首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We provide evidence that in vitro protein cross-linking can be accomplished in three concerted steps: (i) a change in protein conformation; (ii) formation of interchain disulfide bonds; and (iii) formation of interchain isopeptide cross-links. Oxidative refolding and thermal unfolding of ribonuclease A, lysozyme, and protein disulfide isomerase led to the formation of cross-linked dimers/oligomers as revealed by SDS-polyacrylamide gel electrophoresis. Chemical modification of free amino groups in these proteins or unfolding at pH < 7.0 resulted in a loss of interchain isopeptide cross-linking without affecting interchain disulfide bond cross-linking. Furthermore, preformed interchain disulfide bonds were pivotal for promoting subsequent interchain isopeptide cross-links; no dimers/oligomers were detected when the refolding and unfolding solution contained the reducing agent dithiothreitol. Similarly, the Cys326Ser point mutation in protein disulfide isomerase abrogated its ability to cross-link into homodimers. Heterogeneous proteins become cross-linked following the formation of heteromolecular interchain disulfide bonds during thermal unfolding of a mixture of of ribonuclease A and lysozyme. The absence of glutathione and glutathione disulfide during the unfolding process attenuated both the interchain disulfide bond cross-links and interchain isopeptide cross-links. No dimers/oligomers were detected when the thermal unfolding temperature was lower than the midpoint of thermal denaturation temperature.  相似文献   

2.
Peripherin/Rds is a tetraspanning membrane protein that has been implicated in photoreceptor outer segment morphogenesis and inherited retinal degenerative diseases. Together with the structurally related protein, Rom-1, it forms a complex along the rims of rod and cone disc membranes. We have compared the oligomeric structure of these proteins from nonreduced and dithiothreitol reduced membranes by velocity sedimentation, SDS-gel electrophoresis, immunoaffinity chromatography, and chemical cross-linking. Under reducing conditions peripherin/Rds and Rom-1 existed as homomeric and heteromeric core complexes devoid of intermolecular disulfide bonds. Under nonreducing conditions core complexes associated through intermolecular disulfide bonds to form oligomers. One intermediate-size oligomer contained monomers and disulfide-linked dimers of peripherin/Rds and Rom-1, while larger oligomers consisted only of disulfide-linked peripherin/Rds dimers when analyzed on nonreducing SDS gels. Consistent with this result, disc membranes contained twice as much peripherin/Rds as Rom-1. Peripherin/Rds individually expressed in COS-1 cells also formed disulfide-linked oligomers bridged through Cys-150 residues, whereas Rom-1 showed little tendency to form oligomers. These results indicate that peripherin/Rds and Rom-1 associate noncovalently to form multisubunit core complexes. Peripherin/Rds containing core complexes interact through specific intermolecular disulfide bonds to form oligomers which may play a crucial role in photoreceptor disc morphogenesis and retinal degenerative diseases.  相似文献   

3.
McBryant SJ  Peersen OB 《Biochemistry》2004,43(32):10592-10599
The self-association properties of the yeast nucleosome assembly protein 1 (yNAP1) have been investigated using biochemical and biophysical methods. Protein cross-linking and calibrated gel filtration chromatography of yNAP1 indicate the protein exists as a complex mixture of species at physiologic ionic strength (75-150 mM). Sedimentation velocity reveals a distribution of species of 4.5-12 Svedbergs (S) over a 50-fold range of concentrations. The solution-state complexity is reduced at higher ionic strength, allowing for examination of the fundamental oligomer. Sedimentation equilibrium of a homogeneous 4.5 S population at 500 mM sodium chloride reveals these species to be yNAP1 dimers. These dimers self-associate to form higher order oligomers at more moderate ionic strength. Titration of guanidine hydrochloride converts the higher order oligomers to the homogeneous 4.5 S dimer and then converts the 4.5 S dimers to 2.5 S monomers. Circular dichroism shows that guanidine-mediated dissociation of higher order oligomers into yNAP1 dimers is accompanied by only slight changes in secondary structure. Dissociation of the dimer requires a nearly complete denaturation event.  相似文献   

4.
Native oligomers of three Pseudomonas aeruginosa outer membrane porin proteins and one Escherichia coli porin were demonstrated by using a chemical cross-linking technique. P. aeruginosa protein F, the major constitutive outer membrane porin, was cross-linked to dimers in outer membrane and whole-cell cross-linking experiments. Purified preparations of P. aeruginosa proteins F, D1 (glucose induced), and P (phosphate starvation induced) and E. coli protein PhoE (Ic) were also cross-linked to reveal dimers and trimers upon two-dimensional sodium dodecyl sulfate-polyacrylamide electrophoretic analysis. Cross-linking of protein F was abolished by pretreatment of the protein with sodium dodecyl sulfate, indicating that the cross-linked products were due to native associations in the outer membrane.  相似文献   

5.
Biglycan and decorin are two closely related proteoglycans whose protein cores contain leucine-rich repeats flanked by disulfides. We have previously shown that decorin is dimeric both in solution and in crystal structures. In this study we determined whether biglycan dimerizes and investigated the role of dimerization in the folding and stability of these proteoglycans. We used light scattering to show that biglycan is dimeric in solution and solved the crystal structure of the glycoprotein core of biglycan at 3.40-angstroms resolution. This structure reveals that biglycan dimerizes in the same way as decorin, i.e. by apposition of the concave inner surfaces of the leucine-rich repeat domains. We demonstrate that low concentrations of guanidinium chloride denature biglycan and decorin but that the denaturation is completely reversible following removal of the guanidinium chloride, as assessed by circular dichroism spectroscopy. Furthermore, the rate of refolding is dependent on protein concentration, demonstrating that it is not a unimolecular process. Upon heating, decorin shows a single structural transition at a T(m) of 45-46 degrees C but refolds completely upon cooling to 25 degrees C. This property of decorin enabled us to show both by calorimetry and light scattering that dimer to monomer transition coincided with unfolding and monomer to dimer transition coincided with refolding; thus these processes are inextricably linked. We further conclude that folded monomeric biglycan or decorin cannot exist in solution. This implies novel interrelated functions for the parallel beta sheet faces of these leucine-rich repeat proteoglycans, including dimerization and stabilization of protein folding.  相似文献   

6.
The Nef protein of human immunodeficiency virus type I (HIV-1) is an important determinant for the onset of AIDS disease. The self-association properties of HIV-1 Nef are analyzed by chemical cross-linking, dynamic light scattering, equilibrium analytical ultracentrifugation, and NMR spectroscopy. The experimental data show that the HIV-1 Nef core domain forms stable homo-dimers and trimers in solution, but not higher oligomers. These Nef homomers are not covalently linked by disulfide bridges, and the equilibrium between these forms is dependent on the Nef concentration. We further provide the molecular basis for the Nef core dimers and trimers obtained by analysis of crystallographic models. Oligomerization of biological polypeptides is a common tool used to trigger events in cellular signaling and endocytosis, both of which are targeted by Nef. The quaternary structure of Nef may be of physiological importance and may help to connect its cellular targets or to increase affinity of the viral molecule for its ligands. The herein described models for Nef dimers and trimers will allow further mutational studies to elucidate their role in vivo. These results provide novel insight into the structural and functional relationships of this important viral protein. Moreover, the oligomer interface may represent a novel target for the design of antiviral agents.  相似文献   

7.
When the low density lipoprotein (LDL) receptor was solubilized from bovine adrenal cortex membranes and subjected to electrophoresis in the absence of reducing agents, a disulfide-bonded dimeric species was demonstrated. Formation of these covalent bonds was blocked when the tissue was homogenized in the presence of sulfhydryl alkylating agents, indicating that the native receptor was self-associated noncovalently and that the disulfide bond formation occurred only after homogenization. The disulfide-linked dimers were disrupted and the receptor was restored to a monomeric form when inside-out adrenal vesicles were treated with trypsin, suggesting that the disulfide bond formation involved the 50-amino acid cytoplasmic domain of the receptor. When the receptor was solubilized from bovine adrenal cortex membranes and then purified by ion exchange and affinity chromatography, it could be covalently coupled into dimers and trimers in the presence of bivalent cross-linking agents. Receptor dimers could also be demonstrated by chemical cross-linking of intact cells that were transfected with an expressible cDNA encoding the normal human LDL receptor. Dimer formation was markedly reduced in transfected cells expressing mutated cDNAs that had premature termination codons at positions 792, 807, and 812, which produced shortened receptors that retained 2, 17, and 22 of the original 50 amino acids of the cytoplasmic domain, respectively. The first two mutant receptors, which did not form oligomers, did not enter coated pits and were not rapidly internalized by cells. However, the mutant receptor that terminates at position 812 was internalized normally even though oligomer formation was greatly reduced. Moreover, a mutant receptor with a cysteine substituted for a tyrosine at position 807, which internalized very slowly, showed a normal susceptibility to chemical cross-linking. Deletion of external domains of the LDL receptor, including the epidermal growth factor homology region and the O-linked sugar domain, did not alter susceptibility to chemical cross-linking. We conclude that the cytoplasmic domain of the LDL receptor is responsible both for self-association into oligomers and for clustering in coated pits, but the available data do not establish a causal connection between these two events.  相似文献   

8.
Evidence suggests that amyloid β-protein (Aβ) oligomers may be seminal pathogenic agents in Alzheimer's disease (AD). If so, developing oligomer-targeted therapeutics requires an understanding of oligomer structure. This has been difficult due to the instability of these non-covalently associated Aβ assemblies. We previously used rapid, zero-length, in situ chemical cross-linking to stabilize oligomers of Aβ40. These enabled us to isolate pure, stable populations of dimers, trimers, and tetramers and to determine their structure-activity relationships. However, equivalent methods applied to Aβ42 did not produce stable oligomers. We report here that the use of an Aβ42 homologue, [F10, Y42]Aβ42, coupled with sequential denaturation/dissociation and gel electrophoresis procedures, provides the means to produce highly pure, stable populations of oligomers of sizes ranging from dimer through dodecamer that are suitable for structure-activity relationship determination.  相似文献   

9.
Decorin binds near the C terminus of type I collagen   总被引:5,自引:0,他引:5  
Decorin belongs to a family of small leucine-rich proteoglycans that are directly involved in the control of matrix organization and cell growth. Genetic evidence indicates that decorin is required for the proper assembly of collagenous matrices. Here, we sought to establish the precise binding site of decorin on type I collagen. Using rotary shadowing electron microscopy and photoaffinity labeling, we mapped the binding site of decorin protein core to a narrow region near the C terminus of type I collagen. This region is located within the cyanogen bromide peptide fragment alpha1(I) CB6 and is approximately 25 nm from the C terminus, in a zone that coincides with the c(1) band of the collagen fibril d-period. This location is very close to one of the major intermolecular cross-linking sites of collagen heterotrimers. Thus, decorin protein core possesses a unique binding specificity that could potentially regulate collagen fibril stability.  相似文献   

10.
Meprin A secreted from kidney and intestinal epithelial cells is capable of cleaving growth factors, extracellular matrix proteins, and biologically active peptides. The secreted form of meprin A is a homo-oligomer composed of alpha subunits, a multidomain protease of 582 amino acids coded for near the major histocompatibility complex of the mouse and human genome. Analyses of the recombinant homo-oligomeric form of mouse meprin A by gel filtration, nondenaturing gel electrophoresis, and cross-linking (with disuccinimidyl suberate or N-(4-azido-2,3,5,6-tetraflourobenzyl)-3-maleimidylpropionamide) indicate that the secreted enzyme forms high molecular weight multimers, with a predominance of decamers. The multimers are composed of disulfide-linked dimers attached noncovalently by interactions involving the meprin, A5 protein, receptor protein-tyrosine phosphatase mu (MAM) domain. The active protomer is the noncovalently linked dimer. Linkage of active protomers by disulfide-bonds results in an oligomer of approximately 900 kDa, which is unique among proteases and distinguishes meprin A as the largest known secreted protease. Electron microscopy revealed that the protein was present in two states, a crescent-shaped structure and a closed ring. It is concluded from this and other data that the covalent attachment of the protomers enables noncovalent associations of the native enzyme to form higher oligomers that are critical for hydrolysis of protein substrates.  相似文献   

11.
Decorin is not only a regulator of matrix assembly but also a key signaling molecule that modulates the activity of tyrosine kinase receptors such as the epidermal growth factor receptor (EGFR). Decorin evokes protracted internalization of the EGFR via a caveolar-mediated endocytosis, which leads to EGFR degradation and attenuation of its signaling pathway. In this study, we tested if systemic delivery of decorin protein core would affect the biology of an orthotopic squamous carcinoma xenograft. After tumor engraftment, the animals were given intraperitoneal injections of either vehicle or decorin protein core (2.5-10 mg kg(-1)) every 2 days for 18-38 days. This regimen caused a significant and dose-dependent inhibition of the tumor xenograft growth, with a concurrent decrease in mitotic index and a significant increase in apoptosis. Positron emission tomography showed that the metabolic activity of the tumor xenografts was significantly reduced by decorin treatment. Decorin protein core specifically targeted the tumor cells enriched in EGFR and caused a significant down-regulation of EGFR and attenuation of its activity. In vitro studies showed that the uptake of decorin by the A431 cells was rapid and caused a protracted down-regulation of the EGFR to levels similar to those observed in the tumor xenografts. Furthermore, decorin induced apoptosis via activation of caspase-3. This could represent an additional mechanism whereby decorin might influence cell growth and survival.  相似文献   

12.
V Jackson 《Cell》1978,15(3):945-954
A new procedure is described which allows selective reversal of formaldehyde cross-linking in both histone-histone and histone-DNA of nuclei isolated from calf thymus. All ten possible dimers of the four non-H1 histones, H3, H2B, H2A and H4, are observed, the major dimers being H3-H3, H3-H2A, H2B-H2A, H2a-H2A and two separate dimers of H2B-H4. Although oligomers of the non-H1 histones are formed by prolonged treatment with this reagent, 50% of the histones continue to remain resistant to cross-linking with each other. For those histones which cross-linking with each other. For those histones which cross-link, the site of cross-linking within the molecules is located in the "core" (trysin-resistant) regionand therfore indicates proximities for these molecules within the nucleosome. The core region also cross-links to DNA, indicating intimate interactions between this region in all the non-H1 histones with DNA.  相似文献   

13.
Corneal cross-linking using riboflavin and ultraviolet-A (RFUVA) is a clinical treatment targeting the stroma in progressive keratoconus. The stroma contains keratocan, lumican, mimecan, and decorin, core proteins of major proteoglycans (PGs) that bind collagen fibrils, playing important roles in stromal transparency. Here, a model reaction system using purified, non-glycosylated PG core proteins in solution in vitro has been compared with reactions inside an intact cornea, ex vivo, revealing effects of RFUVA on interactions between PGs and collagen cross-linking. Irradiation with UVA and riboflavin cross-links collagen α and β chains into larger polymers. In addition, RFUVA cross-links PG core proteins, forming higher molecular weight polymers. When collagen type I is mixed with individual purified, non-glycosylated PG core proteins in solution in vitro and subjected to RFUVA, both keratocan and lumican strongly inhibit collagen cross-linking. However, mimecan and decorin do not inhibit but instead form cross-links with collagen, forming new high molecular weight polymers. In contrast, corneal glycosaminoglycans, keratan sulfate and chondroitin sulfate, in isolation from their core proteins, are not cross-linked by RFUVA and do not form cross-links with collagen. Significantly, when RFUVA is conducted on intact corneas ex vivo, both keratocan and lumican, in their natively glycosylated form, do form cross-links with collagen. Thus, RFUVA causes cross-linking of collagen molecules among themselves and PG core proteins among themselves, together with limited linkages between collagen and keratocan, lumican, mimecan, and decorin. RFUVA as a diagnostic tool reveals that keratocan and lumican core proteins interact with collagen very differently than do mimecan and decorin.  相似文献   

14.
The conformational changes and aggregation process of beta-lactoglobulin (beta-LG) subjected to gamma irradiation are presented. Beta-LG in solutions of different protein concentrations (3 and 10 mg/ml) and in solid state with different water activities (a(w)) (0.22; 0.53; 0.74) was irradiated using a Cobalt-60 radiation source at dose level of 1-50 kGy. Small-angle X-ray scattering (SAXS) was used to study the conformational changes of beta-LG due to the irradiation treatment. The irradiated protein was also examined by high performance size exclusion chromatography (HPSEC) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing and reducing conditions and fluorescence. SAXS analysis showed that the structural conformation of irradiated beta-LG in solid state at different a(w) and dose level was essentially the same as the nonirradiated beta-LG. The scattering data also showed that the irradiation of beta-LG in solution promoted the formation of oligomers. Interestingly, from the data analysis and model building, it could be shown that the formed oligomers are linear molecules, built by linear combinations of beta-LG dimers (tetramers, hexamers, etc). The formation of oligomers was also evidenced by SDS-PAGE analysis and HPSEC chromatograms, in which products with higher molecular mass than that of the dimeric beta-LG were detected. Formation of intermolecular cross-linking between tyrosyl radicals are proposed to be at least partially responsible for this occurrence. From the results it could be shown that the samples irradiated in solution presented some conformational changes under gamma irradiation, resulting in well ordered oligomers and aggregates formed by cross-linking of beta-LG dimers subunits, while the samples irradiated in the solid state were not modified.  相似文献   

15.
Chemical cross-linking of native myosin in 0.6 M NaCl with p-phenylene bis maleimide or glutaraldehyde resulted in rapid formation of myosin heavy chain dimers and their oligomers. Monomers and odd-number oligomers disappeared after the prolonged treatment with these reagents. When denatured myosin was cross-linking, myosin heavy chain monomers and odd-number oligomers remained after the prolonged treatment, although dimers and their even-number oligomers were abundant. For high molecular weight markers, myosin heavy chain oligomers formed from denatured myosin with glutaraldehyde or p-phenylene bis maleimide are recommended.  相似文献   

16.
Purified variant specific antigens of Trypanosoma brucei were shown to exist in solution as dimers, and occasionally as higher oligomers, as judged by gel filtration and by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis after treatment with bifunctional cross-linking reagents.  相似文献   

17.
Caldesmon is a major F-actin binding protein of smooth muscle that has been implicated as a component of a thin filament regulatory system. Chicken gizzard caldesmon consists of polypeptides of Mr-135,000 and 140,000 which are closely related as determined by analysis of cyanogen bromide cleavage fragments. It is a highly extended flexible protein having a contour length of about 146 nm and a secondary structure composed primarily of random coil. Physical and chemical cross-linking data suggest that caldesmon exists as a monomer in solution. The cysteine content of caldesmon was determined to be 2 residues/polypeptide. Remarkably, in solution it readily undergoes sulfhydryl oxidation to form either an internal disulfide bridge in the protein or cross-links between individual polypeptides to form dimers, trimers, tetramers, etc. The internally cross-linked species have a smaller Stokes radius than the reduced molecules, indicating that the cross-link "trapped" the molecule in a compact conformation. Oxidized protein containing caldesmon oligomers is a potent F-actin bundling protein. Complete reduction of caldesmon abolishes the F-actin bundling activity. Since a vast excess of reducing agent is required to convert caldesmon from an oxidized to reduced state, it may exist in either state in vivo. Thus, the ability of caldesmon to undergo reversible sulfhydryl cross-linking, and thereby reversible F-actin cross-linking, may be of physiological significance.  相似文献   

18.
FlgM is an anti-sigma factor of the flagellar-specific sigma (sigma) subunit of RNA polymerase in Bacillus subtilis, and it is responsible of the coupling of late flagellar gene expression to the completion of the hook-basal body structure. We have overproduced the protein in soluble form and characterized it. FlgM forms dimers as shown by gel exclusion chromatography and native polyacrylamide gel electrophoresis and interacts in vitro with the cognate sigmaD factor. The FlgM.sigmaD complex is a stable heterodimer as demonstrated by gel exclusion chromatography, chemical cross-linking, native polyacrylamide gel electrophoresis, and isoelectric focusing. sigmaD belongs to the group of sigma factors able to bind to the promoter sequence even in the absence of core RNA polymerase. The FlgM.sigmaD complex gave a shift in a DNA mobility shift assay with a probe containing a sigmaD-dependent promoter sequence. Limited proteolysis studies indicate the presence of two structural motifs, corresponding to the N- and C-terminal regions, respectively.  相似文献   

19.
Conformational investigations have been undertaken on oligomers (dimers, tetramers, hexamers) of five closely related oxetane-based dipeptide isosteres. All the oligomers were subjected to a range of studies by NMR, FT-IR and CD spectroscopy. The oligomers derived from methyl 2,4-anhydro-5-azido-3-O-tert-butyldimethylsilyl-5-deoxy-L-rhamnonate 'monomer' all exhibited evidence of ordered conformations in chloroform and 2,2,2-trifluoroethanol (TFE) solution. 5-Acetamido and N-methylamide derivatives of the L-rhamnonate 'monomer', along with a 'dimer' lacking silyl protection at C-3, were synthesized to ascertain the role of intramolecular interactions. This led to the conclusion that, for the L-rhamnonate oligomers, steric interactions govern the conformational preference observed. The equivalent silyl-protected D-lyxonate oligomers gave ordered CD spectra in TFE solution, but NMR and FT-IR spectroscopy in chloroform solution suggested an irregular, non-hydrogen bonded system. The remaining silyl-protected 6-deoxy-L-altronate, 6-deoxy-D-gulonate and D-fuconate oligomers appear to be characterized by their lack of ordered conformation in TFE and chloroform solution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号