首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 833 毫秒
1.
Spermiation was inhibited in the Syrian hamster by administering large doses of dibutyryl cyclic AMP. After treatment with dibutyryl cyclic AMP most stage VIII, IX, and X seminiferous tubules contained some mature spermatozoa within the seminiferous epithelium. The acrosomal membranes and plasma membranes of the unreleased spermatozoa remained intact, indicating that the spermatozoa had not been phagocytized by the Sertoli cells. Sertoli-spermatid junctional specializations were usually applied to the heads of the mature spermatozoa. The unreleased spermatozoa often appeared swollen with accumulated fluid located in the subacrosomal space. The accumulation of subacrosomal fluid in the unreleased spermatozoa seems to result from the absence of tubulobulbar complexes. That is, when tubulobular complexes fail to form the normal flow of cytoplasm into the tubulobular complexes is blocked resulting in an accumulation of fluid around the nucleus. Inhibition of spermiation may result from the absence of tubulobulbar complex formation. It is postulated that the tubulobulbar complex functions to transfer a chemical trigger from the maturing spermatid into the Sertoli cell. This chemical trigger may initiate the disappearance of the Sertoli-spermatid junctional specialization and induce spermiation.  相似文献   

2.
The interrelationships of the Sertoli cells and germ cells in the Syrian hamster were examined using the electron microscope. Demosome-like junctions were observed attaching Sertoli cells to spermatogonia and spermatocytes. In the region of the junctions dense plaques lay on the cytoplasmic surfaces of the plasmalemma of the opposing cells. Sertoli cell cytoplasmic filaments converged in the area of the junctions and inserted into the subsurface densities. Filaments were not observed associated with the subsurface densities of the germ cells. In the region of the junctions a 15...20 nm gap, filled with an attenuate amorphous substance, separated the plasmalemmata. Another attachment device termed "junctional specialization" occurred between Sertoli cells, and preleptotene spermatocytes and all successive developmental steps in the germ cell line in the hamster. The junctional specializations consisted of a mantel of Sertoli cell cytoplasmic filament lying subjacent to the Sertoli cell plasmalemma and an opposed cisterna of the endoplasmic reticulum. In stages VII-VIII preleptotene supermatocytes were observed in transit from the basal compartment to the adluminal compartment. While Sertoli-Sertoli junctions adluminal to the spermatocytes remained intact, typical Sertoli-Sertoli junctions formed between opposed Sertoli cell processes basal to the spermatocytes. It is proposed that, during the passage of spermatocytes in to the adluminal compartment, junctional specializations associated with preleptotene spermatocytes in the basal compartment migrate basal to the spermatocytes and contribute to formation of Sertoli-Sertoli junctions. Treatment of seminiferous tubules with hypertonic media was used to demonstrate that the junctional specializations function in cell-to-cell adhesion. Data indicated that these junctions function to retain the developing spermatids within the seminiferous epithelijm until the time of spermiation. At spermination the junctional specializations disappear and the spermatids drift off into the tubule lumen.  相似文献   

3.
Summary Chromophobes of the pars distalis in young Chelydra serpentina have sparse cytoplasm with no specific granules; however, many cytoplasmic filaments are present. The chromophobes are connected to the other cell types by desmosomes, while different types of junctional specializations occur between adjacent chromophobes. Cytoplasmic filaments traverse the cytoplasm in a random manner and terminate on both the junctional complexes and the nuclear envelope. It is proposed that, in addition to providing a structural framework, the chromophobes may be involved in integrating cellular responses of the parenchyma to changes in the endocrine milieu.Supported in part by a General Research Support Grant RR05402, NIH to Dr. Tseng and a Human Development Grant HD-03484, NIH to Dr. Yntema.  相似文献   

4.
Acrosomal development in the early spermatid of the rufous hare wallaby shows evidence of formation of an acrosomal granule, similar to that found in eutherian mammals, the Phascolarctidae and Vombatidae. Unlike the other members of the Macropodidae so far examined, the acrosome of this species appears to be fully compacted at spermiation and extends evenly over 90% of the dorsal aspect of the nucleus. During spermiogenesis, the nucleus of the rufous hare wallaby spermatid showed evidence of uneven condensation of chromatin; this may also be related to the appearance of unusual nucleoplasm evaginations from the surface of the fully condensed spermatid. This study was unable to find evidence of the presence of Sertoli cell spurs or nuclear rotation during spermiogenesis in the rufous hare wallaby. The majority of spermatozoa immediately before spermiation had a nucleus that was essentially perpendicular to the long axis of the sperm tail. Nuclei of spermatozoa found in the process of being released or isolated in the lumen of the seminiferous tubule were rotated almost parallel to the long axis of the flagellum; complete parallel alignment occurred during epididymal maturation. At spermiation spermatozoa have characteristically small cytoplasmic remnants compared to those of other macropods. Unlike the majority of macropodid spermatozoa so far described, the spermatozoa of the rufous hare wallaby showed little evidence of morphological change during epididymal transit. There was no formation of a fibre network around the midpiece or of plasma membrane specializations in this region; the only notable change was a distinctive flattening of midpiece mitochondria and scalloping of the anterior mitochondrial sheath to accommodate the sperm head. Preliminary evidence from spermiogenesis and epididymal sperm maturation supports the classification of the rufous hare wallaby as a separate genus but also indicates that its higher taxonomic position may need to be re‐evaluated.  相似文献   

5.
During spermatogenesis in adult rat testes, fully developed spermatids (i.e. spermatozoa) at the luminal edge of the seminiferous epithelium undergo “spermiation” at stage VIII of the seminiferous epithelial cycle. This is manifested by the disruption of the apical ectoplasmic specialization (apical ES) so that spermatozoa can enter the tubule lumen and to complete their maturation in the epididymis. At the same time, the blood–testis barrier (BTB) located near the basement membrane undergoes extensive restructuring to allow transit of preleptotene spermatocytes so that post-meiotic germ cells complete their development behind the BTB. While spermiation and BTB restructuring take place concurrently at opposite ends of the Sertoli cell epithelium, the biochemical mechanism(s) by which they are coordinated were not known until recently. Studies have shown that fragments of laminin chains are generated from the laminin/integrin protein complex at the apical ES via the action of MMP-2 (matrix metalloprotease-2) at spermiation. These peptides serve as the local autocrine factors to destabilize the BTB. These laminin peptides also exert their effects on hemidesmosome which, in turn, further potentiates BTB restructuring. Thus, a novel apical ES-BTB-hemidesmosome regulatory loop is operating in the seminiferous epithelium to coordinate these two crucial cellular events of spermatogenesis. This functional loop is further assisted by the Par3/Par6-based polarity protein complex in coordination with cytokines and testosterone at the BTB. Herein, we provide a critical review based on the latest findings in the field regarding the regulation of these cellular events. These recent findings also open up a new window for investigators studying blood–tissue barriers.  相似文献   

6.
In the present communication, ultrastructural and cytochemical aspects of mature bovine Sertoli cells and their relationship to the different stages of germ cell development are described. As in other mammalian species, different types of junctional specializations exist between Sertoli and germ cells in the bovine seminiferous epithelium, including desmosome-like junctions, Sertoli cell ectoplasmic specializations and tubulobulbar complexes. The functional significance of the morphological results and the interactions of Sertoli and germ cells during spermatogenesis are discussed.  相似文献   

7.
The Sertoli cell ectoplasmic specialization is a unique junctional structure involved in the interaction between elongating spermatids and Sertoli cells. We have previously shown that suppression of testicular testosterone in adult rats by low-dose testosterone and estradiol (TE) treatment causes the premature detachment of step 8 round spermatids from the Sertoli cell. Because these detaching round spermatids would normally associate with the Sertoli cell via the ectoplasmic specialization, we hypothesized that ectoplasmic specializations would be absent in the seminiferous epithelium of TE-treated rats, and the lack of this junction would cause round spermatids to detach. In this study, we investigated Sertoli cell ectoplasmic specializations in normal and TE-treated rat testis using electron microscopy and localization of known ectoplasmic specialization-associated proteins (espin, actin, and vinculin) by immunocytochemistry and confocal microscopy. In TE-treated rats where round spermatid detachment was occurring, ectoplasmic specializations of normal morphology were observed opposite the remaining step 8 spermatids in the epithelium and, importantly, in the adluminal Sertoli cell cytoplasm during and after round spermatid detachment. When higher doses of testosterone were administered to promote the reattachment of all step 8 round spermatids, newly elongating spermatids associated with ectoplasmic specialization proteins within 2 days. We concluded that the Sertoli cell ectoplasmic specialization structure is qualitatively normal in TE-treated rats, and thus the absence of this structure is unlikely to be the cause of round spermatid detachment. We suggest that defects in adhesion molecules between round spermatids and Sertoli cells are likely to be involved in the testosterone-dependent detachment of round spermatids from the seminiferous epithelium.  相似文献   

8.
During spermatogenesis in mammalian testes, junction restructuring takes place at the Sertoli–Sertoli and Sertoli–germ cell interface, which is coupled with germ cell development, such as cell cycle progression, and translocation of the germ cell within the seminiferous epithelium. In the rat testis, restructuring of the blood–testis barrier (BTB) formed between Sertoli cells near the basement membrane and disruption of the apical ectoplasmic specialization (apical ES) between Sertoli cells and fully developed spermatids (spermatozoa) at the luminal edge of the seminiferous epithelium occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis. These two processes are essential for the translocation of primary spermatocytes from the basal to the apical compartment to prepare for meiosis, and the release of spermatozoa into the lumen of the seminiferous epithelium at spermiation, respectively. Cytokines, such as TNFα and TGFβ3, are present at high levels in the microenvironment of the epithelium at this stage of the epithelial cycle. Since these cytokines were shown to disrupt the BTB integrity and germ cell adhesion, it was proposed that some cytokines released from germ cells, particularly primary spermatocytes, and Sertoli cells, would induce restructuring of the BTB and apical ES at stage VIII of the seminiferous epithelial cycle. In this review, the intricate role of cytokines and testosterone to regulate the transit of primary spermatocytes at the BTB and spermiation will be discussed. Possible regulators that mediate cytokine-induced junction restructuring, including gap junction and extracellular matrix, and the role of testosterone on junction dynamics in the testis will also be discussed.  相似文献   

9.
The tight junctions between Sertoli cells were examined by freeze-fracture in 3-month-old prenatally irradiated rats, whose seminiferous tubules are devoid of germ cells. The replicas from irradiated tubules show elaborate interdigitations of the lateral membranes of Sertoli cells and very extensive tight junctions. These junctions are characterized by a great number of continuous parallel or complex interweaving strands of intramembranous particles, preferentially associated with E fracture faces. The presence of highly cross-linked tight junctional strands is compatible with an epithelium deprived of germ cells, with a reduced need for flexibility. Anomalous ectoplasmic specializations, consisting of groups of cisternae arranged perpendicularly to the lateral surface, are found in the irradiated tubules. These structures may be involved in a storage mechanism of redundant lateral membrane resulting from the elimination of germ cells. Typical gap junctions, intercalated between the tight junctional strands, are larger and more frequently found in treated animals than in controls. These findings indicate that a very tight permeability barrier seems to be established in the irradiated testis even in the absence of germ cells. Thus, the formation and maintenance of Sertoli tight junctions do not appear to be directly dependent on the presence of germ cells. Nevertheless, the alterations detected in the tight junction architecture and in the ectoplasmic specializations indicate that maturing germ cells probably contribute to the functional organization of the blood—testis barrier in the normal testis.  相似文献   

10.
To clarify the mechanism of fluid secretion in the testes at the time of gonadotropin-induced spermiation, young Rana nigromaculata were used. As a morphological index of fluid secretion, luminal formation of the seminiferous tubules, and efferent ductules were observed. The following changes were seen by the administration of hCG or frog pituitary: first, the luminal formation of the seminiferous tubules was seen; next, tubular expansion became evident, and finally, luminal formation and expansion were observed in the efferent ductules. These changes were preceded by the separation of cell contact among Sertoli cells and of cell contact between Sertoli cells and the cells of efferent ductules only in the center and the swelling of Sertoli cells and cells of efferent ductules. With regard to the flow of fluid at the time of spermiation, the present results indicate the possibility that there is a difference in the ability for fluid secretion between Sertoli cells and the ductule cells.  相似文献   

11.
We describe seasonal variations of the histology of the seminiferous tubules and efferent ducts of the tropical, viviparous skink, Mabuya brachypoda, throughout the year. The specimens were collected monthly, in Nacajuca, Tabasco state, Mexico. The results revealed strong annual variations in testicular volume, stages of the germ cells, and diameter and height of the epithelia of seminiferous tubules and efferent ducts. Recrudescence was detected from November to December, when initial mitotic activity of spermatogonia in the seminiferous tubules were observed, coinciding with the decrease of temperature, photoperiod and rainy season. From January to February, early spermatogenesis continued and early primary and secondary spermatocytes were developing within the seminiferous epithelium. From March through April, numerous spermatids in metamorphosis were observed. Spermiogenesis was completed from May through July, which coincided with an increase in temperature, photoperiod, and rainfall. Regression occurred from August through September when testicular volume and spermatogenic activity decreased. During this time, the seminiferous epithelium decreased in thickness, and germ cell recruitment ceased, only Sertoli cells and spermatogonia were present in the epithelium. Throughout testicular regression spermatocytes and spermatids disappeared and the presence of cellular debris, and scattered spermatozoa were observed in the lumen. The regressed testes presented the total suspension of spermatogenesis. During October, the seminiferous tubules contained only spermatogonia and Sertoli cells, and the size of the lumen was reduced, giving the appearance that it was occluded. In concert with testis development, the efferent ducts were packed with spermatozoa from May through August. The epididymis was devoid of spermatozoa by September. M. brachypoda exhibited a prenuptial pattern, in which spermatogenesis preceded the mating season. The seasonal cycle variations of spermatogenesis in M. brachypoda are the result of a single extended spermiation event, which is characteristic of reptilian species. J. Morphol. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
In a few mammals, the passage of maturing spermatozoa through the epididymis is characterized by development of persistent associations between one or more neighboring cells over the acrosomal region. The converse situation is described here in the loris, Nycticebus coucang, a prosimian primate. Loris spermatozoa released at spermiation enter the caput epididymidis as single cells and then become stacked in rouleaux of 2–8 spermatozoa there, the peri-acrosomal plasmalemma of one being linked by a unique junctional complex to that of its neighbor. However, by the time the cauda is reached, all the spermatozoa have separated again to lie as single cells, which now display major aggregations of ordered material over the concave surface of the acrosome. The functional significance of these unusual sperm surface-related phenomena in the loris epididymis is not clear.  相似文献   

13.
用徒手法、假阴道抽吸法和电刺激法进行小鼠非手术法采精探索 ,结果表明 :假阴道抽吸法和电刺激法可采出精子 ,两者采精成功率、平均精子量和精子活率均差异不显著 ;小鼠不同射精阶段的精子含量不同 ,其中精子主要集中在射精的第二阶段和第三阶段 ;假阴道抽吸法和电刺激法对小鼠首次采精后 ,用同样的方法对相应的小鼠重复采精 ,成功率、平均精子量和精子活率与首次采精相比差异均不显著  相似文献   

14.
To elucidate reproductive isolating mechanisms in the Bangladesh coastal bullfrog Hoplobatrachus litoralis and its congeneric species,we performed crossing experiments using three species: H.litoralis,H.tigerinus and H.rugulosus.In addition,we conducted histological observations on spermatogenesis of the hybrids.The reciprocal hybrids between H.litoralis and H.tigerinus developed normally with somewhat lower viability at the metamorphosis stage compared with the controls.Most of the metamorphosed frogs became mature.On the other hand,almost all hybrids between female H.rugulosus and male H.litoralis or H.tigerinus died of underdevelopment at the tadpole stage,and only a few hybrids metamorphosed normally and survived to maturity.The inner structures of the testes of the control H.litoralis and H.tigerinus were completely normal,with seminiferous tubules filled with compact bundles of normal spermatozoa.Those of the reciprocal hybrids between H.litoralis and H.tigerinus were almost normal or slightly abnormal,with seminiferous tubules that contained pycnotic nuclei in addition to normal bundles of normal spermatozoa,which demonstrates slight abnormalities in spermatogenesis.In contrast,the hybrids between female H.rugulosus and male H.litoralis or H.tigerinus had no bundles of spermatozoa nor spermatids in the seminiferous tubules,which indicates entirely abnormal spermatogenesis.Meiotic chromosome figures in the reciprocal hybrids between H.litoralis and H.tigerinus showed slight abnormalities,with the occurrence of univalents and increase of rod-shaped bivalents.These results indicate that H.litoralis and H.tigerinus are not isolated from each other by hybrid inviability nor by hybrid sterility,although the hybrids showed somewhat abnormal spermatogenesis in hybrids and that H.rugulosus is isolated from both H.litoralis and H.tigerinus by incomplete hybrid inviability and complete hybrid sterility.  相似文献   

15.
We have investigated the arrangement and function of actin filament bundles in Sertoli cell ectoplasmic specializations found adjacent to junctional networks and in areas of adhesion to spermatogenic cells. Tissue was collected, from ground squirrel (Spermophilus spp.) testes, in three ways: seminiferous tubules were fragmented mechanically; segments of intact epithelium and denuded tubule walls were isolated by using EDTA in a phosphate-buffered salt solution; and isolated epithelia and denuded tubule walls were extracted in glycerol. To determine the arrangement of actin bundles, the tissue was fixed, mounted on slides, treated with cold acetone (-20 degrees C), and then exposed to nitrobenzoxadiazole-phallacidin. Myosin was localized using immunofluorescence. To investigate the hypothesis that ectoplasmic specializations are contractile, glycerinated models were exposed to exogenous ATP and Ca++; then contraction was assessed qualitatively by using nitrobenzoxadiazole-phallacidin as a marker. Actin bundles in ectoplasmic specializations adjacent to junctional networks circumscribe the bases of Sertoli cells. When intact epithelia are viewed from an angle perpendicular to the epithelial base, honeycomb staining patterns are observed. Filament bundles in Sertoli cell regions adjacent to spermatogenic cells dramatically change organization during spermatogenesis. Initially, the bundles circle the region of contact between the developing acrosome and nucleus. They then expand to cover the entire head. As the spermatid flattens, filaments on one side of the now saucer-shaped head orient themselves parallel to the germ cell axis while those on the other align perpendicularly to it. Before sperm release, all filaments course parallel to the rim of the head. Contrary to the results we obtained with myoid cells, we could not convincingly demonstrate myosin in ectoplasmic specializations or induce contraction of glycerinated models. Our data are consistent with the hypothesis that actin in ectoplasmic specializations of Sertoli cells may be more skeletal than contractile.  相似文献   

16.
Tubulobulbar complexes are finger-like structures that form at the interface between maturing spermatids and Sertoli cells prior to sperm release and at the interface between two Sertoli cells near the base of the seminiferous epithelium. They originate in areas previously occupied by actin filament-associated intercellular adhesion plaques known as ectoplasmic specializations. Actin filaments also are associated with tubulobulbar complexes where they appear to form a network, rather than the tightly packed bundles found in ectoplasmic specializations. Cofilin, a calcium-independent actin-depolymerizing protein, previously has been identified in the testis, but has not been localized to specific structures in the seminiferous epithelium. To determine if cofilin is found in Sertoli cells and is concentrated at actin-rich structures, we reacted fixed frozen sections of rat testis, fixed fragmented tissue, and blots of seminiferous epithelium with pan-specific and non-muscle cofilin antibodies. In addition, GeneChip microarrays (Affymetrix, Santa Clara, CA) were utilized to determine the abundance of mRNA for all cofilin isoforms in Sertoli cells. Using the monoclonal pan-specific cofilin antibody, we found specific labeling exclusively at tubulobulbar complexes and not at ectoplasmic specializations. On one-dimensional (1D) Western blots this antibody reacted monospecifically with one band, and on 2D blots reacted with two dots, which we interpret as phosphorylated and nonphosphorylated forms of a single cofilin isotype. Messenger RNA for non-muscle cofilin in Sertoli cells is about 8.5-fold higher than for muscle-type cofilin. To confirm that the non-muscle isoform of cofilin is present at tubulobulbar complexes, we used antibodies specific to non-muscle cofilin for immunofluorescent localization. As with the pan-specific antibody, we found that the non-muscle cofilin antibody exclusively labeled tubulobulbar complexes. Results presented here indicate that non-muscle cofilin is concentrated at tubulobulbar complexes. Our results also indicate that cofilin is not concentrated at ectoplasmic specializations.  相似文献   

17.
18.
Galectin-1, a highly conserved beta-galactoside-binding protein, induces apoptosis of activated T cells and suppresses the development of autoimmunity and chronic inflammation. To gain insight regarding the potential role of galectin-1 as a novel mechanism of immune privilege, we investigated expression and ultrastructural localization of galectin-1 in rat testis. Galectin-1 expression was assessed by Western blot analysis and immunocytochemical localization in testes obtained from rats aged from 9 to 60 days. Expression of this carbohydrate-binding protein was developmentally regulated, and its immunolabeling exhibited a stage-specific pattern throughout the spermatogenic process. Immunogold staining using the anti-galectin-1 antibody revealed the typical Sertoli cell profile in the seminiferous epithelium, mainly at stages X-II. During spermiation (stages VI-VIII), a strong labeling was observed at the luminal pole of seminiferous epithelium, localized on apical stalks of Sertoli cells, on heads of mature spermatids, and on bodies of residual cytoplasm. Moreover, spermatozoa released into the lumen showed a strong immunostaining. Following spermiation (stage VIII), galectin-1 expression was restored at the basal portion of Sertoli cells and progressively spread out through the whole cells as differentiation of germinal cells proceeded. Immunoelectron microscopy confirmed distribution of galectin-1 in nuclei and cytoplasmic projections of Sertoli cells and on heads and tails of late spermatids and residual bodies. Surface localization of galectin-1 was evidenced in spermatozoa from caput epididymis. Thus, the regulated expression of galectin-1 during the spermatogenic cycle suggests a novel role for this immunosuppressive lectin in reproductive biology.  相似文献   

19.
The process of spermiation and sperm transport was studied using specific inhibitors of cytoskeletal elements. Within 12-24 hr after the intratesticular injection of taxol, a compound that acts to stabilize microtubules and inhibit microtubule-related processes, an unusually large number of microtubules was seen within the body of the Sertoli cell. At the same time, transport of elements within the seminiferous epithelium was affected. At the end of stage VI of the cycle, step 19 spermatids were maintained in the deep recesses of the Sertoli cell and not transported to the rim of the seminiferous tubule lumen. At stage VIII, residual bodies remained at, or near, the rim of the tubule and were not transported to the base of the tubule. They underwent only partial degradation at this site, indicating that there may have been two phases involved in their dissolution--one autophagic and one phagocytic, but the latter did not occur since the residual bodies were not transported to Sertoli lysosomes at the base of the tubule. The observations suggest that microtubules are involved in transport processes within the seminiferous epithelium. Within 1-12 hr after the intratesticular injection of 500 microM cytochalasin D, a compound which interferes with actin-related processes, normal appearing tubulobulbar complexes were not present. The tubular portion (distal tube) of the complex did not initiate development. It was assumed that filaments (which were identified as such using NBD-phallacidin and the S-1 fragment of myosin) played an important role in the development of this portion of the complex. Cells did not eliminate cytoplasm normally, as evidenced by an enlarged cytoplasmic droplet, further emphasizing the published role for tubulobulbar complexes in cytoplasmic elimination. Although sperm were released normally from stage VIII tubules, many remained within the tubular lumen and did not traverse the duct system. Cytochalasin did not inhibit fluid secretion by the Sertoli cell, as demonstrated by efferent duct ligation, but did alter myoid cell actin cytoskeletal organization, suggesting that myoid cell contractility is primarily responsible for transport of sperm. Overall, the observations suggest that cytoskeletal activity of the Sertoli cell is important for several aspects of the spermiation process as well as sperm transport.  相似文献   

20.
A small portion of cytoplasm is generally retained as the cytoplasmic droplet (CD) on the flagellum of spermatozoa after spermiation in mice. CDs are believed to play a role in osmoadaptation by allowing water entrance or exit. However, many lines of evidence suggest that CDs may have roles beyond osmoregulation. To gain more insights, we purified CDs from murine epididymal spermatozoa and conducted proteomic analyses on proteins highly enriched in CDs. Among 105 proteins identified, 71 (68%) were enzymes involved in energy metabolism. We also found that sperm mitochondria underwent a reactivation process and glycolytic enzymes were further distributed and incorporated into different regions of the flagellum during epididymal sperm maturation. Both processes appeared to require CDs. Our data suggest that the CD represents a transient organelle that serves as an energy source essential for epididymal sperm maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号