures of D. capensis var. alba and amounted to 2.264 and 0.321 mg respectively during 4 weeks of cultivation. This is the first report on the transformation of Drosera plant with A. rhizogenes.  相似文献   

16.
Requirement for antibiotic-resistance selection markers and difficulty in identifying transgenes with the highest expression levels remain the major obstacles for rapid production of recombinant proteins in plants. An alternative approach to producing transgenic plants free of antibiotic-resistance markers is the phenotypic-based selection with root-proliferation genes (rol genes) of Agrobacterium rhizogenes. By using Agrobacterium tumefaciens harboring the pRYG transformation vector with a cluster of rol genes linked to a heterologous gene of interest, we have developed a rapid transformation tool using hairy root formation as a selection marker. The expression of -glucuronidase in newly induced transgenic tobacco roots could be detected as early as 12 days after inoculation. Higher levels of transgene expression in the roots correlated positively with the rates of root elongation on hormone-free medium and thus could be used for positive selection. When tobacco plants were transformed with pRYG harboring the expression cassette for secreted alkaline phosphatase (SEAP), the release of SEAP from roots of the fully regenerated transgenic plants could be quantified at rates as high as 28 g/g root dry weight per day.Abbreviations GUS: -Glucuronidase - SEAP: Secreted alkaline phosphatase - rolABC: Cluster of rolA, rolB, and rolC genesCommunicated by A. Altman  相似文献   

17.
It has been reported that rol plant oncogenes located in Ri-plasmids of Agrobacterium rhizogenes activated synthesis of secondary metabolites in the transformed plant cells. The activator mechanism is still unknown. In this work, we studied whether the NADPH oxidase-signaling pathway, which regulates the synthesis of defense metabolites in plants, is involved in the activator function of the rol genes. It was demonstrated that the transformation of Rubia cordifolia cells by the rolB and rolC genes caused an induction of biosynthesis of anthraquinone-type phytoalexins. Inhibition studies revealed a striking difference between the rolC and rolB transformed cultures in their sensitivity to Ca2+ channel blockers and calcium deficiency. The rolC culture displayed lowered resistance to the inhibitors compared to the non-transformed culture, while the rolB culture was more resistant to the treatment. The assumption was made that the oncogenic potential of rol genes is realized through the alteration of calcium balance in the plant cells. Anthraquinone production was not inhibited in the non-transformed and transformed cultures by Ca2+ channel blockers, as well as by diphenylene iodonium, an inhibitor of NADPH oxidase, and by the protein kinase inhibitor staurosporine. These results indicate that the induction of anthraquinone production in transgenic cultures does not involve the activation of Ca2+-dependent NADPH oxidase pathway.  相似文献   

18.
Hairy root cultures of Hypericum perforatum were obtained following inoculation of aseptically germinated seedlings with A. rhizogenes strain A4M70GUS. Effect of sucrose on the growth and biomass production of hairy root cultures was investigated. Hairy root cultures spontaneously regenerated shoots buds from which a number of shoot culture clones was established. Transformed shoot cultures exhibited good shoot multiplication, elongation and rooting on a hormone-free woody plant medium. Plants regenerated from hairy roots were similar in appearance to the normal, nontransformed plants.  相似文献   

19.
Transformation of Nicotiana tabacum cv. Xanthi leaf sections with the pPCV002-ABC (rol genes A, B and C together under the control of their own promoter) or pPCV002-CaMVC (rol gene C alone under the control of the CaMV 35S promoter) construction present in trans-acting Agrobacterium tumefaciens vectors yielded several transgenic root lines. The two types (rolABC and rolC) of transgenic root lines were examined for their nicotine productivity in relation to growth rate and the amount of rolC gene product measured with specific antibodies. In all cases, the changes in the amount of this polypeptide were positively correlated with the capacity of the transgenic roots to grow and produce nicotine. Both capacities were greatly increased when the rolA, rolB and rolC genes were present together, which demonstrates that the activity of the three rol-gene-encoded functions is synergistic. Consistent observations were also made in the corresponding regenerated plants. Received: 22 February 1997 / Revision received: 22 April 1997 / Accepted: 1 June 1997  相似文献   

20.
Hairy root-regenerated clones of Hypericum perforatum L. grown in vitro similarly to those successfully adapted to ex vitro conditions showed phenotype features typical for plants transformed with Agrobacterium rhizogenes T-DNA. These included reduced apical dominance, increased branching, dwarfing and reduced fertility. Transgenic clones differed in ability to develop root system as a necessary condition for transfer to the soil. One of the profiling characters, capability of hypericin biosynthesis was altered as well. Dark glands as the sites of hypericin accumulation and/or synthesis exhibited significantly higher densities on both, leaves and petals of transgenic clones comparing to controls. In the genome of transgenic clones, rolABC genes were detected. Both clones harboured similar copy number of individual rol genes. However, copy numbers descended from rolA to rolC gene in both clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号