首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sister-chromatid exchanges (SCEs) were analyzed in CHO cells after pulse treatment with 1,3-butadiene, 3,4-epoxy-1-butene (monoepoxybutene) and 1,2:3,4-diepoxybutane (diepoxybutane). A weak dose effect was observed after exposure to 1,3-butadiene but only in the presence of S9 mix. Monoepoxybutene and diepoxybutane were highly effective in inducing SCEs at concentrations of 0.1-1 microM both in the presence and in the absence of S9 mix. At higher concentrations the response was more pronounced without S9 mix.  相似文献   

2.
2-Aminofluorene (2-AF), an indirect mutagen reported to be metabolically activated by erythrocytes in the Salmonella mutagenicity test, was studied for the induction of sister-chromatid exchanges (SCEs) in human lymphocytes in vitro with (whole-blood cultures) and without erythrocytes (isolated lymphocyte cultures). 2-AF (0.025-0.8 mM) was present in the cultures for the last 48 h of 72-h cultures. In both types of culture, SCEs increased in a dose-dependent manner, with a statistically significant elevation already at the lowest concentration of 2-AF tested and maximum responses of 2.4-fold (whole blood) and 2.1-fold (isolated lymphocytes), in comparison with mean SCEs/cell in control cultures, at 0.4 and 0.2 mM concentrations (respectively). Thus, the induction of SCEs by 2-AF was not dependent on the presence of erythrocytes. Styrene (2 mM), a positive control chemical known to require erythrocytes for efficient SCE induction in vitro, was shown to produce a 4.9-fold increase in SCEs in whole-blood cultures, but only a slight (1.3-fold) effect in isolated lymphocyte cultures. The results suggest that leukocytes, but not erythrocytes, are important in the metabolic activation of 2-AF in the human lymphocyte SCE assay.  相似文献   

3.
Induction of sister chromatid exchanges (SCEs) by 1,2-epoxy-3-butene (monoepoxybutene, MEB), an epoxide metabolite of 1,3-butadiene, in human whole-blood lymphocyte cultures has previously been observed to depend on the glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) genotype of the blood donor. Pretreatment of lymphocyte cultures with a low dose of MEB has been shown to reduce the SCE response obtained by later treatment with a higher concentration of MEB. To investigate whether this adaptive response depends on the GSTM1 genotype of the donor, SCE induction by MEB (25 and 250 microM at 48 h for 24 h) was studied from whole-blood lymphocyte cultures of young non-smoking male and female subjects representing GSTM1 positive (n=7) and null (n=7) genotypes, with or without a MEB pretreatment (12.5 microM at 24 h). A higher mean number of induced SCEs per cell at 250 microM MEB was observed in lymphocytes of the GSTM1 null than positive donors, a statistically significant difference being obtained in the presence of the adaptive treatment (9.44 vs. 6.56; results from ethanol-treated controls subtracted). The pretreatment resulted in a statistically significant reduction in the response of the GSTM1 null group at both concentrations of MEB and in the GSTM1 positive group at 250 microM. However, there were no statistically significant differences in the adaptive response of the two genotypes. In conclusion, the present study further supported earlier findings on an increased sensitivity of GSTM1 null donors to SCE induction by MEB, suggesting that GSTM1 is involved in the detoxification of MEB in human lymphocyte cultures. As an adaptive response was observed in both GSTM1 positive and null donors, the phenomenon cannot be explained by GSTM1 induction. It may represent induction of other enzymes operating in MEB detoxification, or activation of DNA repair.  相似文献   

4.
Studies for SCE induction are frequently performed on human blood cultures. Either whole blood cultures (WBC) or purified lymphocyte cultures (PLC) are employed. However, it has been shown that fundamental differences with respect to metabolic activity exist between these two systems. In order to further characterize the whole blood culture and the purified lymphocyte culture, differently acting substances were studied comparatively with and without an Aroclor-1254-induced S9 mix. Treatment with ethyl methanesulfonate (EMS), a direct mutagen, produced distinct SCE induction in both systems. Cyclophosphamide (CP) and benzo[a]pyrene (BP), two indirect mutagens, also led to a significant increase of SCEs both in WBC and PLC without S9 mix. Only with CP was this effect more pronounced after addition of S9 mix. Sodium selenite (Na2SeO3), which induced SCEs in WBC, did not show this effect in the PLC. After S9 mix was added to purified lymphocytes, an increase of SCEs by sodium selenite was observed as in WBC. H2O2, a radical former, led to SCE induction in purified lymphocytes but not in the whole blood culture. By adding S9 mix, a distinct reduction of the SCEs induced by H2O2 was established. These results show that human lymphocytes can metabolize indirect mutagens and that it should be kept in mind when using S9 mix that, besides mixed-function oxygenases, it also contains enzymes which influence the SCE-inducing effects of substances.  相似文献   

5.
To understand better the species differences in carcinogenicity caused by 1,3-butadiene (BD), we exposed G0 lymphocytes (either splenic or peripheral blood) from rats, mice and humans to 3, 4-epoxy-1-butene (EB) (20 to 931 microM) or 1,2:3,4-diepoxybutane (DEB) (2.5 to 320 uM), two of the suspected active metabolites of BD. Short EB exposures induced little measurable cytogenetic damage in either rat, mouse, or human G0 lymphocytes as measured by either sister chromatid exchange (SCE) or chromosome aberration (CA) analyses. However, DEB was a potent inducer of both SCEs and CAs in G0 splenic and peripheral blood lymphocytes. A comparison of the responses among species showed that the rat and mouse were approximately equisensitive to the cytogenetic damaging effects of DEB, but the situation for the human subjects was more complex. The presence of the GSTT1-1 gene (expressed in the erythrocytes) reduced the relative sensitivity of the lymphocytes to the SCE-inducing effects of DEB. However, additional factors also appear to influence the genotoxic response of humans to DEB. This study is the first direct comparison of the genotoxicity of EB and DEB in the cells from all three species.  相似文献   

6.
The frequency of sister-chromatid exchanges was analyzed in maternal and cord blood lymphocytes obtained at delivery from 23 nonsmokers and 21 smokers. Lymphocytes were cultured under 3 conditions: in the presence of 100 microM 5-bromo-2-deoxyuridine (BUdR), 20 microM BUdR and 20 microM BUdR with 40 microM alpha-naphthoflavone (ANF). Under all assay conditions, frequencies of SCEs were consistently higher for maternal lymphocytes than for cord lymphocytes. There was no association between SCE values for cultures of the same blood specimen with 100 microM BUdR and 20 microM BUdR. When cultured with 100 microM BUdR, maternal lymphocytes from smokers had a mean SCE frequency of 13.5, which was significantly higher than the value of 11.1 observed for nonsmokers (p = 0.001 by the Wilcoxon rank sum test). Maternal smoking had no significant effect on overall frequencies of SCEs in maternal blood cultured with 20 microM BUdR either with or without ANF or when the differential between cells cultured with and without ANF was considered. Use of caffeinated beverages was associated with increased SCE values for maternal lymphocytes cultured with 20 microM BUdR (Tau beta = 0.36, p = 0.02 for the Kendall's Rank Correlation), but no such association was seen with 100 microM BUdR. For cord blood lymphocytes, however, neither smoking nor caffeine use were associated with SCE values obtained by any of the assay conditions used. The findings suggest that results of human monitoring studies using SCEs could differ depending on the concentration of BUdR used in cultures.  相似文献   

7.
1,3-Butadiene (BTD) is an important commodity chemical and air pollutant that has been shown to be a potent carcinogen in mice, and to a lesser extent, a carcinogen in rats. To better assess butadiene's carcinogenic risk to humans, it is important to understand its mode of action and how this relates to differences in responses among species. In a series of in vitro experiments, lymphocytes from rats, mice, and humans were exposed to 3,4-epoxy-1-butene (EB) or 1,2:3,4-diepoxybutane (DEB) for 1h at the G(0) stage of the cell cycle, stimulated to divide, and cultured to assess the ability of these metabolites to induce sister chromatid exchange (SCE) and chromosome aberrations (CAs). EB induced no increases in SCEs or CAs in the cells from the three species. DEB was a potent SCE- and CA-inducer, with the results being similar in each rodent species. The response for SCEs seen in the human cells was more complex, with genetic polymorphism for glutathione-S-transferases (GST) possibly modulating the response. The single cell gel electrophoresis assay was used on genetically engineered V79 cell lines to investigate a possible influence of GST status. Experiments were also conducted to investigate the reason for EB's failure to induce SCEs or CAs in G(0) cells. The results indicate that EB-induced DNA damage was repaired before DNA synthesis in unstimulated lymphocytes, but EB caused a large increase in SCEs if actively cycling cells were treated. Thus, the results indicate that DEB damage is persistent in G(0) cells, and DEB is a much more potent genotoxicant than EB. The carcinogenic effect of butadiene will most likely depend on the degree to which DEB is produced and reaches target tissues, and to a lesser extent on the ability of EB to reach actively dividing or repair deficient cells.  相似文献   

8.
The effect of monocytes (MNs) on baseline SCEs and kinetics of human lymphocytes in plasma leukocyte (PLCs) and whole blood cultures (WBCs) was studied. Baseline SCEs in PLCs were nearly two-fold over WBCs. No differences in SCEs were observed between PLCs and MN-depleted PLCs, indicating that SCEs from PLCs are independent of MNs. MNs titration into PLCs decreased proportionally SCEs. Reconstitution of depleted PLCs with concentration of MNs equivalent or higher than those of PLC decreased SCEs. No variations of lymphocyte kinetics in PLCs were observed in the absence/presence of MNs. The proportion of B and T-cell subsets among interphasic lymphocytes were similar in PLC in the absence/presence of MNs, but a significant increase in the proportion of mitotic T8 lymphocytes was observed. Accordingly, MNs modulate both the in vitro basal SCEs and the mitotic activity of T8, but not their cell-cycle kinetics.  相似文献   

9.
A group of 21 workers occupationally exposed to vinyl chloride and 6 controls were examined for the presence of chromosomal aberrations or sisterchromatid exchanges in their peripheral lymphocytes. These people comprised a second sampling from a group of exposed workers and controls first examined 18 months earlier. The vinyl chloride exposed workers showed levels of chromosomal aberrations elevated above those of the controls, but there was only a slight increase in sister-chromatid exchanges (per cell or per chromosome) and this increase was not statistically significant. Sister-chromatid exchanges (SCEs) were also examined from in vitro cultures of lymphocytes exposed in G0/early G1 and late G1/early S phase to vinyl chloride, both with and without metabolic activation. There was no increase in SCEs in vitro without metabolic activation but there was a marked increase with metabolic activation and this increase was shown to be independent of cell-cylce phase. It thus was apparent that the small increases of SCEs in workers were not due to the inability of vinyl chloride to induce SCEs in human lymphocytes but were probably because of low exposures and SCE levels could have returned to normal relatively quickly after exposure. The present study suggested that the analysis of longer-living conventional chromosomal aberrations appeared to be a more sensitive monitor of exposure to vinyl chloride in exposed workers than the estimation of SCEs; however, it should be noted that in a 3rd sampling taken 24 months later the exposed workers had chromosomal aberration levels similar to the controls.  相似文献   

10.
We measured the frequency of sister chromatid exchanges (SCEs) in human and mouse peripheral lymphocytes using doses of bromodeoxyuridine (BrdU) ranging from 30 nM to 100 microM (human) and from 10 nM to 10 microM (mouse). Heparinized peripheral blood was obtained from five healthy nonsmokers and from six C57B1/6 male mice. The blood was stimulated with PHA (human) or lipopolysaccharide (LPS, mouse) and grown for the first of two cell cycles in BrdU. Metaphase chromosomes were denatured and exposed to a monoclonal antibody reactive to single-stranded DNA containing BrdU. A second antibody was used to label the first antibody with fluorescein, and propidium iodide was used as a counterstain. Second-division metaphases were thus differentially stained red to indicate DNA content and yellow-green to indicate the presence of BrdU. The results indicate that the baseline SCE frequency in human and mouse peripheral lymphocytes is 3.6 and 2.4 SCEs per cell per generation, and that in the human these frequencies are invariant at the lowest BrdU levels. This suggests that SCEs are an integral part of DNA replication, even in the absence of agents known to induce SCEs. The distribution of SCEs per chromosome was analyzed and found to be Poisson-distributed in all 24 murine cultures and in 25 of 36 human cultures. The distribution of SCEs per chromosome may be due to either species-specific chromosome packaging or to karyotypic differences between the species.  相似文献   

11.
Individual variations in the susceptibility to mutagenic/carcinogenic chemicals depend on the activity of xenobiotic metabolizing enzymes and on DNA- and chromosome-damage repair systems. Monoepoxybutene (MEB) is a genotoxic metabolite of 1,3-butadiene (BD), which has been classified as a probable carcinogen in humans. The purpose of the present study was to investigate by in vitro experiments on human whole blood lymphocytes (WBL), whether an individual sensitivity to MEB correlates with the adaptive response to the tested agent. In the analyzed group, 8.3% of blood donors were relatively sensitive to MEB. The comparison of SCE induction in cultures pretreated and not pretreated with an adaptive dose (AD) of MEB showed, that there was an adaptive response to MEB. The adaptive response in the group of relatively sensitive donors was similar to that of the relatively resistant ones. This result suggests that individual sensitivity to the tested agent and adaptive response depend on different biological mechanisms.  相似文献   

12.
The induction of chromosomal aberrations (CAs) and sister-chromatid exchanges (SCEs) by the methylating agent streptozotocin (STZ) and the effect of this compound on mitotic index (MI) and cell cycle progression in human lymphocytes were investigated. Unstimulated (G(0)) or cycling lymphocytes derived from whole blood or purified lymphocyte cultures were pulse-treated with increasing doses of STZ for 0.5-24h. Induction of CAs by STZ was only observed in cycling lymphocytes derived from whole blood cultures (WBC) (P<0.05). On the contrary, STZ produced a significant and dose-response increase in the yield of SCEs in unstimulated as well as cycling lymphocytes (P<0.05). In addition, STZ induced a dose-dependent decrease in the MI but had a slight effect on cell cycle progression. These results suggest that SCEs are the most sensitive endpoint for evaluating the chromosomal effects of STZ on these cells.  相似文献   

13.
NADPH-dependent oxidation of 1,3-butadiene by mouse liver microsomes or H2O2-dependent oxidation by chloroperoxidase produced both butadiene monoxide and crotonaldehyde; methyl vinyl ketone and 2,3- and 2,5- dihydrofuran were not detected. The crotonaldehyde to butadiene monoxide ratio remained constant over time in both the microsomal and the chloroperoxidase reactions; however, much more crotonaldehyde was produced by chloroperoxidase than microsomes; crotonaldehyde was not detected when reference samples of butadiene monoxide were used in control incubations containing NADPH and microsomes or H2O2 and chloroperoxidase. Moreover, incubations of 1,3-butadiene with horseradish peroxidase and H2O2, or microsomes and H2O2 or arachidonic acid did not result in the oxidation of 1,3-butadiene. In microsomes, metabolite formation was dependent on incubation time, NADPH, and protein concentrations and did not change when the 1,3-butadiene pressure was varied between 24 and 52 cm Hg. Inclusion of the cytochrome P450 inhibitor 1-benzylimidazole inhibited 1,3-butadiene metabolism, but inclusion of KCN, catalase, or superoxide dismutase had no effect. These results support the role of cytochrome P450 in 1,3-butadiene oxidation by mouse liver microsomes. The formation of crotonaldehyde but not methyl vinyl ketone by cytochrome P450 or chloroperoxidase indicates regioselectivity in the oxygen transfer from the hemoproteins to 1,3-butadiene. The intermediates formed may undergo either ring closure to form butadiene monoxide or a hydrogen shift to form 3-butenal which tautomerizes to produce crotonaldehyde. Evidence for this tautomerization was obtained by the finding that 3-buten-1-ol, an alternative precursor of 3-butenal, was oxidized to crotonaldehyde under incubation conditions similar to that used for 1,3-butadiene.  相似文献   

14.
The uptake of 1,3-[2,3-(14)C]-butadiene and its disposition, measured as radioactivity in urine, faeces, exhaled volatiles and CO(2) during and following 6 h whole body exposure to 20 ppm butadiene has been investigated in male Sprague-Dawley rats and B6C3F1 mice. Whilst there were similarities between the two species, the uptake and metabolic distribution of butadiene were somewhat different for rats and mice. The major differences observed were in the urinary excretion of radioactivity and in the exhalation of 14C-CO(2). After 42 h from the start of exposure, 51.1% of radioactivity was eliminated in rat urine compared with 39.5% for mouse urine. 34.9% of the recovered radioactivity was exhaled by rats as 14C-CO(2), compared with 48.7% by mice. Excretion of radioactivity in faeces was similar for both species (3.8% for rats and 3.4% for mice). The tissue concentrations of 14C-butadiene equivalents measured in liver, testes, lung and blood of exposed mice were 0.493, 0460, 0.457, and 1.626 nmol/g tissue, respectively. The values for the corresponding rat tissues were 0.869, 0.329, 0.457, and 1.626 nmol butadiene equivalents/g tissue, respectively. For rats, 6.2% of recovered radioactivity (0.288 nmol butadiene equivalents/g tissue) was retained in carcasses whereas for mice the amount was 3.6% (0.334 nmol butadiene equivalents/g tissue). There were also some significant differences between the metabolic conversion of 1,3-[2,3-(14)C]-butadiene and excretion by mice following the 20 ppm whole body exposure compared to previously reported data for nose-only exposure to 200 ppm butadiene [Richardson et al., Toxicol. Sci. 49 (1999) 186]. The main difference between the high- and low-exposure studies was in the exhalation of 14C-CO(2). At the 200 ppm exposure, 40% of the radioactivity was exhaled as 14C-CO(2) by rats whereas 6% was measured by this route for mice. The proportional conversion of butadiene to CO(2) by mice was significantly greater at the low exposure concentration compared with that reported for the higher concentration. This shift was not observed for rats. The difference between species could be caused by a saturation of metabolism in mice between 20 and 200 ppm for the pathways leading to CO(2). Restraint or error in collection of CO(2) in the 200 ppm study could also be factors.  相似文献   

15.
Two vinyl monomers, styrene and vinylacetate, were tested for their ability to induce chromosome aberrations in cultured human lymphocytes. The effects of a 24-h treatment (48 h after culture initiation) were studied both in whole-blood cultures (with 2 X 10(8) erythrocytes/ml) and in isolated lymphocytes (with 4000 erythrocytes/ml). Styrene produced a clear dose-dependent increase in chromatid-type aberrations in whole-blood cultures (0.5-6 mM) and a weaker effect in cultures of isolated lymphocytes (1-4 mM). A statistically significant elevation in aberrations was observed at 2 mM in the former culture type and at 1 mM in the latter. These results support earlier studies on the importance of erythrocytes in the metabolic activation of styrene, but also suggest that a part of this activation occurs in the lymphocytes themselves. Vinylacetate (0.125-2 mM), the more potent clastogen of the two monomers tested, induced a distinct dose-dependent increase in chromatid-type aberrations and a slight elevation in chromosome-type breaks in both culture types. The lowest concentration giving a positive result was 0.25 mM. The clastogenic effects of vinylacetate were somewhat more pronounced in isolated lymphocytes than in whole blood. Vinylacetate is known to be rapidly hydrolyzed in vitro to acetaldehyde, which probably explains the positive result.  相似文献   

16.
Gossypol has potential for widespread use as a male oral antifertility agent in humans since it appears to be highly efficacious, with reversible spermatostatic effects and minimal side effects. Furthermore, it is both inexpensive and readily available. Therefore, a thorough understanding of gossypol's genotoxic potential is critical. Although genotoxicity studies have produced conflicting reports, increased sister-chromatid exchange (SCE) and DNA-strand breaks have been reported in human cells exposed to gossypol in vitro. In the present study, SCE was examined in purified human lymphocytes and whole blood cultures exposed to gossypol acetic acid at various concentrations in serum-free medium. A small but statistically significant increase in SCE was observed in pooled analysis of 7 donors in whole blood cultures exposed to 0.70 microM gossypol acetic acid (p less than 0.02). Individual analyses revealed only one donor with a significant SCE response (p less than 0.001). In subsequent experiments, exposure at higher doses had no effect on SCE frequencies. A small but significant increase in SCE was observed in ficoll/hypaque purified lymphocytes exposed to 0.07 and 0.70 microM gossypol acetic acid. Interpretation of SCE data with variable response is discussed.  相似文献   

17.
K Miller 《Mutation research》1991,247(1):175-182
Sister-chromatid exchange (SCE) frequencies were investigated in mitogen-stimulated cultures of highly purified human peripheral blood B- and T-lymphocytes exposed to bleomycin (BM), cyclophosphamide (CP), or ethyl methanesulfonate (EMS). In untreated controls, T-lymphocytes showed twice as many SCEs as B-lymphocytes. CP (with metabolic activation) and EMS significantly increased the SCE frequencies. EMS induced a similar, dose-dependent SCE increase in both cell populations, whereas CP induced more SCEs in T- than in B-lymphocytes. No clear SCE increase was found in B- and T-lymphocytes treated with BM.  相似文献   

18.
One important variable in complex culture systems such as whole blood is the interaction of the cell types present. To investigate the effects of erythrocytes (RBCs) and monocytes on the sister-chromatid exchange (SCE) frequency, Ficoll-Hypaque-separated Fischer-344 rat leukocytes were added to 1.9 ml of culture medium containing either 4 micrograms phytohemagglutinin or 4-8 micrograms concanavalin A/ml. Bromodeoxyuridine (BrdU;2 microM) was added at 24 h, and the cultures were harvested at 54 or 72 h. SCE frequencies in the mononuclear leukocyte cultures were consistently about 1.5- to 2-fold higher than in the whole-blood cultures. The titration of rat or human RBCs (0.05-2.5 X 10(9)) into purified rat leukocyte cultures reduced the SCE frequency to that of whole-blood cultures. Monocyte depletion decreased the elevated SCE frequency by approximately 50%. Scintillation counting of [14C]BrdU uptake in isolated RBCs revealed that less than 8% of the total amount of BrdU was sequestered. Also, BrdU induced a concentration-dependent increase in SCE in purified leukocytes, but the absolute increase was no greater than in whole-blood lymphocytes. Thus, BrdU had a minor role in the elevated SCE frequency in purified lymphocytes. Neither anti-oxidant enzymes such as catalase and superoxide dismutase nor the hydroxyl radical scavenger, dimethyl sulfoxide, decreased the SCE frequency. Although purified human lymphocytes had a small, but significant increase in SCE compared to whole blood, the magnitude of the dichotomous response between man and rat may represent a fundamental species difference.  相似文献   

19.
The baseline sister-chromatid exchange (SCE) frequencies of human plasma lymphocyte cultures (PLC), but not pig PLC, were nearly twice as high as those of whole-blood cultures (WBC). Addition of human red blood cells (RBCs) to human PLC decreased the SCE frequency in proportion to the RBC-leukocyte co-incubation interval. When the period of RBC-leukocyte co-incubation was equivalent to the total length of the culture period (72 h), the SCE frequency was similar to that observed in WBC. Shorter co-incubation periods yielded SCE frequencies intermediate between those of PLC and WBC. Regardless of the species, cell proliferation was slower in PLC than in WBC. Experiments where RBCs were added to PLC showed that the time sequence of RBC incorporation also affects the cell-cycle progression of human and pig lymphocytes. When either human or pig RBCs were added immediately after PLC stimulation, the cell-cycle kinetics was similar to that of WBC. Shorter co-incubation periods made cell-cycle progression intermediate between PLC and WBC values. Thus, PBCs modulate the baseline frequency of SCEs in human PLC and the cell-cycle progression of both human and pig lymphocytes in a time-dependent manner. Two possible hypotheses for the heightened frequency of SCEs of human lymphocytes in RBC-free cultures were assessed. The loss of RBC-to-lymphocyte cellular contact in PLC did not influence the SCE frequencies of lymphocytes. Finally, the increase of SCEs in human PLC could not be related to differences in the generation time of lymphocytes in culture.  相似文献   

20.
Styrene-7,8-oxide, an intermediate of styrene, is a known alkylating mutagen. The present study was carried out to investigate the influence of duration of exposure to styrene-7,8-oxide (styrene oxide) on induction of sister chromatid exchanges (SCEs) and inhibition of cell-cycle kinetics using cultured human blood lymphocytes in vitro. Phytohemagglutinin-stimulated whole-blood lymphocyte cultures obtained from heparinized whole blood from healthy donors were exposed to 100 μM styrene oxide for 22, 36, 48 and 72 h. A reduction of SCEs induction with increase in duration of exposure to styrene oxide was observed, i.e. a clear significant inverse relationship between exposure time and frequencies of SCEs induction due to styrene oxide was obtained. Styrene oxide induces significant elevations in unscheduled DNA synthesis DNA repair as well as S-phase synthesis in human blood lymphocytes in vitro, depending on the duration of exposure. The decrease in the induction of SCEs due to styrene oxide with increasing duration of its exposure may be principally due to an increased DNA repair and partly due to an increasing metabolic transformation to styrene glycol with increasing duration of its exposure as well as to some extent due to cell death at the maximum period of exposure, i.e. 72 h. Although the proliferations of lymphocytes exposed to 100 μM styrene oxide were significantly inhibited at different durations of exposure, no linear relationship between the replication index and the duration of exposure was noticed (r=0.47, p>0.05). Similarly, there was no relationship between replication index and SCE frequency (r=−0.36, p>0.05), suggesting that these two parameters may reflect two different endpoints for the cytogenotoxic effects of styrene oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号