首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of regional myocardial ischemia complicated by ventricular fibrillation (VF) on the ultrastructure of subendocardial (SE) and false tendon (FT) Purkinje cells (PC) was studied in anesthetized dogs. In all cases of early ischemia with spontaneous VF, many PC exhibited ultrastructural damage as early as 2 min after the onset of ischemia. The changes noted were: intercalated disk dissociation, sarcoplasmic reticulum vacuolization (SRV), supercontraction, mitochondrial swelling, and sarcolemmal defects (rigor cells). The appearance of at least some rigor PC seemed to precede spontaneous VF, since these cells were absent from the conduction systems in control hearts in which VF was induced by electric shock or reperfusion, from hearts from sham-operated dogs, or from hearts subjected to longer periods of uncomplicated myocardial infarction. These observations indicate that alterations in SE and FTPC may play a role in the pathogenesis of sudden death due to early myocardial ischemia. The mechanism of this rapid damage of PC remains obscure.  相似文献   

2.
Protein kinase C (PKC), p38 MAP kinase, and mitogen-activated protein kinase-activated kinases 2 and 3 (MAPKAPK2 and MAPKAPK3) have been implicated in ischemic preconditioning (PC) of the heart to reduce damage following a myocardial infarct. This study examined whether extracellular signal-regulated kinase (Erk) 1, p70 ribosomal S6 kinase (p70 S6K), casein kinase 2 (CK2), and other hsp27 kinases are also activated by PC, and if they are required for protection in rabbit hearts. CK2 and hsp27 kinase activities declined during global ischemia in control hearts, whereas PC with 5 min ischemia and 10 min reperfusion increased their activities during global ischemia. Resource Q chromatography resolved two distinct peaks of hsp27 phosphotransferase activities; the first peak (at 0.36 M NaCl) appeared to correspond to the 55-kDa MAPKAPK2. Erk1 activity was elevated in both control and PC hearts after post-ischemic reperfusion, but no change was observed in p70 S6K activity. Infarct size (measured by triphenyltetrazolium staining) in isolated rabbit hearts subjected to 30 min regional ischemia and 2 h reperfusion was 31.0+/-2.6% of the risk zone in controls and was 10.3+/-2.2% in PC hearts (p<0.001). Neither the CK2 inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) nor the Mek1/2 inhibitor PD98059 infused during ischemia blocked protection by PC. The activation of CK2 and Erk1 in ischemic preconditioned hearts appear to be epiphenomena and not required for the reduction of infarction from myocardial ischemia.  相似文献   

3.
Iron and copper play major roles in biological systems, catalyzing free radical production and consequently causing damage. The relatively high levels of these metals, which are mobilized into the coronary flow following prolonged ischemia, have been incriminated as key players in reperfusion injury to the heart. In the present communication we investigated other roles of iron - providing protection to the ischemic heart via preconditioning (PC). PC was accomplished by subjecting isolated rat hearts to three episodes of 2 min ischemia separated by 3 min of reperfusion. Prolonged ischemia followed the PC phase. PC hearts (group I) were compared to hearts subjected to normal perfusion (group II, no ischemia) and to ischemia without PC (group III). Group I showed a marked improvement in the recovery of hemodynamic function vs. group III. Biochemical parameters further substantiated the PC protection provided to group I against prolonged ischemia. Correspondingly, group I presented markedly lower re-distribution and mobilization of iron and copper into the coronary flow, following prolonged ischemia, as evinced from the decrease in total levels, and in the 'free' fraction of iron and copper. During the PC phase no loss of cardiac function was observed. A small wave of re-distribution and mobilization of iron (typically less than 4-8% of the value of 35 min ischemia) was recorded. The cellular content of ferritin (Ft) measured in the heart was significantly higher in group I than in group III (0.90 and 0.54 microg/mg, respectively). Also, iron-saturation of Ft was significantly lower for PC hearts, compared to both groups II and III (0.22 vs. 0.32 and 0.31 microg/mg, for 35 min ischemia, respectively). These findings are in accord with the proposal that intracellular re-distribution and mobilization of small levels of iron, during PC, cause rapid accumulation of ferritin - the major iron-storage protein. It is proposed that iron play a dual role: (i) It serves as a signaling pathway for the accumulation of Ft following the PC phase. This iron is not involved in cardiac injury, but rather prepares the heart against future high levels of 'free' iron, thus reducing the degree of myocardial damage after prolonged ischemia. (ii) High levels of iron (and copper) are mobilized following prolonged ischemia and cause tissue damage.  相似文献   

4.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

5.
Iron and copper play major roles in biological systems, catalyzing free radical production and consequently causing damage. The relatively high levels of these metals, which are mobilized into the coronary flow following prolonged ischemia, have been incriminated as key players in reperfusion injury to the heart. In the present communication we investigated other roles of iron – providing protection to the ischemic heart via preconditioning (PC).PC was accomplished by subjecting isolated rat hearts to three episodes of 2 min ischemia separated by 3 min of reperfusion. Prolonged ischemia followed the PC phase. PC hearts (group I) were compared to hearts subjected to normal perfusion (group II, no ischemia) and to ischemia without PC (group III). Group I showed a marked improvement in the recovery of hemodynamic function vs. group III. Biochemical parameters further substantiated the PC protection provided to group I against prolonged ischemia. Correspondingly, group I presented markedly lower re-distribution and mobilization of iron and copper into the coronary flow, following prolonged ischemia, as evinced from the decrease in total levels, and in the 'free' fraction of iron and copper.During the PC phase no loss of cardiac function was observed. A small wave of re-distribution and mobilization of iron (typically less than 4–8% of the value of 35 min ischemia) was recorded. The cellular content of ferritin (Ft) measured in the heart was significantly higher in group I than in group III (0.90 and 0.54 g/mg, respectively). Also, iron-saturation of Ft was significantly lower for PC hearts, compared to both groups II and III (0.22 vs. 0.32 and 0.31 g/mg, for 35 min ischemia, respectively). These findings are in accord with the proposal that intracellular re-distribution and mobilization of small levels of iron, during PC, cause rapid accumulation of ferritin – the major iron-storage protein.It is proposed that iron play a dual role: (i) It serves as a signaling pathway for the accumulation of Ft following the PC phase. This iron is not involved in cardiac injury, but rather prepares the heart against future high levels of 'free' iron, thus reducing the degree of myocardial damage after prolonged ischemia. (ii) High levels of iron (and copper) are mobilized following prolonged ischemia and cause tissue damage.  相似文献   

6.
AimsPeriodic acceleration (pGz) is a method that applies repetitive sinusoidal head-to-foot motion to the horizontally positioned body. pGz adds pulses to the circulation as a function of frequency, thereby increasing shear stress to the endothelium. Pulsatile shear stress increases release of cardioprotective endothelial-derived nitric oxide prostaglandin E-2 and prostacyclin into the circulation. We investigated whether pGz may be effective as an early preconditioning strategy when applied one hour prior to whole body ischemia reperfusion injury induced by ventricular fibrillation (VF).Main methodsTwenty anesthetized and paralyzed male swine were randomized to one hour of pGz and conventional mechanical ventilation [PC] or solely conventional mechanical ventilation [Control] prior to VF and resuscitation. After eight minutes of unsupported VF, cardiopulmonary resuscitation was carried out followed by defibrillation. Hemodynamics, electrocardiogram, echocardiogram, regional blood flows, and markers of global myocardial injury were measured. Protein expression of endothelial-derived nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), serine/threonine kinase Akt total (t-Akt), and phosphorylated (p-Akt) were determined by immunoblotting.Key findingsAll animals had spontaneous return of circulation after cardiopulmonary resuscitation (CPR) and defibrillation. Preconditioned animals had less hemodynamically significant arrhythmias, less myocardial stunning, and greater regional blood flows to the brain, heart, kidneys, and ileum than Controls. Troponin I and creatine phosphokinase values in PC were 65% of the values present in Controls. In addition, preconditioned animals had higher protein expression of cardiac eNOS, p-eNOS, t-Akt, and p-Akt than Controls.SignificancepGz preconditioning confers early cardioprotection in a model of whole body ischemia reperfusion injury.  相似文献   

7.
Since recent findings indicate the involvement of G-proteins in the mechanisms of ischaemic preconditioning (PC), the present study was aimed to investigate the role of adrenergic mechanisms, such as G-proteins and stimulation of adrenergic receptors, in this phenomenon. For this purpose, isolated Langendorff-perfused rat hearts were subjected to regional ischaemia (30 min occlusion of LAD) followed by reperfusion. The effect of PC (a single 5 min occlusion/reperfusion before a long occlusion) on ischaemia- and reperfusion-induced arrhythmias was studied in conjunction with an assessment of G-proteins in the myocardial tissue by means of Western blotting and ADP-ribosylation with bacterial toxins. To follow the link between G-proteins and adrenergic receptors, their stimulation by exogenous norepinephrine (NE) was applied to test whether it can mimic the effect of PC on arrhythmias. Thirty min ischaemia and subsequent reperfusion induced high incidence of ventricular tachycardia (VT) and fibrillation (VF). PC significantly reduced a total number of extrasystoles, incidence of VT and abolished VF. It was, however, insufficient to suppress reperfusion-induced sustained VF. Measurement of G-proteins revealed that PC led to a reduction of stimulatory Gs proteins, whereas inhibitory Gi proteins were increased. NE (50 nmol) introduced in a manner similar to PC (5 min infusion, 10 min normal perfusion) reduced ischaemic arrhythmias in the same way, as PC. In addition, in NE-pretreated hearts reperfusion induced mostly transient VF, which was spontaneously reverted to a normal sinus rhythm. A transient increase in heart rate and perfusion pressure during NE infusion completely waned before the onset of ischaemia, indicating that antiarrhythmic effect was not related to haemodynamic changes and to conditions of myocardial perfusion. Conclusion: Antiarrhythmic effect of PC may be mediated by a stimulation of adrenergic receptors coupled to appropriate G-proteins. Consequently, the inhibition of adenylate cyclase activity and reduction in cAMP level, as well as the activation of protein kinase C may be considered as two possible pathways leading to a final response.  相似文献   

8.
This study tests the hypothesis that moderate myocardial dysfunction is associated with altered myocardial anisotropic properties and structurally altered ventricular fibrillation (VF). Mongrel dogs were randomized to either a control group or a group that was rapidly paced at 250 beats/min until the left ventricular ejection fraction was < or = 40%. Changes in anisotropic properties and the electrical characteristics of VF associated with the development of moderate myocardial dysfunction were assessed by microminiature epicardial mapping studies. In vivo conduction, refractory periods, and repolarization times were prolonged in both longitudinal and transverse directions in myopathic animals versus controls. VF was different in myopathic versus control animals. There were significantly more conducted deflections during VF in normal hearts compared with myopathic hearts. Propagated deflection-to-deflection intervals during VF were significantly longer in myopathic hearts compared with controls (125.5 +/- 49.06 versus 103.4 +/- 32.9 ms, p = 0.009). There were no abnormalities in cell size, cell shape, or the number of intercellular gap junctions and there was no detectable change in the expression of the gap junction proteins Cx43 and Cx45. Moderate myocardial dysfunction is associated with significant electrophysiological abnormalities in the absence of changes in myocardial cell morphology or intercellular connections, suggesting a functional abnormality in cell-to-cell communication.  相似文献   

9.
During myocardial ischemia, severe ATP depletion induces rigor contracture followed by intracellular Ca2+ concentration ([Ca2+]i) rise and progressive impairment of gap junction (GJ)-mediated electrical coupling. Our objective was to investigate whether chemical coupling through GJ allows propagation of rigor in cardiomyocytes and whether it persists after rigor development. In end-to-end connected adult rat cardiomyocytes submitted to simulated ischemia the interval between rigor onset was 3.7 +/- 0.7 s, and subsequent [Ca2+]i rise was virtually identical in both cells, whereas in nonconnected cell pairs the interval was 71 +/- 12 s and the rate of [Ca2+]i rise was highly variable. The GJ blocker 18alpha-glycyrrhetinic acid increased the interval between rigor onset and the differences in [Ca(2+)]i between connected cells. Transfer of Lucifer yellow demonstrated GJ permeability 10 min after rigor onset in connected cell pairs, and 30 min after rigor onset in isolated rat hearts submitted to nonflow ischemia but was abolished after 2 h of ischemia. GJ-mediated communication allows propagation of rigor in ischemic myocytes and persists after rigor development despite acidosis and increased [Ca2+]i.  相似文献   

10.
Myocardial ischemia results in metabolic changes, which collapse the mitochondrial network, that increase the vulnerability of the heart to ventricular fibrillation (VF). It has been demonstrated at the single cell level that uncoupling the mitochondria using carbonyl cyanide p-(tri-fluoromethoxy)phenyl-hydrazone (FCCP) at low concentrations can be cardioprotective. The aim of our study was to investigate the effect of FCCP on arrhythmogenesis during ischemia in the whole rabbit heart. We performed optical mapping of isolated rabbit hearts (n = 33) during control and 20 min of global ischemia and reperfusion, both with and without pretreatment with the mitochondrial uncoupler FCCP at 100, 50, or 30 nM. No hearts went into VF during ischemia under the control condition, with or without the electromechanical uncoupler blebbistatin. We found that pretreatment with 100 (n = 4) and 50 (n = 6) nM FCCP, with or without blebbistatin, leads to VF during ischemia in all hearts, whereas pretreatment with 30 nM of FCCP led to three out of eight hearts going into VF during ischemia. We demonstrated that 30 nM of FCCP significantly increased interventricular (but not intraventricular) action potential duration and conduction velocity heterogeneity in the heart during ischemia, thus providing the substrate for VF. We showed that wavebreaks during VF occurred between the right and left ventricular junction. We also demonstrated that no VF occurred in the heart pretreated with 10 μM glibenclamide, which is known to abolish interventricular heterogeneity. Our results indicate that low concentrations of FCCP, although cardioprotective at the single cell level, are arrhythmogenic at the whole heart level. This is due to the fact that FCCP induces different electrophysiological changes to the right and left ventricle, thus increasing interventricular heterogeneity and providing the substrate for VF.  相似文献   

11.
The vulnerability of the infarcted hearts to ventricular fibrillation (VF) was tested in in situ canine hearts during nicotine infusion. The activation pattern was mapped with 477 bipolar electrodes in open-chest anesthetized dogs (n = 8) 5-6 wk after permanent occlusion of the left anterior descending coronary artery. Nicotine (129 +/- 76 ng/ml) lengthened (P < 0.01) the pacing cycle length at which VF was induced from 171 +/- 8.9 to 210 +/- 14. 7 ms. Nicotine selectively amplified the magnitude of conduction time and monophasic action potential (MAP) amplitude and duration (MAPA and MAPD, respectively) alternans in the epicardial border zone (EBZ) but not in the normal zone. With critical reduction of the MAPA and MAPD in the EBZ, conduction block occurred across the long axis of the EBZ cells. Block led immediately to reentry formation in the EBZ with a mean period of 105 +/- 10 ms, which, after one to two rotations, degenerated to VF. Nicotine widened the range of diastolic intervals over which the dynamic MAPD restitution curve had a slope >1. We conclude that nicotine facilitates conduction block, reentry, and VF in hearts with healed myocardial infarction by increasing the magnitude of depolarization and repolarization alternans consistent with the restitution hypothesis of vulnerability to VF.  相似文献   

12.
Preconditioning (PC) protects against ischemia-reperfusion (I/R) injury via the activation of the JAK-STAT pathway. We hypothesized that the mediators responsible for PC can be transferred to naive myocardium through the coronary effluent. Langendorff-perfused hearts from male Sprague-Dawley rats were randomized to paired donor/acceptor protocols with or without PC in the presence or absence of the JAK-2 inhibitor AG-490 (n = 6 for each group). Warmed, oxygenated coronary effluent collected during the reperfusion phases of PC (3 cycles of 5 min ischemia and 5 min reperfusion) was administered to acceptor hearts. The hearts were then subjected to 30 min ischemia and 40 min reperfusion. The left ventricles were analyzed for phosphorylated (p)STAT-1, pSTAT-3, Bax, Bcl, Bcl-X(L)/Bcl-2-associated protein (BAD), and caspase-3 expression by Western blot. A separate group of hearts (n = 6) was analyzed for STAT activation immediately after the transfer of the PC effluent (no I-R). Baseline cardiodynamics were not different among the groups. End-reperfusion maximal change in pressure over time (+dP/dt(max)) was significantly (P < 0.05) improved in acceptor PC (3,637 +/- 199 mmHg/s) and donor PC (4,304 +/- 347 mmHg/s) hearts over non-PC donor (2,020 +/- 363 mmHg/s) and acceptor (2,624 +/- 345 mmHg/s) hearts. Similar differences were seen for minimal change in pressure over time (-dP/dt(min)). STAT-3 activation was significantly increased in donor and acceptor PC hearts compared with non-PC hearts. Conversely, pSTAT-1 and Bax expression was decreased in donor and acceptor PC hearts compared with non-PC hearts. No differences in Bcl, BAD, or caspase-3 expression were observed. Treatment with AG-490 attenuated the recovery of +/-dP/dt in acceptor PC hearts and significantly reduced pSTAT-3 expression. The PC coronary effluent activates JAK-STAT signaling, limits apoptosis, and protects myocardial performance from I/R injury.  相似文献   

13.
There is accumulating evidence showing that ischemic preconditioning (PC) may lose its cardioprotective effect in the diseased states. The present study investigated whether PC can be effective in hypothyroidism, a clinical condition which is common and often accompanies cardiac diseases such as heart failure and myocardial infarction. Hypothyroidism was induced in rats by 3-week administration of 6n-propyl-2-thiouracil in water (0.05 %). Normal and hypothyroid hearts (HYPO) were perfused in Langendorff mode and subjected to 20 min of zero-flow global ischemia and 45 min of reperfusion. A preconditioning protocol (PC) was also applied prior to ischemia. HYPO hearts had significantly improved post-ischemic recovery of left ventricular developed pressure, end-diastolic pressure and reduced lactate dehydrogenase release. Furthermore, phospho-JNK and p38 MAPK levels after ischemia and reperfusion were 4.0 and 3.0 fold lower in HYPO as compared to normal hearts (P<0.05). A different response to PC was observed in normal than in HYPO hearts. PC improved the post-ischemic recovery of function and reduced the extent of injury in normal hearts but had no additional effect on the hypothyroid hearts. This response, in the preconditioned normal hearts, resulted in 2.5 and 1.8 fold smaller expression of the phospho-JNK and phospho-p38 MAPK levels at the end of reperfusion, as compared to non-PC hearts (P<0.05), while in HYPO hearts, no additional reduction in the phosphorylation of these kinases was observed after PC. Hypothyroid hearts appear to be tolerant to ischemia-reperfusion injury. This response may be, at least in part, due to the down-regulation of ischemia-reperfusion induced activation of JNKs and p38 MAPK kinases. PC is not associated with further reduction in the activation of these kinases in the hypothyroid hearts and fails to confer added protection in those hearts.  相似文献   

14.
15.
Diabetic heart is suggested to exhibit either increased or decreased resistance to ischemic injury. Ischemic preconditioning suppresses arrhythmias in the normal heart, whereas relatively little is known about its effects in the diseased myocardium. Our objective was to investigate whether development of diabetes mellitus modifies the susceptibility to ischemia-induced arrhythmias and affects preconditioning in the rat heart. Following 1 and 9 weeks of streptozotocin-induced (45 mg/kg, i.v.) diabetes, the hearts were Langendorff-perfused at constant pressure of 70 mm Hg and subjected to test ischemia induced by 30 min occlusion of the left anterior descending (LAD) coronary artery. Preconditioning consisted of one cycle of 5 min ischemia and 10 min reperfusion, prior to test ischemia. Susceptibility to ischemia-induced arrhythmias was lower in 1-week diabetics: only 42 % of diabetic hearts exhibited ventricular tachycardia (VT) and 16 % had short episodes of ventricular fibrillation (VF) as compared to VT 100 % and VF 70 % (including sustained VF 36 %) in the non-diabetics (P<0.05). Development of the disease was associated with an increased incidence of VT (VT 92 %, not significantly different from non-diabetics) and longer total duration of VT and VF at 9-weeks, as compared to 1-week diabetics. Preconditioning effectively suppressed arrhythmias in the normal hearts (VT 33 %, VF 0 %). However, it did not provide any additional antiarrhythmic protection in the acute diabetes. On the other hand, in the preconditioned 9-weeks diabetic hearts, the incidence of arrhythmias tended to decrease (VT 50 %, transient VF 10 %) and their severity was reduced. Diabetic rat hearts are thus less susceptible to ischemia-induced arrhythmias in the acute phase of the disease. Development of diabetes attenuates increased ischemic tolerance, however, diabetic hearts in the chronic phase can benefit more from ischemic preconditioning, due to its persisting influence.  相似文献   

16.
The role of NO in ischemia/reperfusion injury in isolated rat heart   总被引:5,自引:0,他引:5  
Nitric oxide (NO) is an important regulator of myocardial function and vascular tone under physiological conditions. However, its role in the pathological situations, such as myocardial ischemia is not unequivocal, and both positive and negative effects have been demonstrated in different experimental settings including human pathology. The aim of the study was to investigate the role of NO in the rat hearts adapted and non-adapted to ischemia. Isolated Langendorff-perfused hearts were subjected to test ischemic (TI) challenge induced by 25 min global ischemia followed by 35 min reperfusion. Short-term adaptation to ischemia (ischemic preconditioning, IP) was evoked by 2 cycles of 5 min ischemia and 5 min reperfusion, before TI. Recovery of function at the end of reperfusion and reperfusion-induced arrhythmias served as the end-points of injury. Coronary flow (CF), left ventricular developed pressure (LVDP), and dP/dt(max) (index of contraction) were measured at the end of stabilization and throughout the remainder of the protocol until the end of reperfusion. The role of NO was investigated by subjecting the hearts to 15 min perfusion with NO synthase (NOS) inhibitor L-NAME (100 mmol/l), prior to sustained ischemia. At the end of reperfusion, LVDP in the controls recovered to 29.0 +/- 3.9 % of baseline value, whereas preconditioned hearts showed a significantly increased recovery (LVDP 66.4 +/- 5.7 %, p < 0.05). Recovery of both CF and dP/dt(max) after TI was also significantly higher in the adapted hearts (101.5 +/- 5.8 % and 83.64 +/- 3.92 % ) as compared with the controls (71.9 +/- 6.3 % and 35.7 +/- 4.87 %, respectively, p < 0.05). NOS inhibition improved contractile recovery in the non-adapted group (LVDP 53.8 +/- 3.1 %; dP/dt(max) 67.5 +/- 5.92 %) and increased CF to 82.4 +/- 5.2 %. In contrast, in the adapted group, it abolished the protective effect of IP (LVDP 31.8 +/- 3.1 %; CF 70.3 +/- 3.4 % and dP/dt(max) 43.25 +/- 2.19 %). Control group exhibited 100 % occurrence of ventricular tachycardia (VT), 57 % incidence of ventricular fibrillation (VF) - 21 % of them was sustained VF (SVF); application of L-NAME attenuated reperfusion arrhythmias (VT 70 %, VF 20 %, SVF 0 %). Adaptation by IP also reduced arrhythmias, however, L-NAME in the preconditioned hearts increased the incidence of arrhythmias (VT 100 %, VF 58 %, SVF 17 %). In conclusion: our results indicate that administration of L-NAME might be cardioprotective in the normal hearts exposed to ischemia/reperfusion (I/R) alone, suggesting that NO contributes to low ischemic tolerance in the non-adapted hearts. On the other hand, blockade of cardioprotective effect of IP by L-NAME points out to a dual role of NO in the heart: a negative role in the non-adapted myocardium subjected to I/R, and a positive one, due to its involvement in the mechanisms of protection triggered by short-term cardiac adaptation by preconditioning.  相似文献   

17.
To define the relationship between ischemia-reperfusion-induced myocardial damage (IRD) and the occurrence of ventricular tachycardia (VT) and fibrillation (VF), we studied 23 dogs with a three-dimensional activation mapping system. Left anterior descending (LAD) coronary artery occlusion and reperfusion were performed while recording electrograms during VF and atrial pacing. Prior nonischemic sites showing IRD, defined as at least 10% loss of electrogram voltage after reperfusion, had the longest ventricular effective refractory periods (ERPs). IRD sites also occurred more frequently in dogs with reperfusion VF (44 +/- 2 sites, P < 0.01) compared with dogs with VT (18 +/- 5 sites) and no VT (16 +/- 3 sites). In dogs (n = 3) with 3 h of reperfusion, 95% of IRD sites still had lower voltage than those recorded during occlusion. Activation mapping of the first eight complexes of VF had Purkinje or endocardial focal origin in 57%, and complexes originated from IRD sites in 28%. In contrast, dogs with only reperfusion VT also had Purkinje or endocardial focal origin in 79%, but only 5% (P < 0.01 vs. VF dogs) of the sites of origin had IRD. Therefore, dogs with reperfusion VF had more IRD sites where the ERP was longest, and more focal ventricular complexes originated from IRD sites, indicating that IRD may be one important factor in the occurrence of VF during reperfusion.  相似文献   

18.

Rationale

Deterioration of ventricular fibrillation (VF) into asystole or severe bradycardia (electrical failure) heralds a fatal outcome of cardiac arrest. The role of metabolism in the timing of electrical failure remains unknown.

Objective

To determine metabolic factors of early electrical failure in an Ex-vivo canine model of cardiac arrest (VF+global ischemia).

Methods and Results

Metabolomic screening was performed in left ventricular biopsies collected before and after 0.3, 2, 5, 10 and 20 min of VF and global ischemia. Electrical activity was monitored via plunge needle electrodes and pseudo-ECG. Four out of nine hearts exhibited electrical failure at 10.1±0.9 min (early-asys), while 5/9 hearts maintained VF for at least 19.7 min (late-asys). As compared to late-asys, early-asys hearts had more ADP, less phosphocreatine, and higher levels of lactate at some time points during VF/ischemia (all comparisons p<0.05). Pre-ischemic samples from late-asys hearts contained ∼25 times more inorganic pyrophosphate (PPi) than early-asys hearts. A mechanistic role of PPi in cardioprotection was then tested by monitoring mitochondrial membrane potential (ΔΨ) during 20 min of simulated-demand ischemia using potentiometric probe TMRM in rabbit adult ventricular myocytes incubated with PPi versus control group. Untreated myocytes experienced significant loss of ΔΨ while in the PPi-treated myocytes ΔΨ was relatively maintained throughout 20 min of simulated-demand ischemia as compared to control (p<0.05).

Conclusions

High tissue level of PPi may prevent ΔΨm loss and electrical failure at the early phase of ischemic stress. The link between the two protective effects may involve decreased rates of mitochondrial ATP hydrolysis and lactate accumulation.  相似文献   

19.
Late preconditioning (PC) against myocardial stunning develops after coronary artery occlusion (CAO) at rest and subsequent reperfusion. We investigated whether late PC occurs after exercise-induced ischemia (high-flow ischemia) in dogs. A circumflex coronary artery stenosis (by using occluders) was set up before the onset of treadmill exercise in nine chronically instrumented dogs to suppress exercise-induced increase in mean coronary blood flow velocity (CBFV, Doppler) without simultaneously affecting left ventricular (LV) wall thickening (Wth) at rest. Two similar exercises were performed 24 h apart. On day 1, LV Wth was reduced by 84 +/- 5% (P < 0.01), and exercise-induced increases in transmural myocardial blood flow (MBF, fluorescent microspheres) in the ischemic zone were blunted. LV Wth was depressed throughout the first 10 h and returned to its baseline value after 24 h. On day 2, changes in LV Wth and MBF were similar as was the time course for LV Wth recovery, indicating lack of late PC. Also, CBFV responses to acetylcholine, nitroglycerin, and reactive hyperemia (20-s CAO) were not significantly different on days 1 and 2. Similar results were obtained in a subgroup of four additional dogs with more severe stenosis during exercise. Late PC against myocardial stunning was confirmed to occur in a model of 10-min CAO followed by coronary artery reperfusion (CAR) in another four dogs. Thus in contrast with CAO at rest followed by CAR, severe myocardial ischemia in coronary flow-limited exercising dogs does not induce late PC against myocardial stunning.  相似文献   

20.
We had previously reported that activation of histamine H(3)-receptors (H(3)R) on cardiac adrenergic nerve terminals decreases norepinephrine (NE) overflow from ischemic hearts and alleviates reperfusion arrhythmias. Thus, we used transgenic mice lacking H(3)R (H(3)R(-/-)) to investigate whether ischemic arrhythmias might be more severe in H(3)R(-/-) hearts than in hearts with intact H(3)R (H(3)R(+/+)). We report a greater incidence and longer duration of ventricular fibrillation (VF) in H(3)R(-/-) hearts subjected to ischemia. VF duration was linearly correlated with NE overflow, suggesting a possible cause-effect relationship between magnitude of NE release and severity of reperfusion arrhythmias. Thus, our findings strengthen a protective antiarrhythmic role of H(3)R in myocardial ischemia. Since malignant tachyarrhythmias cause sudden death in ischemic heart disease, attenuation of NE release by selective H(3)R agonists may represent a new approach in the prevention and treatment of ischemic arrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号