首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
We examined the patterns of cyclic AMP-dependent protein phosphorylation in membranes prepared from rat cortical synaptosomes following gel electrophoresis and autoradiography. We determined the optimum pH (6.2), time (20 s), Mg2+ concentration (10 mM) and cyclic AMP concentration (5 microM) for the reaction. We also found that the detergents Triton X-100 and gramicidin S enhanced cyclic AMP-dependent protein phosphorylation. Inhibitors of the Na+, K+ ATPase (ouabain, NaF, vanadate) enhanced protein phosphorylation. This effect occurred in the presence but not in the absence of detergent. The addition of purified bovine brain cyclic AMP-dependent protein kinase catalytic subunit enhanced membrane protein phosphorylation. The addition of homogeneous neural (bovine brain) and non-neural (bovine skeletal muscle) cyclic AMP-dependent protein kinase type II regulatory subunit partially inhibited protein phosphorylation. Both neural and non-neural regulatory subunits behaved similarly. In addition to cyclic AMP-dependent phosphorylation, the alpha-subunit of pyruvate dehydrogenase (Mr = 41,000) is phosphorylated in a cyclic AMP-independent fashion. We also examined the phosphorylation pattern of membranes prepared from rat heart and found that the number of acceptor substrates was much less than that from the nervous system.  相似文献   

2.
Abstract: Increased intracellular adenosine 3':5'-monophosphate (cAMP) levels and activation of cAMP-dependent protein kinases (ATP:protein phosphotransferase, EC 2.7.1.37) in vivo were correlated in mouse neuroblastoma cells grown in the presence of 1 mM-6 N.O 2-dibutyryl 3':5'-monophosphate (Bt2cAMP). The time course for activation showed that cAMP-dependent protein kinases were activated by 30 min. A heat-stable inhibitor protein inhibited a majority of activated cAMP-dependent protein kinase. Activation of cAMP—dependent protein kinase caused additional phosphorylation of proteins when compared with untreated control cells, as demonstrated by endogenous phosphorylation of proteins in vitro using [γ-32P]ATP and analysis by two—dimensional polyacrylamide gel electrophoresis. The phosphorylation data show selective phosphorylation of specific proteins by cAMP-independent and cAMP-dependent protein kinase. Among the proteins in the postmitochondrial supernatant fraction phosphorylated by cAMP-dependent protein kinases, two proteins with a molecular weight of 43,000 were heavily phosphorylated. It is suggested that phosphorylation of cellular proteins by cAMP-dependent protein kinases might be involved in the cAMP-modulated biochemical changes in neuroblastoma cells.  相似文献   

3.
Demembranated spermatozoa of Ciona do not become motile when provided with MgATP, unless their motility is activated in vivo before demembranation or unless the demembranated spermatozoa are activated in vitro with cAMP or with the catalytic subunit of a cAMP-dependent protein kinase. CAMP causes a greater than fivefold enhancement of 32P incorporation by demembranated spermatozoa. Analysis by one-dimensional PAGE and autoradiography shows several axonemal protein bands that become 32P-labeled during in vitro activation with cAMP and identifies protein bands whose labeling is specifically reduced if motility of the spermatozoa is activated before demembranation, suggesting that these proteins also become phosphorylated during activation of motolity in vivo. These phosphorylated proteins appear to include dynein heavy-chain components, but axonemal tubulin is not phosphorylated. Partially phosphorylated spermatozoa can be activated by an increase in KCI concentration, which appears to dissociate one phosphorylated component from the axoneme.  相似文献   

4.
In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Δ cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Δ cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1+ or cyr1Δ S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.  相似文献   

5.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Synaptosomal plasma membranes from mammalian brain contain protein kinase activity which phosphorylates endogenous membrane proteins and is stimulated by cyclic AMP. Using polyacrylamide gel electrophoresis it was shown that at least ten proteins in the synaptosomal plasma membrane fraction could be phosphorylated by endogenous cyclic AMP-stimulated protein kinase activity. The number of proteins whose phosphorylation was stimulated by cyclic AMP was strongly influenced by the pH and Mg2+ concentration used in the phosphorylation reaction. A complex pattern of cyclic AMP-stimulated protein phosphorylation was obtained only with synaptosomal plasma membranes and a crude microsomal fraction. Mitochondrial and myelin fractions exhibited no cyclic AMP-stimulated protein kinase activity. Investigation of the distribution of substrates for cyclic AMP-stimulated phosphorylation among various brain regions failed to reveal any regional differences.  相似文献   

7.
Treatment of NG108-15 cells in culture with the opiate peptide [D-Ala2,D-Leu5]enkephalin produces maximal inhibition of cyclic AMP synthesis in less than 15 min. The activity of [GM3]:N-acetylgalactosaminyltransferase is similarly inhibited, but maximal inhibition is not observed for at least 30 min following the addition of [D-Ala2,D-Leu5]enkephalin. Conversely, the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine rapidly potentiates the intracellular accumulation of cyclic AMP and, in a more gradual fashion, increases [GM3]:N-acetylgalactosaminyltransferase activity. The reductions in the activity of [GM3]:N-acetylgalactosaminyltransferase that occur following treatment of NG108-15 cells with indomethacin argues for a direct role of cyclic AMP in the observed changed in [GM3]:N-acetylgalactosaminyltransferase activity. By adding low concentrations of cyclic AMP (but not cyclic GMP) to microsomes derived from neonatal rat brain, we were able to demonstrate a dose-dependent phosphorylation of membrane protein and subsequent doubling of [GM3]:N-acetylgalactosaminyltransferase activity.  相似文献   

8.
The influence of chronic administration of antidepressants on cyclic AMP-dependent protein kinase activity was examined in rat frontal cortex. Chronic administration of imipramine, tranylcypromine, or electroconvulsive seizures decreased cyclic AMP-dependent protein kinase activity in soluble fractions by approximately 25%, whereas enzyme activity was increased in the particulate fractions by approximately 20%. In contrast, enzyme activity in crude homogenates was not altered. This effect appears to be specific to antidepressant drugs, because representatives of several other classes of psychotropic drugs-namely, haloperidol, morphine, and diazepam--failed to alter either soluble or particulate levels of cyclic AMP-dependent protein kinase activity in this brain region following chronic administration. When the total particulate fraction was subfractionated, it was found that chronic imipramine treatment significantly increased the activity of cyclic AMP-dependent protein kinase in crude nuclear fractions but not in crude synaptosomal or microsomal fractions. Taken together, the data raise the possibility that chronic antidepressant treatments may stimulate the translocation of cyclic AMP-dependent protein kinase from the cytosol to the nucleus. This effect would represent a novel action of antidepressants that could contribute to the long-term adaptive changes in brain thought to be essential for the clinical actions of these treatments.  相似文献   

9.
以小鼠大脑碎片与[γ-~(32)P]ATP一起保温,观察到溴氰菊酯对蛋白1—3磷酸化的刺激作用和对4、5磷酸化的抑制作用,表明溴氰菊酯对大脑蛋白质磷酸化产生了影响。从鼠脑分离了C、D、S三个组分,分别进行的蛋白质磷酸化试验结果表明,C、D组分可能是重要的磷酸化部位。 蛋白1、2、3的磷酸化明显地受到溴氰菊酯的刺激,这三个蛋白质可能是“蛋白Ⅲb”的几种形式。溴氰菊酯对“蛋白Ⅲb”磷酸化的刺激,可能会影响神经末梢的神经激素释放,从而影响到与其相关的某些神经功能。  相似文献   

10.
Polyamine Regulation of the Microtubule-Associated Protein Kinase   总被引:2,自引:2,他引:0  
Microtubule protein prepared by cycles of assembly-disassembly contains a cyclic AMP-dependent protein kinase that phosphorylates the high-molecular-weight microtubule-associated protein MAP-2. The polyamine spermine at 2mM affected the phosphorylation of MAP-2 in a manner that depended on the cyclic AMP concentration. At cyclic AMP concentrations below 10(-6) M, spermine increased the rate of phosphorylation, while at cyclic AMP concentrations above 10(-6) M, spermine decreased the rate of phosphorylation. Spermine also decreased the final extent of cyclic AMP-dependent phosphorylation but did not affect the protein substrate specificity of the microtubule-associated protein kinase. MAP-2 was the principal substrate both in the presence and in the absence of spermine. Because of these results, we propose that microtubule protein phosphorylation may be regulated in vivo by spermine as well as by cyclic AMP levels.  相似文献   

11.
Purified mitochondria from potato ( Solanum tuberosum L. cv. Bintje) tubers were incubated with [γ32P]-ATP, respiratory substrates and various effectors. The total incorporation of 32P into proteins was measured and the phosphoprotein pattern investigated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. Total incorporation was strongly reduced (by 70–80%) by the respiratory substrates, succinate, pyruvate and NADH. The half-maximal inhibition was at 0.03, 0.3, and 0.3 m M , respectively. The labelling of the major phosphoproteins of 40 and 42 kDa (probably both the α-subunit of the pyruvate dehydrogenase, EC 1.2.4.1) as well as of minor polypeptides of 26–33 kDa was reduced. A concomittant increase in the labelling of the 14 and 16 kDa bands occurred in the presence of succinate in fall but this increase could not be detected in late winter. The reduction in total labelling caused by NADH and succinate was unaffected by changes in the membrane potential (e.g. addition of uncouplers) or by inhibition of electron transport (e.g. by KCN). Malonate inhibition of succinate oxidation reversed the effects of succinate on labelling- The mechanism(s) by which respiratory substrates might affect protein kinase activity is discussed.  相似文献   

12.
Platelets are the primary players in both thrombosis and hemostasis.Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function,such as adhesion,aggregation,and secretion.Elevation of intracellular cAMP,which induces the activation of PKA,results in the inhibition of platelet function.Thus,tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy.In this review,we summarize the PKA substrates and their contributions to platelet function,especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology.In addition,we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

13.
The effects of cAMP-dependent protein kinase A and protein kinase C on cell-cell communication have been examined in primary ovarian granulosa cells microinjected with purified components of these two regulatory cascades. These cells possess connexin43 ( 1)-type gap junctions, and are well-coupled electrotonically and as judged by the cell-to-cell transfer of fluorescent dye. Within 2–3 min after injection of the protein kinase A inhibitor (PKI) communication was sharply reduced or ceased, but resumed in about 3 min with the injection of the protein kinase A catalytic subunit. A similar resumption also occurred in PKI-injected cells after exposure to follicle stimulating hormone. Microinjection of the protein kinase C inhibitor protein caused a transient cessation of communication that spontaneously returned within 15–20 min. Treatment of cells with activators of protein kinase C, TPA or OAG for 60 min caused a significant reduction in communication that could be restored within 2–5 min by the subsequent injection of either the protein kinase C inhibitor or the protein kinase A catalytic subunit. With a longer exposure to either protein kinase C activator communication could not be restored and this appeared to be related to the absence of aggregates of connexin43 in membrane as detected immunologically. In cells injected with alkaline phosphatase communication stopped but returned either spontaneously within 20 min or within 2–3 min of injecting the cell with either the protein kinase A catalytic subunit or with protein kinase C. When untreated cells were injected with protein kinase C communication diminished or ceased within 5 min. Collectively these results demonstrate that cell-cell communication is regulated by both protein kinase A and C, but in a complex interrelated manner, quite likely by multiple phosphorylation of proteins within or regulating connexin-43 containing gap junctions.Abbreviations C catalytic subunit of protein kinase A - CKI protein kinase C inhibitor protein - Cx connexin protein - dbcAMP N6,2-O-dibutyryladenosine 3:5-cyclic monophosphate - OAG 1-oleoyl-2-acetyl-sn-glycerol - protein kinase A cAMP-dependent protein kinase - protein kinase C Ca2+-sensitive phospholipid-dependent protein kinase - PKI protein kinase A inhibitor protein - R regulatory subunit of protein kinase A - TRA 12-O-tetradecanoylphorbol-13-acetate - 8Br-cAMP 8-bromoadenosine 3:5 cyclic monophosphate  相似文献   

14.
Platelets are the primary players in both thrombosis and hemostasis. Cyclic AMP (cAMP) and cAMP-dependent protein kinase (PKA) are important signaling molecules in the regulation of platelet function, such as adhesion, aggregation, and secretion. Elevation of intracellular cAMP, which induces the activation of PKA, results in the inhibition of platelet function. Thus, tight control of the intracellular cAMP/PKA signaling pathway has great implications for platelet-dependent hemostasis and effective cardiovascular therapy. In this review, we summarize the PKA substrates and their contributions to platelet function, especially the advancing understanding of the cAMP/PKA-dependent signaling pathway in platelet physiology. In addition, we suggest the possibility that cAMP/PKA is involved in the platelet procoagulant process and receptor ectodomain shedding.  相似文献   

15.
The phosphorylation of NADP-specific isocitrate dehydrogenase in a wild-type and in an adenylate cyclase deletion mutant of Escherichia coli has been investigated. The results obtained clearly indicate that cyclic AMP is not required for the phosphorylation reaction per se, not is it for the synthesis or possible activation of the phosphoprotein kinase in this organism. This data are in contrast to results observed in Salmonella typhimurium, and indicate that important differences exist in the phosphorylation of the isocitrate dehydrogenase in these two organisms.  相似文献   

16.
Two forms of the regulatory subunit of the type II cAMP-dependent protein kinase (RII55 and RII52) were identified from bovine heart by gel electrophoretic behaviour. After autophosphorylation the RII55 isoform migrated more slowly (RII55/57) while the migration of RII52 isoform did not shift. Both isoforms showed different affinity for cAMP. The RII55/57 isoform was eluted from a cAMP-agarose column at 10 mM cAMP at low ionic strenght whereas the RII52 isoform required cAMP, plus 2 M NaCl. Partial proteolysis, using trypsin or formic acid, of autophosphorylated regulatory subunit isoforms resulted in different cleavage pattern as determined by peptide mapping. However, the V8125I-peptides patterns of both isoforms are quite similar.Incubation of partially purified holoenzyme with 10 nM [-32P]ATP (low ATP concentration) yielded a single band of Mr = 57,000 which corresponds to the RII55/57 isoform. The incubation, however, at 20 µM [-32P]ATP yielded two phosphobands corresponding to both RII55/57 and RII52 isoforms. The phosphorylation of RII52 took place with a lower efficiency and was more sensitive to the cAMP than the corresponding phosphorylation of the RII55/57.  相似文献   

17.
18.
Plasma membrane preparations from lymphocytes, platelets and red cells were phosphorylated in the presence of [gamma-32 P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase increased the 32P-labelling of proteins and polyphosphoinositides in lymphocyte, platelet and in some red cell membranes. In the majority of red cell membrane preparations the 32P-labelling of proteins and polyphosphoinositides seemed to be stimulated by the catalytic subunit of the endogenous protein kinase, since the phosphorylation was not increased by the addition of the catalytic subunit but it was decreased by the heat-stable inhibitor protein of the protein kinase. Different sets of 32P-labelled proteins were shown by SDS-gel electrophoresis in the membranes of the 3 cell types. A 24000-Mr protein was the only one which was phosphorylated by the catalytic subunit in each membrane.  相似文献   

19.
Rat liver mitochondria were subfractionated into outer membrane, intermembrane and mitoplast (inner membrane and matrix) fractions. Of the recovered protein kinase activity, 80–90% was found in the intermembrane fraction, while the rest was associated with mitoplast. The intermembrane prostimulated kinase was stimulated by cyclic AMP, while the mitoplast enzyme was stimulated by the nucleotide only after treatment with Triton X-100. Extracted protein kinase resolved into three peaks on DEAE-cellulose chromatography. All three peaks were present both in the intermembrane fraction and in mitoplast. One peak corresponded to the catalytic subunit of cyclic AMP-dependent protein kinase, one was a cyclic AMP-independent enzyme, and the third was the cyclic AMP-dependent type II enzyme. The endogenous incorporation of phosphate was particularly high in the outer mitochondrial membrane, and occurred also in the mitoplast fraction. The incorporation in mitoplasts was to a double band of Mr 47 500, and in outer membranes to apparently heterogeneous material of comparatively low molecular weight.  相似文献   

20.
Previous observations of reduced [3H]cyclic AMP binding in postmortem brain regions from bipolar affective disorder subjects imply cyclic AMP-dependent protein kinase function may be altered in this illness. To test this hypothesis, basal and stimulated cyclic AMP-dependent protein kinase activity was determined in cytosolic and particulate fractions of postmortem brain from bipolar disorder patients and matched controls. Maximal enzyme activity was significantly higher (104%) in temporal cortex cytosolic fractions from bipolar disorder brain compared with matched controls. In temporal cortex particulate fractions and in the cytosolic and particulate fractions of other brain regions, smaller but statistically nonsignificant increments in maximal enzyme activity were detected. Basal cyclic AMP-dependent protein kinase activity was also significantly higher (40%) in temporal cortex cytosolic fractions of bipolar disorder brain compared with controls. Estimated EC50 values for cyclic AMP activation of this kinase were significantly lower (70 and 58%, respectively) in both cytosolic and particulate fractions of temporal cortex from bipolar disorder subjects compared with controls. These findings suggest that higher cyclic AMP-dependent protein kinase activity in bipolar disorder brain may be associated with a reduction of regulatory subunits of this enzyme, reflecting a possible adaptive response of this transducing enzyme to increased cyclic AMP signaling in this disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号