首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The profile of endogenous cytokinins in a genetic tumor line of tobacco, namely, Nicotiana glauca (Grah.) × Nicotiana langsdorffii (Weinm.), following 1 to 10 weeks of growth on solid medium was determined by radioimmunoassay. 3H-labeled cytokinins of high specific activity were added during tissue extraction to correct for the purification losses. Following subculture (of 4-week-old tissues when their cytokinin content is high) onto fresh medium the total cytokinin content continued to be high during the first week (1470 picomoles per gram fresh weight) when the tissue fresh weight remained essentially unchanged (lag phase). The cytokinin levels then declined by about half in 2- and 3-week-old tissues (626 and 675 picomoles per gram fresh weight, respectively), a period when rapid increase in tissue fresh weight was recorded. Increments of 840% and 2780% over initial fresh weight were obtained in 2- and 3-week-old cultures, respectively. The cytokinin content then increased to initial high levels in 4-week-old tissues (1384 picomoles per gram fresh weight) after which it gradually declined with tissue age. The lowest cytokinin levels (432 picomoles per gram fresh weight) were observed in 10-week-old tissues. Maximal tissue fresh weight (4030% increase over initial fresh weight) was recorded in 5-week-old cultures after which it decreased slowly to 77.5% of the highest tissue fresh weight in 10-week-old cultures. Zeatin appeared to be the dominant endogenous cytokinin in tissues of all ages. Other cytokinins quantified were dihydrozeatin, zeatin riboside, and dihydrozeatin riboside; the values may include contributions from aglucones derived from the hydrolysis of corresponding O-glucosides, since the entire basic fraction was treated with β-glucosidase before analysis. In addition the levels of isopentenyladenine, isopentenyladenosine, and the nucleotides of zeatin riboside, dihydrozeatin riboside, and isopentenyladenosine were also determined.  相似文献   

2.
Abstract. We used radioimmunoassay to compare the indole-3-acetic acid (IAA) concentration in cultured auxinautonomous tissues of Nicotiana tabacum L. cv.'Havana 425'that differ in growth rate, auxin requirement, capacity for organogenesis, and proximal cause of transformation. Lines HT37 and HB6 were crown-gall tissues transformed by the T37 and B6 strains of Agrobacterium tumefaciens . The tissue line 156AH, like the crown-gall lines, was auxin and cytokinin autotrophic, but arose spontaneously in culture and did not result from crown-gall transformation. The IAA content of the lines was variable and between 10−7 and 10−6 moles kg−1 fresh weight. This same range of IAA concentration was found in growing leaf tissues on the plant. IAA concentrations were 2–5 fold higher in HB6 than HT37 during the first few days of culture, and exogenous auxin induced the teratomatous HT37 tissue to grow in an unorganized fashion suggesting that auxin plays a role in regulating tumor morphology. The major difference between genetically transformed crown-gall tissues and the auxin-cytokinin autotrophic tissue line was that net IAA production continued to rise for several weeks of culture in tumor tissues but only for the first few days of culture in the autotrophic tissue.  相似文献   

3.
Nicotiana glutinosa compensated for a mutated tumor-morphology-shooty (tms) (auxin biosynthesis) locus of Agrobacterlum tumefaciens strain A66 and showed the same virulent tumor response to infection by strain A66 or the wild-type strain A6. Cloned cell lines transformed by strains A6 or A66 were fully hormone independent in culture and grew rapidly as friable, unorganized tissues on hormone-free growth medium. Growth of N. glutinosa tumor cells was inhibited by addition of α-naphthaleneacetic acid to the growth medium, and A6- and A66-transformed cells showed similar dose responses to this auxin. On the other hand, A6-transformed cells contained much higher levels of indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) than A66-transformed cells. Differences in IAA and ACC levels in N. glutinosa tumor lines were consistent with the expected activity of the tms locus and were quantitatively similar to results obtained previously with A6- and A66-transformed cells of Nicotiana tabacum, which does not compensate for mutated tms genes. Thus, compensation for mutated tms genes in N. glutinosa did not result from increased auxin accumulation and did not appear to be related to the capacity of this host for auxin biosynthesis.  相似文献   

4.
Hormonal control of tobacco crown gall tumor morphology   总被引:7,自引:2,他引:5       下载免费PDF全文
The endogenous levels of auxin and cytokinin in teratoma and unorganized tobacco (Nicotiana tabacum L. var Wisconsin #38) crown gall tumor tissues were determined. Teratoma tissues contain levels of auxin and cytokinin favorable for shoot formation, whereas unorganized tumors contain levels of auxin that suppress shoot formation. This conclusion is based upon the observation that when levels of auxin and cytokinin similar to those found in a teratoma were added to the growth medium of nontumorous tobacco tissue, shoot formation resulted; when levels similar to those found in unorganized tumors were added, the normal tissue grew as unorganized callus.  相似文献   

5.
From a variety of undifferentiated plant cell suspensions, 2,4-dichlorophenoxyacetic acid-dependent cells of sunflower (Helianthus annuus L. Spanners Allzweck) produced large quantities of ethylene. The maximum rate was about 1 nanomole × gram fresh weight−1 × hour−1 during the exponential growth phase. The action of various compounds known to interfere with ethylene formation in plant tissue was studied in sunflower cell suspensions. The influence on ethylene, 1-aminocyclopropanecarboxylic acid (ACC), and N-malonyl-ACC (MACC) levels suggested that the final steps in ethylene synthesis resemble those of other plant systems. This makes sunflower cells suitable for analyzing the effects of biologically active compounds on cellular ethylene biosynthesis. In particular, plant growth retardants of the norbornenodiazetine and triazole type inhibited ethylene production of sunflower cells. On the other hand, the ACC level was considerably elevated while that of MACC did not change significantly. It is assumed that the conversion of ACC to ethylene catalyzed by the ethylene-forming enzyme was influenced.  相似文献   

6.
Summary In contrast to other plant tumor tissues (crown gall and genetic tumors), that fromPicea glauca can be cultivated in vitro only in the presence of IAA. The auxin requirement for maximal growth of the tumor is appreciably higher (10–5 g/ml IAA) than that of normal Picea cultures (10–8 g/ml). A similar marked difference is also found in the ascorbic acid requirement, which is 10–5 g/ml for neoplastic, but 10–7 g/ml for normal tissue. The significance of these results for the characterisation and the in vitro growth of plant tumors is discussed.

Mit 4 Textabbildungen  相似文献   

7.
We have studied the mechanism of auxin autonomy in tobacco (Nicotiana tabacum L.) crowngall tissues transformed by the auxin-mutant (tms ) A66 strain of Agrobacterium tumefaciens. Normally, tms tobacco tumor tissues require the formation of shoots to exhibit auxin-independent growth in culture. We have isolated from tms tobacco cells several stable variants that are fully hormone-independent and grow rapidly as friable, unorganized tissues, thus mimicking the growth and morphology of tms + tobacco cells that produce high levels of auxin. However, none of the variants contained the high levels of auxin found in tms + tumor cells. The variants could be divided into two classes with respect to their response to applied auxin. The first class was highly sensitive to applied auxin: low concentrations (1 M) of -naphthaleneacetic acid (NAA) severely inhibited growth and markedly stimulated the accumulation of the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC). The second class of variants showed a low sensitivity to applied auxin: growth was promoted by concentrations of NAA up to 10 M, and growth inhibition and high ACC levels were observed only at high NAA concentrations (100 M). Unorganized variants with low auxin sensitivity were also isolated from a variant line with high auxin sensitivity. The isolation of tumor cells that exhibited the growth phenotype of tms + cells while retaining the low auxin content and low auxin sensitivity of tms cells indicates that full hormone autonomy, characteristic of wild-type crown-gall tumors, can be achieved by a mechanism that is independent of changes in the auxin physiology of the cells.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - MACC N-malonyl ACC - NAA naphthaleneacetic acid - tms tumor morphology shooty, the auxin biosynthesis locus of Agrobacterium Ti plasmids The authors thank Dr. Andrew Binns (University of Pennsylvania, Philadelphia, USA) for providing cell lines TA6-5 and TA66C3-78, and Mr. James Dacey for preparation of the composite photograph used in Fig. 1. Support for this work by the National Science Foundation (DMB84-17087) and the U.S. Department of Agriculture (86-CRCR-1-2150) is gratefully acknowledged.  相似文献   

8.
The biosynthesis of cytokinins was examined in pea (Pisum sativum L.) plant organs and carrot (Daucus carota L.) root tissues. When pea roots, stems, and leaves were grown separately for three weeks on a culture medium containing [8-14C]adenine without an exogenous supply of cytokinin and auxin, radioactive cytokinins were synthesized by each of these organs. Incubation of carrot root cambium and noncambium tissues for three days in a liquid culture medium containing [8-14C]adenine without cytokinin demonstrates that radioactive cytokinins were synthesized in the cambium but not in the noncambium tissue preparation. The radioactive cytokinins extracted from each of these tissues were analyzed by Sephadex LH-20 columns, reverse phase high pressure liquid chromatography, paper chromatography in various solvent systems, and paper electrophoresis. The main species of cytokinins detectable by these methods are N6-(Δ2-isopentyl_adenine-5′-monophosphate, 6-(4-hydroxy-3-methyl-2-butenyl-amino)-9-β-ribofuranosylpurine-5′- monophosphate, N6-(Δ2-isopentenyl)adenosine, 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-ribofuranosylpurine, N6-(Δ2-isopentenyl)adenine, and 6-(4-hydroxy-3-methyl-2-butenylamino)purine. On the basis of the amounts of cytokinin synthesized per gram fresh tissues, these results indicate that the root is the major site, but not the only site, of cytokinin biosynthesis. Furthermore, cambium and possibly all actively dividing tissues are responsible for the synthesis of this group of plant hormones.  相似文献   

9.
The dynamics of the endogenous IAA and cytokinin levels duringthe growth cycle of two soybean crown gall lines (green andpale) induced by a nop+ Agrobacterium tumefaciens C58 strain,were compared with an untransformed soybean callus line. In both transformed tumor lines maximum cytokinin (essentiallyglucosyl-trans-zeatin) levels were attained in the beginningof the exponential growth phase, followed by a drastic decreasejust before the stationary phase was reached. Quantitativelythe green tumor line showed a 2–3 times higher cytokinincontent compared with the pale line. In the untransformed soybeancallus hardly any significant levels of cytokinin could be detected. Analysis of endogenous IAA levels showed no difference betweenthe two tumor lines and the untransformed callus tissue, allshowing a low and constant level throughout the entire growthcycle. The relevance of the endogenous accumulation of phytohormonesin relation to the hormone autotrophic growth of transformedsoybean tissue is discussed. 3 Senior Research Associate Nationaal Fonds WetenschappelijkOnderzoek (N.F.W.O.). 4 Recipient of an Instituut voor Wetenschappelijk Onderzoekin Nijverheid en Landbouw (I.W.O.N.L.) grant.  相似文献   

10.
Bradyrhizobium japonicum mutants resistant to 5-methyltryptophan were isolated. Some of these mutants were found to accumulate indole-3-acetic acid (IAA) and tryptophan in culture. In greenhouse studies, nodules from control plants inoculated with wild-type bradyrhizobia contained 0.04, 0.10, and 0.58 μg of free, ester-linked, and peptidyl IAA g (fresh weight) of nodules−1, respectively. Nodules from plants inoculated with 5-methyltryptophan-resistant bradyrhizobia contained 0.94, 1.30, and 10.6 μg of free, ester-linked, and peptidyl IAA g (fresh weight) of nodules−1, respectively. This manyfold increase in nodule IAA content indicates that the Bradyrhizobium inoculum can have a considerable influence on the endogenous IAA level of the nodule. Further, these data imply that much of the IAA that accumulated in the high-IAA-containing nodules was of bacterial rather than plant origin. These high-IAA-producing 5-methyltryptophan-resistant bacteria were poor symbiotic nitrogen fixers. Plants inoculated with these bacteria had a lower nodule mass and fixed less nitrogen per gram of nodule than did plants inoculated with wild-type bacteria.  相似文献   

11.
Phospholipids were utilized as a membrane marker to test for transformation-induced alteration of cellular membranes of cultured crown gall cells of Vinca rosea L. Fully transformed cells contained less than half the amount of phospholipids (7.8 micrograms lipid P per gram fresh weight) of normal V. rosea cells (21.4 micrograms lipid P per gram fresh weight). The normal V. rosea callus cells were not significantly different (P > 0.05) in phospholipid content from partially transformed crown gall cells (20.7 micrograms lipid P per gram fresh weight). Stimulation to rapid growth of the partially transformed cells by adding higher concentrations of inorganic salts and auxin did not significantly alter their phospholipid content (23.1 micrograms lipid P per gram fresh weight). These findings suggest that the transformation process is directly responsible for an alteration of the cellular membranes and that the membrane alteration cannot be attributed to secondary effects associated with the rapid growth of these neoplastic cells.  相似文献   

12.
We analyzed Asparagus crown gall tissues transformed with A.tumefaciens C58 and C58C1 (pTiB6S3) and selected for hormoneautotrophic growth. No increased IAA levels were observed inthe Asparagus tumor lines notwithstanding the presence of allthree T-DNA onc genes. The endogenous cytokinin levels indicatethat Asparagus crown gall is dependent on enhanced zeatin ribosideequivalent levels for its growth. We conclude that phytohormone autotrophic growth of Asparaguscrown gall tissue seems only to be dependent upon an activegene 4, inducing enhanced cytokinin levels. Moreover, the presenceof an active gene 1 seems to be lethal as was indicated by theabsence of tryptophan-2-mono-oxygenase activity in transformedtissues and the toxicity of exogenously supplied indole-3-acetamide(IAM) or naphthalene-1-acetamide (NAM) as a substitute for anactive gene 1. (Received August 7, 1989; Accepted October 31, 1989)  相似文献   

13.
Three auxin analogs, 4−, 5−, and 6-azido-3-indoleacetic acid (4-N3-IAA, 5-N3-IAA, and 6-N3-IAA) have been synthesized for use as fluorescent photoaffinity labeling agents. The pKa values of these compounds (4-N3-IAA, 4.67; 5-N3-IAA, 4.65; 6-N3-IAA, 4.66; all ± 0.04) are experimentally indistinguishable from the pKa of 3-indoleacetic acid (IAA, 4.69 ± 0.04). The auxin activity of these IAA derivatives has been determined in several systems. In soybean, pea, and corn straight growth assays, all three analogs induce growth comparable to that caused by IAA. In the tobacco pith assay, all three analogs elicit a maximum increase in fresh weight at least 40 to 50% of that caused by IAA. Optimal growth is attained in the tobacco pith assay at slightly higher concentrations of 4-N3-IAA and 6-N3-IAA (30 micromolar) than required for IAA (10 micromolar); however, maximal growth is achieved at a slightly lower concentration of 5-N3-IAA (3 micromolar). The N3-IAAs, like IAA, are transported basipetally through tobacco pith tissue.  相似文献   

14.
The content of hormones, IAA, ABA, and cytokinins, as well as the rate of ethylene production in petunia (Petunia hybrida L.) pistils and their parts (stigma, style, and ovary) were determined over 8 h after compatible pollination. At the progamic phase of fertilization in the pollen–pistil system, the phytohormones were virtually absent from the ovary but were present in various proportions in stigma and style. The stigma was the main site of ethylene synthesis and contained 90% of ABA while the style contained 80% of cytokinins of their contents in the whole pollinated pistil. Stigma and style did not differ in their IAA levels. The interaction of the male gametophyte with the stigmatic tissues was accompanied by a threefold increase in the ethylene production and a 1.5-fold increase in the IAA content in the pollen–pistil system within 0–4 h. Growth of pollen tubes in the stylar tissues (4–8 h) was accompanied by a further increase in IAA content and a decrease in the ethylene production by stigmatic tissues, as well as by a decrease in the cytokinin content in the stylar tissues. The ethylene/auxin status of the stigma may be suggested to control the processes of adhesion, hydration, and germination of pollen grains during pollination, while the auxin/cytokinin status of the style controls the pollen tube growth.  相似文献   

15.
Logarithmic growth rates (either fresh or dry weight basis) of tobacco callus tissues grown on 10−4 to 10−1 μm cytokinin are increased if gibberellic acid (10−3-2 μm) is incorporated into the medium. At higher (1-10 μm) cytokinin concentrations gibberellic acid has little effect on growth rate but extends the duration of logarithmic growth. The gibberellic acid effect is noticeable only after one weight doubling, is dependent on concentration, and occurs when either glucose or sucrose is used as carbon source. The gibberellic acid response includes a decrease in percentage of dry weight relative to control tissues. The maximum dry weight yield, although achieved sooner than controls, does not differ appreciably from yields of tissue not treated with gibberellic acid.  相似文献   

16.
Lipetz , Jacques , and Arthur W. Galston . (Yale U., New Haven.) Indole acetic acid oxidase and peroxidase activities in normal and crown gall tissue cultures of Parthenocissus tricuspidata. Amer. Jour. Bot. 46(3) : 193-196. Illus. 1959.—Normal and crown gall cells of P. tricuspidata grown in pure culture were examined for IAA oxidase and peroxidase activities. No IAA oxidase activity could be demonstrated in dialyzed or undialyzed homogenates of either tissue; however, crown gall tissue, but not normal tissue, was found to produce an extracellular IAA oxidase which required Mn++ and DCP as co-factors. Normal tissue, but not crown gall tissue was found to contain high levels of substances which spared IAA from destruction by a pea IAA oxidase preparation. Peroxidase activity was found to be higher in normal than in crown gall homogenates, but crown gall tissue released considerably more peroxidase into the external medium. The differences in the auxin requirements and growth rate between normal and crown gall cells appear not to be easily explicable in terms of differential auxin destruction.  相似文献   

17.
Stem segments containing a single node and quiescent lateral bud (tiller) were excised from the bases of oat shoots (cv. `Victory') and used to study the effects of plant hormones on release of lateral buds and development of adventitious root primordia. Kinetin (10−5 and 10−6 molar) stimulates development of tillers and inhibits development of root primordia, whereas indoleacetic acid (IAA) (10−5 and 10−6 molar) causes the reverse effects. Abscisic acid strongly inhibits kinetin-induced tiller bud release and elon-gation and IAA-induced adventitious root development. IAA, in combination with kinetin, also inhibits kinetin-induced bud prophyll (outermost leaf of the axillary bud) elongation. The IAA oxidase cofactor p-coumaric acid stimulates lateral bud release; the auxin transport inhibitor 2,3,5-triiodo-benzoic acid and the antiauxin α (p-chlorophenoxy)-isobutyric acid inhibit IAA-induced adventitious root formation. Gibberellic acid is synergistic with kinetin in the elongation of the bud prophyll. In intact oat plants, tiller release is induced by shoot decapitation, geostimulation, or the emergence of the inflorescence. Results shown support the apical dominance theory, namely, that the cytokinin to auxin ratio plays a decisive role in determining whether tillers are released or adventitious roots develop. They also indicate that abscisic acid and possibly gibberellin may act as modulator hormones in this system.  相似文献   

18.
Plant growth and development are tightly regulated by both plant growth substances and environmental factors such as temperature. Taking into account the above, it was reasonable to point out that indole-3-acetic acid (IAA), the most abundant type of auxin in plants, could be involved in temperature- dependent growth of plant cells. We have recently shown that growth of maize coleoptile segments in the presence of auxin (IAA) and fusicoccin (FC) shows the maximum value in the range 30–35°C and 35–40°C, respectively. Furthermore, simultaneous measurements of growth and external medium pH indicated that FC at stressful temperatures was not only much more active in the stimulation of growth, but was also more effective in acidifying the external medium than IAA. The aim of this addendum is to determine interrelations between the action of IAA and FC (applied together with IAA) on growth and medium pH of maize coleoptile segments incubated at high temperature (40°C), which was optimal for FC but not for IAA.Key words: auxin, fusicoccin, coleoptile segments, elongation growth, medium pHA well studied aspect of auxin action especially in maize coleoptile, is its effect on cell elongation, proton extrusion and membrane potential.17 It is now generally agreed that indole-3-acetic acid (IAA), as the principal regulator of plant elongation growth, causes (i) acceleration of elongation growth as compared to endogenous growth, (ii) enhancement of proton extrusion as compared to auxin—free medium, and (iii) transient depolarization followed by a slow hyperpolarization of membrane potential. According to the “acid growth theory” of elongation growth,811 auxin induced cell wall acidification provides favorable conditions for cell wall loosening, a requirement for cell elongation. At least in maize coleoptile segments, auxin induced cell wall acidification is mediated by increased activity and/or amount of the PM H+-ATPase.11,12 In the case of fusicoccin, which mimics the effect of auxin in many respects,13 it was shown that FC-binding site arises from interaction of the 14-3-3 protein dimmer with the C-terminal autoinhibitory domain of the H+-ATPase and that FC stabilizes this complex.1418 It should be pointed out that in spite of abundant literature on the mechanism through which IAA or FC control growth of grass coleoptiles, little is know how these substances work at extreme temperatures. Over the past decade, the involvement of 14-3-3 proteins in plant stress responses has often been suggested.19 For example, work by Chelysheva et al.,20 and Babakov et al.,21 demonstrated that under low temperature and high osmolarity conditions, 14-3-3 proteins interact with the C-terminal autoinhibitory domain of the PM H+-ATPase activating the proton pump that play a key role in stress responses in higher plants. We have recently shown22 that FC at 40°C induced maximal growth whereas growth observed at the same temperature in the presence of IAA was reduced by 33% compared to the maximal value at 30°C. It was also found22 that at 40°C the kinetics of the pH change differed significantly for both growth substances; the segments treated with IAA at 40°C were virtually not able to acidify the external medium, whereas FC at this temperature caused practically maximal acidification. In this addendum we have shown that application of FC together with IAA conteracted the inhibitory effect of high temperature (40°C) on IAA-induced growth and proton extrusion in maize coleoptile segments (Fig. 1). For example, the total IAA-induced elongation growth of coleoptile segments at 40°C was 1438.1 ± 134.5 µm cm−1 (mean ± SE, n = 11) while elongation of 2747.4 ± 269.7 µm cm−1 (mean ± SE, n = 11) was observed in IAA applied together with FC (Fig. 1A). The data in Figure 1B indicate that coleoptile segments incubated at 40°C (over 2 h), without growth substances (control) characteristically changed the pH of the medium: usually within the first 30–45 min an increase of pH (by ca. 0.5 pH unit) was observed, followed by a slow decrease of pH. When IAA or FC was added (after 2 h of segment''s incubation in control medium), an additional decrease of pH was observed. As can be seen in Figure 1B, FC added at 40°C was much more effective in acidification of the medium, as compared to IAA. For FC, 5h after its addition, the pH of the incubation medium dropped to pH 4.2, whereas for IAA the pH was only 5.4. However, addition of IAA together with FC at 40°C dropped medium pH approximately to the same value as was observed in the presence of FC only.Open in a separate windowFigure 1Effect of high temperature (40°C) on growth (A) and medium pH (B) of maize coleoptile segments incubated in the presence of IAA (10 µM) and FC (1 µM). The growth of a stack of 21 segments, expressed as elongation (µm cm−1), was measured simultaneously with medium pH at 40°C. After preincubation (over 2 h) of the coleoptile segments in control medium, IAA and FC was added (arrow). Values are means of 11 independent experiments. Bars indicate ± SE. In the case of medium pH SE did not exceed 8%.In conclusion, the results presented in this addendum provide further evidence that FC on the receptor level is much more effective than IAA.  相似文献   

19.
An alternative to the Cholodny-Went, auxin-transport hypothesis of gravitropic stem bending was proposed as early as 1958, suggesting that gravistimulation induces changes in sensitivity to auxin, accounting for differential growth and bending. To test the sensitivity hypothesis, we immersed marked, decapitated sunflower (Helianthus annuus L.) hypocotyl sections in buffered auxin solutions over a wide concentration range (0, 10−8 to 10−2 molar IAA), photographed them at half-hour intervals, analyzed the negatives with a digitizer/computer, and evaluated surface-length changes in terms of Michaelis-Menten enzyme kinetics. Bending decreases with increasing auxin concentration; above about 10−4 molar IAA the hypocotyls bend down; increasing auxin inhibits elongation growth of lower surfaces (which is high at zero or relatively low auxin levels) but promotes upper-surface growth (which is low at low auxin levels). Thus, lower surfaces have a greater Km sensitivity to applied auxin than upper surfaces. At optimum auxin levels (maximum growth), growth of bottom surfaces exceeds that of top surfaces, so bottom tissues have a greater Vmax sensitivity. Vmax sensitivity of vertical controls is slightly lower than it is for either horizontal surface; Km sensitivity is intermediate. Clearly, gravistimulation leads to significant changes in tissue sensitivity to applied auxin. Perhaps these changes are also important in normal gravitropism.  相似文献   

20.
Waltraud Rücker 《Protoplasma》1982,113(2):103-109
Summary The influence of a morphactin, chlorflurenol-methylester (CFM), on the growth, the morphogenesis and the isoelectric peroxidase pattern was investigated in both callus cultures (two different tissue culture strains) and multiple bud cultures ofNicotiana tabacum var.Wisconsin. CFM (range of concentration between 10–6g/ml and 10–4g/ml) was applied singly, or in combination with a cytokinin, benzylaminopurine (BAP), or with an auxin, indoleacetic acid (IAA), or with IAA plus BAP.In general, the callus growth was inhibited under the influence of CFM. In some of the experiments carried out in hormone-free media, growth stimulation was observed. Even minimal inhibition or stimulation of the callus growth was always accompanied by characteristic changes in the peroxidase patterns.The following results show the influence of the morphactin CFM on cytokinin effects (endogenous cytokinin or equally the exogenously applied cytokinin, BAP). (1) In the multiple bud cultures, BAP and CFM (both substances combined with IAA) similarly caused inhibition of root formation and stimulation of bud formation. The bands in the peroxidase patterns, characteristic of cytokinin action, were accentuated also of those bud cultures which had been treated with BAP or with CFM. (2) In the callus cultures, the cytokinin characteristics appeared under CFM influence in the peroxidase patterns of one of the tissue culture strains only when CFM was applied in combination with BAP and not in combinations of CFM with IAA.The observed morphactin-induced increase in the cytokinin effects could occur via changes in the hormone level of the tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号