首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of gelonin and A-chains of ricin, mistletoe lectin I and diphtheria toxin was undertaken. The effect of pH was studied on: a) the conformation of the proteins under study using intrinsic fluorescence; b) interaction of these proteins with ricin B-chain using gel-filtration. Structural stability of the proteins was assessed according to denaturing action of guanidine hydrochloride and temperature, and localization of tryptophan residues was determined using fluorescence quenching by I-, Cs+ and acrylamide. All investigated proteins were shown to undergo the conformational changes when a environment became acidic. In comparison with an intact protein--gelonin, the A-chains of ricin, a mistletoe lectin and a diphtheria toxin are less stable. At pH less than 5.0 tryptophan residues became more accessible to quencher and a positive charge of the surrounding area increases (in the case of gelonin it is negatively charged). No reliable interaction of a ricin B-chain with both gelonin and A-chain of diphtheria toxin was observed. The interaction of a ricin B-chain with a A-chain of mistletoe lectin I is weaker than that with ricin A-chain and is practically pH-independent.  相似文献   

2.
Intrinsic protein fluorescence of native plant toxin and its isolated subunits were studied. The effect of pH was studied on: conformation of ricin and its A- and R-chains; affinity to galactose of ricin and its binding B-subunit. At two pH 5.0 and 7.0, the structural stability of toxin and subunits was estimated according to denaturational action of guanidine chloride. It was demonstrated that position of maximum and the spectrum shape of fluorescence of native toxin and catalytical A-subunit insignificantly depends on pH in the range of 3-8, whereas sufficient changes of the separameters for the ricin B-chain reveal structural transition at pH 4-5. The affinity of galactose of ricin and its isolated B-chain depends on pH, the maximal binding is observed at pH 7. The structural stability of ricin and isolated chains significantly differs at pH 7.5 and 5.0, thus the structure stability of ricin and A-chain increases, and that of B-chain decreases at pH 5.0.  相似文献   

3.
To elucidate the details of pH-induced conformational transformation of ricin [I] in the region surrounding tryptophan residues, we studied parameters of fluorescence of the native toxin and its isolated A- and B-subunits at pH 4.0, 5.0 and 7.4. The studies were carried out using resolution of fluorescence spectra according to different degree of tryptophan accessibility to ionic (iodide) and non-ionic organic (acrylamide) quenchers. Application of the new method allowed to reveal three classes of tryptophan residues differing in their accessibility to quenchers alpha-residues are accessible neither to ions nor to organic molecules; beta-residues are accessible only to organic molecules; while surface gamma-residues are accessible to both types of quenchers. The fluorescence spectra were assessed for each class of tryptophan residues. The major part of them was shown to be localized in apolar rigid microenvironment. Fluorescence of ricin and especially of its isolated subunits proved to be strongly dependent on the pH value. At pH less than 5 the structure of B-chain loosens, this process being reflected by an increase in accessibility of tryptophan residues to quenchers. In acidic solution at least one out of seven tryptophan residues in the ricin molecule undergoes conformational transformation. Positive charge prevails in the regions surrounding quencher-accessible tryptophan residues. Binding of lactose leads to a slight compactization of the toxin structure that causes, in its turn, short-wave shifts of the fluorescence spectra and reduction of Stern-Volmer constants for intraglobular tryptophan residues.  相似文献   

4.
The effect of pH on the conformation of ricin and its A- and B-chains has been studied by measuring their intrinsic fluorescence. At pH 5.0 and 7.5, the structural stability of toxin and subunits was estimated according to the denaturing action of guanidine hydrochloride. It was demonstrated that the fluorescence of native toxin and catalytic A-subunit does not depend significantly on pH in the range pH 3-8, whereas ricin B-chain undergoes a structural transition at pH less than 5.0. The structural stability of ricin and isolated chains differs significantly at pH 7.5 and 5.0; the structural stability of ricin and the A-chain increases, whereas that of the B-chain decreases.  相似文献   

5.
6.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

7.
In order to elucidate the role of individual amino acid residues on the conformational stability of a protein, the stabilities of the wild-type tryptophan synthase α-subunit from Escherichia coil and its five mutant proteins substituted by single amino acid residues at the same position 49 were compared. The five mutant proteins have glutamine, methionine, valine, serine, or tyrosine in place of glutamic acid of the wild-type protein at position 49. Denaturation of these proteins, which consist of two domains, by guanidine hydrochloride can be analyzed as a two-step process. We obtained the equilibrium constants between the native and the denatured forms and between the native and the stable intermediate forms for the above six proteins in the absence of denaturant at three pH values.  相似文献   

8.
J W Berger  J M Vanderkooi 《Biochemistry》1989,28(13):5501-5508
Room temperature phosphorescence techniques were used to study the structural and dynamic features of the tryptophan residues in bovine alpha-crystallin. Upon excitation at 290 nm, the characteristic signature of tryptophan phosphorescence was observed with an emission maximum at 442 +/- 2 nm. The phosphorescence intensity decay was biphasic with lifetimes of 5.4 ms (71%) and 42 ms (29%). Phosphorescence quenching measurements strongly suggest that each component corresponds to one class of tryptophans with the more buried residues having the longer emission lifetime. Three small-molecule quenchers were surveyed, and in order of increasing quenching efficiency: iodide less than nitrite less than acrylamide. A heavy-atom effect was observed in iodide solutions, and an upper limit of 5% was placed on the quantum yield of triplet formation in iodide-free solutions, while the phosphorescence quantum yield was estimated to be approximately 3.2 x 10(-4). The temperature dependence of the phosphorescence lifetime was measured between 5 and 40 degrees C. Arrhenius plots exhibited discontinuities at 26 and 29 degrees C for the short- and long-lived components, respectively, corresponding to abrupt transitions in segmental flexibility. Denaturation studies revealed conformational transitions between 1 and 2 M guanidine hydrochloride, and 4 and 6 M urea. Long-lived phosphorescence lifetimes of 3 and 7 ms were measured in 6 M guanidine hydrochloride and 8 M urea, respectively, suggesting that some structural features are preserved even at very high concentrations of denaturant. Our studies demonstrate the sensitivity of room temperature phosphorescence spectroscopy to the structure of alpha-crystallin, and the applicability of this technique for monitoring conformational changes in lens crystallin proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The kinetics of the hydrodynamic volume change accompanying the reversible unfolding of staphylococcal nuclease have been observed by size-exclusion chromatography at 4 degrees C and pH 7.0 using the denaturant guanidine hydrochloride. The observed chromatographic profiles have been simulated by a six-component unfolding/refolding mechanism using a consistent set of equilibrium and kinetic parameters. The native protein is an equilibrium mixture of the cis and trans isomers of the peptide bond preceding proline-117. The native conformation containing the cis isomer dominates the equilibrium mixture, is more stable, and unfolds more slowly at its transition midpoint. The denatured protein is an equilibrium mixture of at least four components, the cis/trans isomers of proline-117 and one of the five remaining prolines. The dominant refolding pathway is initiated from the denatured component containing the trans isomer of proline-117. The six-component mechanism is consistent with tryptophan fluorescence kinetic measurements of the wild-type protein and with chromatographic measurements of a mutant P117G protein.  相似文献   

10.
Khan F  Ahmad A  Khan MI 《IUBMB life》2007,59(1):34-43
The effect of urea, guanidine thiocyanate, temperature and pH was studied on the conformational stability of Fusarium solani lectin. Equilibrium unfolding with chemical denaturants showed that the lectin was least stable at pH 12 and maximally stable at pH 8.0 near its pI (8.7). Guanidine thiocyanate (the concentration of denaturant at which the protein is half folded, D1/2 = 0.49 M at pH 12) was found to be an eight times stronger denaturant than urea (D1/2 = 3.88 M at pH 12). The unfolding curves obtained with fluorescence and CD measurements showed good agreement indicating a monophasic nature of unfolding and excluded the possibility of formation of any stable intermediate. The effect of pH on the lectin was found to be unusual as at acidic pH, the lectin showed a flexible tertiary structure with pronounced secondary structure, and retained its hemagglutinating activity. On the other hand, the lectin did not show any loss of conformation or activity upto 70 degrees C for 15 min. Moreover, thermal denaturation did not result in the aggregation or precipitation of the protein even at high temperatures. Thermal denaturation was also carried out in the presence of a low concentration of guanidine thiocyanate. Change in the enthalpy of transition (DeltaHm) varied linearly with transition temperature (Tm), which indicated that the heat capacity (DeltaCp = 3.95 kJ . mol-1 . K-1) of the lectin remained constant during the unfolding.  相似文献   

11.
The denaturation behavior of phaseolin in urea, guanidine hydrochloride, and sodium dodecyl sulfate solutions was examined by monitoring changes in the intrinsic fluorescence of tryptophan and tyrosyl residues. Changes in various fluorescence parameters, such as quantum yield, emission maximum, spectral half-width, fluorescence depolarization, and fluorescence quenching by acrylamide, have indicated that while phaseolin is relatively stable up to 8 M urea, it is completely destabilized in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate. Furthermore, while the denaturation of phaseolin in urea solutions followed a two-step process, that in guanidine hydrochloride and sodium dodecyl sulfate followed a single-step process. While the accessibility of tryptophan residues to the nonionic acrylamide quencher is almost 100% in 6 M guanidine hydrochloride and 6 mM sodium dodecyl sulfate, only about 72% was accessible in 8 M urea compared to 52% in native phaseolin. The results presented here suggest that the protomeric structure of phaseolin is quite stable to changes in the environment. This structural stability may be partly responsible for its resistance to proteolysis by various proteinases.  相似文献   

12.
The fluorescence and phosphorescence properties of the tryptophan residues in glutamate dehydrogenase were utilized to probe the conformation of the macromolecule at various states of aggregation of its subunits (hexamer, trimer, and monomer) in guanidine hydrochloride. According to the phosphorescence lifetime no gross alteration in the conformation of the protein follows from complete dissociation of the hexamer into native monomer, implying that the native fold is stabilized exclusively by intrasubunit bonding. Although modest concentrations of denaturant induce a change in configuration in the enzyme, a comparison with the macromolecule cross-linked into the hexameric form by glutaraldehyde confirms that this alteration in structure is not the result of subunit dissociation. Inhibition of catalysis by the denaturant is found to be considerably smaller than anticipated from the extent of hexamer dissociation. Furthermore, this inhibition is in no way prevented by cross-linking the enzyme in its hexameric form. This finding together with the ability of the trimer to bind the coenzyme and to undergo the characteristic structural changes induced by the effectors ADP and GTP suggests that, contrary to what is generally believed, the smallest functional unit of glutamate dehydrogenase is not the hexameric form.  相似文献   

13.
A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions. Proteins 32:43–51, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
T Y Tsong 《Biochemistry》1975,14(7):1542-1547
Previous work has shown that at neutral pH ferricytochrome c (horse heart) retains certain residual structures in concentrated solutions of urea or guanidine hydrochloride (Tsong, T. Y. (1974), J. Biol. Chem. 249, 1988). Present studies reveal that cooperative unfolding of these residual structures can be achieved by acidification of the protein to pH 4 in 9 M urea but can only be partially achieved in a 6 M guanidine hydrochloride solution. The evidence that the residual structures unfold in 9 M urea upon acidification is twofold. (1) Further uncoupling of the Trp-59-heme interaction occurs; this is reflected in the intensification of the tryptophan fluorescence from 55 to 90 percent relative to that of free tryptophan in the same solvent. (2) The intrinsic viscosity of the protein solution increases from 15.0 to 21 ml/g. The acidification also induces a spin-state transformation of the heme group at pH 5 both in urea and in guanidine hydrochloride. Acidic titration of the protein in urea and guanidine hydrochloride indicates that the unfolding involves the absorption of a single proton. However, the kinetics of the spin-state transformation are triphasic. These results suggest that the displacement of the ligand His-18 by a solvent molecule and the subsequent disintegration of the residual structures are complex processes and involve at least three kinetic steps. The ineffectiveness of guanidine hydrochloride as a denaturant for ferricytochrome c is shown to be due to the presence of the high concentration of Cl minus which can stabilize certain elements of the protein structure.  相似文献   

15.
Wu XH  Chen RC  Gao Y  Wu YD 《Biochemistry》2010,49(47):10237-10245
We recently found that Asp-His-Ser/Thr-Trp hydrogen-bonded tetrads are widely and uniquely present in the WD40-repeat proteins. WDR5 protein is a seven WD40-repeat propeller with five such tetrads. To explore the effect of the tetrad on the structure and stability of WD40-repeat proteins, the wild-type WDR5 and its seven mutants involving the substitutions of tetrad residues have been isolated. The crystal structures of the wild-type WDR5 and its three WDR5 mutants have been determined by X-ray diffraction method. The mutations of the tetrad residues are found not to change the basic structural features. The denaturing profiles of the wild type and the seven mutants with the use of denaturant guanidine hydrochloride have been studied by circular dichroism spectroscopy to determine the folding free energies of these proteins. The folding free energies of the wild type and the S62A, S146A, S188A, D192E, W330F, W330Y, and D324E mutants are measured to be about -11.6, -2.7, -3.1, -2.9, -3.6, -7.1, -7.0, and -7.5 kcal/mol, respectively. These suggest that (1) the hydrogen bonds in these hydrogen bond networks are unusually strong; (2) each hydrogen-bonded tetrad provides over 12 kcal/mol stability to the protein; thus, the removal of any single tetrad would cause unfolding of the protein; (3) since there are five tetrads, the protein must be in a highly unstable state without the tetrads, which might be related to its biological functions.  相似文献   

16.
Full-length human p53 protein was examined using tryptophan fluorescence and circular dichroism spectroscopy (CD) to monitor unfolding. No significant alteration in tryptophan fluorescence for the tetrameric protein was detectable over a wide range of either urea or guanidine hydrochloride concentrations, in contrast to results with the isolated DNA binding domain [Bullock et al. (1997) Proc. Natl. Acad. Sci. USA 94, 14338]. Under similar denaturant conditions, CD demonstrated significant protein unfolding for the full-length wild-type protein, with increased apparent structure loss compared to that detected during thermal denaturation [Nichols and Matthews (2001) Biochemistry 40, 3847]. Examination of X-ray structures containing two of the four tryptophan residues of a p53 monomer suggested local environments consistent with quenched fluorophores. Exploration of p53 fluorescence using potassium iodide as a quencher confirmed that these fluorophores are already substantially quenched in the native structure, and this quenching is not relieved during protein unfolding.  相似文献   

17.
The pH dependence of the reversible guanidine hydrochloride denaturation of the major fraction of ovalbumin (ovalbumin A1) was studied by a viscometric method in the pH range 1-7, at 25 degrees C and at six different denaturant concentrations (1.5-2.6 M). At any denaturant concentrationa reduction in pH favoured the transition from the native to the denatured state. The latter was essentially 'structureless', as revealed by the fact that the reduced viscosity of the acid and guanidine hydrochloride denatured state of ovalbumin A1 (obtained at different denaturant concentrations in acidic solutions) was measured (at a protein concentration of 3.8 mg/ml) to be 29.2 ml/g which is identical to that found in 6 M guanidine hydrochloride wherein the protein behaves as a cross-linked random coil. A quantitative analysis of the results on the pH dependence of the equilibrium constant for the denaturation process showed that on denaturation the intrinsic pK of two carboxyl groups in ovalbumin A1 went up from 3.1 in the native state to 4.4 in the denatured state of the protein.  相似文献   

18.
Fluorescence techniques have been used to study the structural characteristics of many proteins. The thermophilic enzyme NAD-glutamate dehydrogenase from Thermus thermophilus HB8 is found to be a hexameric enzyme. Fluorescence spectra of native and denatured protein and effect of denaturants as urea and guanidine hydrochloride on enzyme activity of thermophilic glutamate dehydrogenase (t-GDH) have been analyzed. Native t-GDH presents the maximum emission at 338 nm. The denaturation process is accompanied by an exposure to the solvent of the tryptophan residues, as manifested by the red shift of the emission maximum. Fluorescence quenching by external quenchers, KI and acrylamide, has also been carried out.  相似文献   

19.
Jourdan M  Searle MS 《Biochemistry》2000,39(40):12355-12364
Peptide fragments corresponding to the N- and C-terminal portions of bovine ubiquitin, U(1-35) and U(36-76), are shown by NMR to associate in solution to form a complex of modest stability (Kassn approximately 1.4 x 10(5) M(-1) at pH 7.0), with NMR features characteristic of a nativelike structure. The complex undergoes cold denaturation, with temperature-dependent estimates of stability from NMR indicating a DeltaC(p) degrees for fragment complexation in good agreement with that determined for native ubiquitin, suggesting that fragment association results in the burial of a similar hydrophobic surface area. The stability of the complex shows appreciable pH dependence, suggesting that ionic interactions on the surface of the protein contribute significantly. However, denaturation studies of native ubiquitin in the presence of guanidine hydrochloride (Gdn.HCl) show little pH dependence, suggesting that ionic interactions may be "screened" by the denaturant, as recently suggested. Examination of the conformation of the isolated peptide fragments has shown evidence for a low population of nativelike structure in the N-terminal beta-hairpin (residues 1-17) and weak nascent helical propensity in the helical fragment (residues 21-35). In contrast, the C-terminal peptide (36-76) shows evidence in aqueous solution, from some Halpha chemical shifts, for nonnative phi and psi angles; nonnative alpha-helical structure is readily induced in the presence of organic cosolvents, indicating that tertiary interactions in both native ubiquitin and the folded fragment complex strongly dictate its structural preference. The data suggest that the N-terminal fragment (1-35), where interaction between the helix and hairpin requires the minimum loss of conformational entropy, may provide the nucleation site for fragment complexation.  相似文献   

20.
Speare JO  Rush TS 《Biopolymers》2003,72(3):193-204
Attenuated total reflectance Fourier transform IR (ATR-FTIR) spectra are obtained for horse heart ferricytochrome c in solutions of 0-7M guanidine hydrochloride and deuterated guanidine hydrochloride. Substitutions of deuterium for hydrogen in both the denaturant and protein provide resolvable amide I spectra over a wide range of denaturant concentrations. Deuteration enhances the ability to measure the true protein IR spectrum in the amide I region in which the secondary structure can be deduced, because spectra in D(2)O are less prone to spectral distortion upon background denaturant subtraction than spectra in H(2)O. Other investigators studying equilibrium unfolded cytochrome c were limited to guanidine concentrations below 3.0M because of detector saturation. Detector saturation is avoided with the use of ATR-FTIR spectroscopy, allowing one to obtain protein spectra at high denaturant concentrations. Second derivative spectra of samples show reductions in alpha helix and increases in beta sheet at high denaturant concentrations, contrary to expectations of finding primarily a random coil secondary structure. Using this new technique, the protein was estimated to consist of 51% beta sheet and only 15% random coil in the presence of 6.6M deuterated guanidine hydrochloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号