首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of L- and D-phenylalanine and carboxylate inhibitors to cobalt(II)-substituted carboxypeptidase A, Co(II)CPD (E), in the presence and absence of pseudohalogens (X = N3-, NCO-, and NCS-) has been studied by 1H NMR spectroscopy. This technique monitors the proton signals of histidine residues bound to cobalt(II) and is therefore sensitive to the interactions of inhibitors that perturb the coordination sphere of the metal. Enzyme-inhibitor complexes, E.I, E.I2, and E.I.X, each with characteristic NMR features, have been identified. Thus, for example, L-Phe binds close to the metal ion to form a 1:1 complex, whereas D-Phe binds stepwise, first to a nonmetal site and then to the metal ion to form a 2:1 complex. Both acetate and phenylacetate also form 2:1 adducts stepwise with the enzyme, but beta-phenylpropionate gives a 2:1 complex without any detectable 1:1 intermediate. N3-, NCO-, and NCS- generate E.I.X ternary complexes directly with Co(II)CPD.L-Phe and indirectly with the D-Phe and carboxylate inhibitor 2:1 complexes by displacing the second moiety from its metal binding site. The NMR data suggest that when the carboxylate group of a substrate or inhibitor binds at the active site, a conformational change occurs that allows a second ligand molecule to bind to the metal ion, altering its coordination sphere and thereby attenuating the bidentate behavior of Glu-72. The 1H NMR signals also reflect alterations in the histidine interactions with the metal upon inhibitor binding. Isotropic shifts in the signals for the C-4 (c) and N protons (a) of one of the histidine ligands are readily observed in all of these complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Resonance Raman (RR) spectroscopy has been used to study the ionization state of the sulfonamide, 4'-sulfamylphenyl-2-azo-7-acetamido-1-hydroxynaphthalene-3,-6-disulfonate (Neoprontosil), bound to carbonic anhydrase. The correlation of effects of pH and deuteration on the spectra of model compounds with these effects on the Neoprotosil spectrum allows us to assign spectral bands in the 900-1000 and 100-1200 cm-1 regions to the SO2NH2 group. Large shifts in these bands occur upon ionization of the sulfonamide. On the basis of the positions of bands in the enzyme complex, it was determined that the sulfonamide was bound to the enzyme as SO2NH2, rather than as SO2NH-. Rates of association and dissociation and the dissociation equilibrium constant were measured as a function of pH. The rate behavior for Neoprontosil is consistent with that observed for other sulfonamides and kdissoc/kassoc = kdissoc, suggesting a one-step binding mechanism. Since RR spectroscopy establishes that the final ionization state of the sulfonamide in the enzyme complex is SO2NH2, protonated sulfonamide must bind directly to basic form of the enzyme. These conclusions suggest that sulfonamides form "outer-space" complexes with metal at the enzyme active site.  相似文献   

3.
G D Markham 《Biochemistry》1984,23(3):470-478
The structure of the divalent metal ion binding site of S-adenosylmethionine synthetase from Escherichia coli has been studied by using the vanadyl(IV) ion (VO2+) as probe. VO2+ binds at a single site per subunit in the presence or absence of substrates. Single turnover experiments measuring S-adenosylmethionine (AdoMet) formation from methionine and the ATP analogue 5'-adenylyl imidodiphosphate show that complexes containing VO2+ and either Mg2+ or Ca2+ as a second metal ion are catalytically active, while a complex containing VO2+ alone is inactive. Electron paramagnetic resonance spectra of the enzyme-VO2+ complex, as well as complexes also containing AdoMet or methionine, indicate the coordination of two water molecules and at least two protein ligands to the VO2+. In complexes with polyphosphate substrates or products (e.g., enzyme-VO2+-ATP-methionine, enzyme-VO2+-PPi-Mg2+), EPR spectral changes reveal ligand substitutions on the VO2+, and 8.5-G isotropic superhyperfine coupling to two 31P nuclei can be resolved. 17O superhyperfine coupling from [17O]pyrophosphate indicates coordination of two oxygen atoms of PPi to the VO2+ ion. Thus the polyphosphate compounds are bidentate ligands to the VO2+, demonstrating that the VO2+ binds at the active site and suggesting a catalytic role for the protein-bound metal ion.  相似文献   

4.
The three-dimensional structure of the complex of ribulose-1,5-bisphosphate carboxylase from Rhodospirillum rubrum, CO2, Mg2+, and ribulose bisphosphate has been determined with x-ray crystallographic methods to 2.6-A resolution. Ribulose-1,5-bisphosphate binds across the active site with the two phosphate groups in the two phosphate binding sites of the beta/alpha barrel. The oxygen atoms of the carbamate and the side chain of Asp-193 provide the protein ligands to the bound Mg2+ ion. The C2 and the C3 or C4 oxygen atoms of the substrate are also within the first coordination sphere of the metal ion. At the present resolution of the electron density maps, two slightly different conformations of the substrate, with the C3 hydroxyl group "cis" or "trans" to the C2 oxygen, can be built into the observed electron density. The two different conformations suggest two different mechanisms of proton abstraction in the first step of catalysis, the enolization of the ribulose 1,5-bisphosphate. Two loop regions, which are disordered in the crystals of the nonactivated enzyme, could be built into their respective electron density. A comparison with the structure of the quaternary complex of the spinach enzyme shows that despite the different conformations of loop 6, the positions of the Mg2+ ion, and most atoms of the substrate are very similar when superimposed on each other. There are, however, some significant differences at the active site, especially in the metal coordination sphere.  相似文献   

5.
6.
Ferrochelatase (EC 4.99.1.1), the terminal enzyme of the heme biosynthetic pathway, catalyzes the insertion of ferrous iron into the protoporphyrin IX ring. Ferrochelatases can be arbitrarily divided into two broad categories: those with and those without a [2Fe-2S] center. In this work we have used X-ray absorption spectroscopy to investigate the metal ion binding sites of murine and Saccharomyces cerevisiae (yeast) ferrochelatases, which are representatives of the former and latter categories, respectively. Co(2+) and Zn(2+) complexes of both enzymes were studied, but the Fe(2+) complex was only studied for yeast ferrochelatase because the [2Fe-2S] center of the murine enzyme interferes with the analysis. Co(2+) and Zn(2+) binding to site-directed mutants of the murine enzyme were also studied, in which the highly conserved and potentially metal-coordinating residues H207 and Y220 were substituted by residues that should not coordinate metal (i.e., H207N, H207A, and Y220F). Our experiments indicate four-coordinate zinc with Zn(N/O)(3)(S/Cl)(1) coordination for the yeast and Zn(N/O)(2)(S/Cl)(2) coordination for the wild-type murine enzyme. In contrast to zinc, a six-coordinate site for Co(2+) coordinated with oxygen or nitrogen was present in both the yeast and murine (wild-type and mutated) enzymes, with evidence of two histidine ligands in both. Like Co(2+), Fe(2+) bound to yeast ferrochelatase was coordinated by approximately six oxygen or nitrogen ligands, again with evidence of two histidine ligands. For the murine enzyme, mutation of both H207 and Y220 significantly changed the spectra, indicating a likely role for these residues in metal ion substrate binding. This is in marked disagreement with the conclusions from X-ray crystallographic studies of the human enzyme, and possible reasons for this are discussed.  相似文献   

7.
It has been established that transferrin binds a variety of metals. These include toxic uranyl ions which form rather stable uranyl-transferrin derivatives. We determined the extent to which the iron binding sites might accommodate the peculiar topographic profile of the uranyl ion and the consequences of its binding on protein conformation. Indeed, metal intake via endocytosis of the transferrin/transferrin receptor depends on the adequate coordination of the metal in its site, which controls protein conformation and receptor binding. Using UV-vis and Fourier transform infrared difference spectroscopy coupled to a microdialysis system, we showed that at both metal binding sites two tyrosines are uranyl ligands, while histidine does not participate with its coordination sphere. Analysis by circular dichroism and differential scanning calorimetry (DSC) showed major differences between structural changes associated with interactions of iron or uranyl with apotransferrin. Uranyl coordination reduces the level of protein stabilization compared to iron, but this may be simply related to partial lobe closure. The lack of interaction between uranyl-TF and its receptor was shown by flow cytometry using Alexa 488-labeled holotransferrin. We propose a structural model summarizing our conclusion that the uranyl-TF complex adopts an open conformation that is not appropriate for optimal binding to the transferrin receptor.  相似文献   

8.
We solved the crystal structure of Streptococcus agalactiae serine/threonine phosphatase (SaSTP) using a combination of single-wavelength anomalous dispersion phasing and molecular replacement. The overall structure resembles that of previously characterized members of the PPM/PP2C STP family. The asymmetric unit contains four monomers and we observed two novel conformations for the flap domain among them. In one of these conformations, the enzyme binds three metal ions, whereas in the other it binds only two. The three-metal ion structure also has the active site arginine in a novel conformation. The switch between the two- and three-metal ion structures appears to be binding of another monomer to the active site of STP, which promotes binding of the third metal ion. This interaction may mimic the binding of a product complex, especially since the motif binding to the active site contains a serine residue aligning remarkably well with the phosphate found in the human STP structure.  相似文献   

9.
XAS of Zn-peptide binary and ternary complexes prepared using peptides mimicking the potential metal binding sites of rabbit skeletal muscle AMP deaminase (AMPD) strongly suggest that the region 48-61 of the enzyme contains a zinc binding site, whilst the region 360-372 of the enzyme is not able to form 1:1 complexes with zinc, in contrast with what has been suggested for the corresponding region of yeast AMPD. XAS performed on fresh preparations of rabbit skeletal muscle AMPD provides evidence for a dinuclear zinc site in the enzyme compatible with a (mu-aqua)(mu-carboxylato)dizinc(II) core with an average of two histidine residues at each metal site and a Zn-Zn distance of about 3.3 Angstrom. The data indicate that zinc is not required for HPRG/AMPD interaction, both zinc ions being bound to the catalytic subunit of the enzyme, one to the three conserved amino acid residues among those four assumed to be in contact with zinc in yeast AMPD, and the other at the N-terminal region, probably to His-52, Glu-53 and His-57. Tryptic digests of different enzyme preparations demonstrate the existence of two different protein conformations and of a zinc ion connecting the N-terminal and C-terminal regions of AMPD.  相似文献   

10.
J L Kofron  D E Ash  G H Reed 《Biochemistry》1988,27(13):4781-4787
Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate,phosphate dikinase (Ep) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme [Michaels, G., Milner, Y., & Reed, G.H. (1975) Biochemistry 14, 3213-3219]. Superhyperfine coupling between the unpaired electrons of Mn(II) and ligands specifically labeled with 17O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the Ep-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction.  相似文献   

11.
1. Yeast alcohol dehydrogenase (EC 1.1.1.1) is inhibited by stoicheiometric concentrations of diethyl pyrocarbonate. The inhibition is due to the acylation of a single histidine residue/monomer (mol.wt. 36000). 2. Alcohol dehydrogenase is also inhibited by stoicheiometric amounts of 5,5'-dithiobis-(2-nitrobenzoate), owing to the modification of a single cysteine residue/monomer. 3. Native alcohol dehydrogenase binds two molecules of reduced coenzyme/molecule of enzyme (mol.wt. 144000). 4. Modification of a single histidine residue/monomer by treatment with diethyl pyrocarbonate prevents the binding of acetamide in the ternary complex, enzyme-NADH-acetamede, but does not prevent the binding of NADH to the enzyme. 5. Modification of a single cysteine residue/monomer does not prevent the binding of acetamide to the ternary complex. After the modification of two thiol groups/monomer by treatment with 5,5'-dithiobis-(2-nitrobenzoate), the capacity of enzyme to bind coenzyme in the ternary complex was virtually abolished. 6. From the results presented in this paper we conclude that at least one histidine and one cysteine residue are closely associated in the substrate-binding site of alcohol dehydrogenase.  相似文献   

12.
Aquifex aeolicus 3-deoxy-D-manno-octulosonate 8-phosphate synthase (KDO8PS) catalyzes the condensation of arabinose 5-phosphate (A5P) and phosphoenolpyruvate (PEP) by favoring the activation of a water molecule coordinated to the active-site metal ion. Cys11, His185, Glu222 and Asp233 are the other metal ligands. Wild-type KDO8PS is purified with Zn(2+) or Fe(2+) in the active site, but maximal activity in vitro is achieved when the endogenous metal is replaced with Cd(2+). The H185G enzyme retains 8% of the wild-type activity. ICP mass spectrometry analysis indicates that loss of His185 decreases the enzyme affinity for Fe(2+), but not for Zn(2+). However, maximal activity is again achieved by substitution of the endogenous metal with Cd(2+). We have determined the X-ray structures of the Cd(2+) H185G enzyme in its substrate-free form, and in complex with PEP, and PEP plus A5P. These structures show a normal amount of Cd(2+) bound, suggesting that coordination by His185 is not essential to retain Cd(2+) in the active site. Nonetheless, there are significant changes in the coordination sphere of Cd(2+) with respect to the wild-type enzyme, as the carboxylate moiety of PEP binds directly to the metal ion and replaces water and His185 as ligands. These observations indicate that the primary function of His185 in A.aeolicus KDO8PS is to orient PEP in the active site of the enzyme in such a way that a water molecule on the sinister (si) side of PEP can be activated by direct coordination to the metal ion.  相似文献   

13.
M Sono  J H Dawson  K Hall  L P Hager 《Biochemistry》1986,25(2):347-356
Equilibrium binding studies of exogenous ligands and halides to the active site heme iron of chloroperoxidase have been carried out from pH 2 to 7. Over twenty ligands have been studied including C, N, O, P, and S donors and the four halides. As judged from changes in the optical absorption spectra, direct binding of the ligands to the heme iron of ferric or ferrous chloroperoxidase occurs in all cases; this has been ascertained for the ferric enzyme in several cases through competition experiments with cyanide. All of the ligands except for the halides, nitrate, and acetate form exclusively low-spin complexes in analogy to results obtained with the spectroscopically related protein, cytochrome P-450-CAM [Sono, M., & Dawson, J.H. (1982) J. Biol. Chem. 257, 5496-5502]. The titration results show that, for the ferric enzyme, (i) weakly acidic ligands (pKa greater than 3) bind to the enzyme in their neutral (protonated) form, followed by deprotonation upon ligation to the heme iron. In contrast, (ii) strongly acidic ligands (pKa less than 0) including SCN-, NO3-, and the halides except for F- likely bind in their anionic (deprotonated) form to the acid form of the enzyme: a single ionizable group on the protein with a pKa less than 2 is involved in this binding. For the ferrous enzyme, (iii) a single ionizable group with the pKa value of 5.5 affects ligand binding. These results reveal that chloroperoxidase, in spite of the previously established close spectroscopic and heme iron coordination structure similarities to the P-450 enzymes, clearly belongs to the hydroperoxidases in terms of its ligand binding properties and active site heme environment. Magnetic circular dichroism studies indicate that the alkaline form (pH 9.5) of ferric chloroperoxidase has an RS-ferric heme-N donor ligand coordination structure with the N donor likely derived from histidine imidazole.  相似文献   

14.
Resonances of the histidine region of human carbonic anhydrase B have been studied by proton magnetic resonance spectroscopy in the presence of seven sulfonamide inhibitors. Results of difference spectroscopy and observation of the C-2 resonance of an additional titratable histidine in some of these spectra suggest a conformational change in the enzyme, while the large number of unaltered resonances indicates involvement of only a few residues. Inhibition of carbonic anhydrase by sulfonamides appears to involve: stabilization of an appropriately oriented initial complex by hydrophobic binding of the aromatic ring of the inhibitor to residues of the cavity forming the active site; ionization of the sulfonamido group, facilitated by its proximity to zinc; protonation and displacement of the high pH ligand to the metal controlling catalytic activity, thought here to be a histidine residue; and formation by the sulfonamido group of an ionic bond to zinc and a hydrogen bond to the hydroxyl group of serine or threonine. Diversity of spectra produced with various sulfonamides suggests that substituents on the ring and heteroatoms within the ring interact with additional groups at the active site. Increase in inhibitory potency appears to involve optimizing the number as well as the strength of these interactions. An upper limit for the dissociation rate of these complexes of 10 sec-1 was obtained.  相似文献   

15.
M Ikeda-Saito 《Biochemistry》1987,26(14):4344-4349
The ligand binding properties of spleen myeloperoxidase, a peroxidase formerly called "the spleen green hemeprotein", were studied as functions of temperature and pH, using chloride and cyanide as exogenous ligands. Ligand binding is influenced by a proton dissociable group with a pKa of 4. The protonated, uncharged form of cyanide binds to the unprotonated form of the enzyme, while chloride ion binds to the enzyme when this group is protonated. In both cyanide and chloride binding, the pH-dependent change in the apparent ligand affinity is due to a change in the apparent association rate with pH. The proton dissociable group on the enzyme involved in ligand binding has a delta H value of about 8 kcal . mol-1. The present results suggest that this ionizable group is the imidazole group of a histidine residue located near the ligand binding site.  相似文献   

16.
Aeropyrum pernix K1, an aerobic hyperthermophilic archaeon, produces a cambialistic superoxide dismutase that is active in the presence of either of Mn or Fe. The crystal structures of the superoxide dismutase from A. pernix in the apo, Mn-bound and Fe-bound forms were determined at resolutions of 1.56, 1.35 and 1.48 ?, respectively. The overall structure consisted of a compact homotetramer. Analytical ultracentrifugation was used to confirm the tetrameric association in solution. In the Mn-bound form, the metal was in trigonal bipyramidal coordination with five ligands: four side chain atoms and a water oxygen. One aspartate and two histidine side chains ligated to the central metal on the equatorial plane. In the Fe-bound form, an additional water molecule was observed between the two histidines on the equatorial plane and the metal was in octahedral coordination with six ligands. The additional water occupied the postulated superoxide binding site. The thermal stability of the enzyme was compared with superoxide dismutase from Thermus thermophilus, a thermophilic bacterium, which contained fewer ion pairs. In aqueous solution, the stabilities of the two enzymes were almost identical but, when the solution contained ethylene glycol or ethanol, the A. pernix enzyme had significantly higher thermal stability than the enzyme from T. thermophilus. This suggests that dominant ion pairs make A. pernix superoxide dismutase tolerant to organic media.  相似文献   

17.
Boyd JM  Ensign SA 《Biochemistry》2005,44(39):13151-13162
Epoxyalkane:coenzyme M transferase (EaCoMT) catalyzes the nucleophilic addition of coenzyme M (CoM, 2-mercaptoethanesulfonic acid) to epoxypropane forming 2-hydroxypropyl-CoM. The biochemical properties of EaCoMT suggest that the enzyme belongs to the family of alkyltransferase enzymes for which Zn plays a role in activating an organic thiol substrate for nucleophilic attack on an alkyl-donating substrate. The enzyme has a hexameric (alpha(6)) structure with one zinc atom per subunit. In the present work M(2+) binding and the role of Zn(2+) in EaCoMT have been established through a combination of biochemical, calorimetric, and spectroscopic techniques. A variety of metal ions, including Zn(2+), Co(2+), Cd(2+), and Ni(2+), were capable of activating a Zn-deficient "apo" form of EaCoMT, affording enzymes with various levels of activity. Titration of Co(2+) into apo-EaCoMT resulted in UV-visible spectroscopic changes consistent with the formation of a tetrahedral Co(2+) binding site, with coordination of bound Co(2+) to two thiolate ligands. Quantification of UV-visible spectral changes upon Co(2+) titration into apo-EaCoMT demonstrated that EaCoMT binds Co(2+) cooperatively at six interacting sites. Isothermal titration calorimetric studies of Co(2+) and Zn(2+) binding to EaCoMT also showed cooperativity for metal ion binding among six sites. The addition of CoM to Co(2+)-substituted EaCoMT resulted in UV-visible spectral changes indicative of formation of a new thiol-Co(2+) bond. Co(2+)-substituted EaCoMT exhibited a unique Co(2+) EPR spectrum, and this spectrum was perturbed significantly upon addition of CoM. The presence of a divalent metal ion was required for the release of protons from CoM upon binding to EaCoMT, with Zn(2+), Co(2+), and Cd(2+) each facilitating proton release. The divalent metal ion of EaCoMT is proposed to play a key role in the coordination and deprotonation of CoM, possibly through formation of a metal-thiolate that is activated for attack on the epoxide substrate.  相似文献   

18.
19.
J M Pesando 《Biochemistry》1975,14(4):681-688
The seven resonances observed in the histidine region of the proton magnetic resonance (pmr) spectrum of human carbonic anhydrase B and reported in the preceding paper are studied in the presence of sulfonamide, azide, cyanide, and chloride inhibitors and in metal-free, cadmium substituted, cobalt substituted, and carboxymethylated forms of the enzyme. Results indicate that the two resonances that move-downfield with increasing pH and the two that do not move with pH reflect residues located at the active site. The first two resonances are assigned to the same titratable histidine whose pK value of 8.24 corresponds to that of the group controlling catalytic activity. Addition of anions or sulfonamides, removal of zinc, or substitution of cadmium for zinc at the active site, procedures known to abolish enzymatic activity, prevent titration of this residue. Partial inhibition of carbonic anhydrase by chloride slectively increases the pK value of the group controlling catalytic activity and of the histidine with pK equals 8.24. Experiments with metal-free and cadmium carbonic anhydrases and comparisons with model systems suggest that this histidine is bound to the metal ion at high pH; at low pH this complex appears to dissociate as protons compete with the metal for the imidazole group. It is proposed that ionization of the group controlling catalytic activity represents loss of the pyrrole proton of this neutral ligand when it binds to Zn(II), forming an imidazolate anion and juxtaposing a strong base and a powerful Lewis acid at the active site. When bound to zinc as an anion, this histidine can act as a general base catalyst in the hydration of carbon dioxide and be replaced as a metal ligand by an oxygen of the substrate in the course of the reaction. The histidine-metal complex is thought to exist in a strained configuration in the active enzyme so that its imidazole-metal bond is readily broken on addition of substrates or inhibitors. This model is consistent with the available data on the enzyme and is discussed in relation to alternative proposals.  相似文献   

20.
Chloride binding to alkaline phosphatase. 113Cd and 35Cl NMR   总被引:1,自引:0,他引:1  
Chloride binding to alkaline phosphatase from Escherichia coli has been monitored by 35Cl NMR for the native zinc enzyme and by 113Cd NMR for two Cd(II)-substituted species, phosphorylated Cd(II)6 alkaline phosphatase and unphosphorylated Cd(II)2 alkaline phosphatase. Of the three metal binding sites per enzyme monomer, A, B, and C, only the NMR signal of 113Cd(II) at the A sites shows sensitivity to the presence of Cl-, suggesting that Cl- coordination occurs at the A site metal ion. From the differences in the chemical shift changes produced in the A site 113Cd resonance for the covalent (E-P) form of the enzyme versus the noncovalent (E . P) form of the enzyme, it is concluded that the A site metal ion can assume a five-coordinate form. The E-P form of the enzyme has three histidyl nitrogens as ligands from the protein to the A site metal ion plus either two water molecules or two Cl- ions as additional monodentate ligands. In the E . P form, there is a phosphate oxygen as a monodentate ligand and either a water molecule or a Cl- ion as the additional monodentate ligand. The shifts of the 113Cd NMR signals of the unphosphorylated Cd(II)2 enzyme induced by Cl- are very similar to those induced in the E-P derivative of the same enzyme, supporting the conclusion that the phosphoseryl residue is not directly coordinated to any of the metal ions. Specific broadening of the 35Cl resonance from bulk Cl- is induced by Zn(II)4 alkaline phosphatase, while Zn(II)2 alkaline phosphatase is even more effective, suggesting an influence by occupancy of the B site on the interaction of monodentate ligands at the A site. A reduction in this quadrupolar broadening is observed upon phosphate binding at pH values where E . P is formed, but not at pH values where E-P is the major species, confirming a specific interaction of Cl- at the A site, the site to which phosphate is bound in E . P, but not in E-P. For the zinc enzyme, a significant decrease in phosphate binding affinity can be shown to occur at pH 8 where one monomer has a higher affinity than the other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号