首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Breast cancers are highly heterogeneous and successful treatment of those subtypes with a high frequency of metastases and resistance to clinically available therapies remains a challenge. An understanding of mechanisms which may contribute to this heterogeneity and generation of more resilient cancer cells is therefore essential. Epithelial-to-mesenchymal transition (EMT) is a dynamic two-way process that occurs during embryonic development and wound healing whereby epithelial cells can gain plasticity and switch to a mesenchymal-like phenotype. EMT has received interest from cancer researchers due to its potential role in processes important in cancer progression and metastasis. Recent evidence has revealed a clear association between EMT and resistance to therapeutics. Targeting of EMT and/or the mesenchymal-like phenotype may be a promising avenue for future therapeutic intervention. This review provides a brief summary of the functional consequences of EMT in breast cancer, with a focus on the mesenchymal-like phenotype.  相似文献   

2.
CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance.  相似文献   

3.
4.
5.
6.
Located at 6q22–23, Ccn6 (WISP3) encodes for a matrix-associated protein of the CCN family, characterized by regulatory, rather than structural, roles in development and cancer. CCN6, the least studied member of the CCN family, shares the conserved multimodular structure of CCN proteins, as well as their tissue and cell-type specific functions. In the breast, CCN6 is a critical regulator of epithelial-to-mesenchymal transitions (EMT) and tumor initiating cells. Studies using human breast cancer tissue samples demonstrated that CCN6 messenger RNA and protein are expressed in normal breast epithelia but reduced or lost in aggressive breast cancer phenotypes, especially inflammatory breast cancer and metaplastic carcinomas. Metaplastic carcinomas are mesenchymal-like triple negative breast carcinomas, enriched for markers of EMT and stemness. RNAseq analyses of the TCGA Breast Cancer cohort show reduced CCN6 expression in approximately 50% of metaplastic carcinomas compared to normal breast. Our group identified frameshift mutations of Ccn6 in a subset of human metaplastic breast carcinoma. Importantly, conditional, mammary epithelial-cell specific ccn6 (wisp3) knockout mice develop invasive high-grade mammary carcinomas that recapitulate human spindle cell metaplastic carcinomas, demonstrating a tumor suppressor function for ccn6. Our studies on CCN6 functions in metaplastic carcinoma highlight the potential of CCN6 as a novel therapeutic approach for this specific type of breast cancer.  相似文献   

7.
Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.  相似文献   

8.
9.
10.
p38γ is a member of p38 MAPK family which contains four isoforms p38α, p38β, p38γ, and p38δ. p38γ MAPK has unique function and is less investigated. Recent studies revealed that p38γ MAPK may be involved in tumorigenesis and cancer aggressiveness. However, the underlying cellular/molecular mechanisms remain unclear. Epithelial-mesenchymal transition (EMT) is a process that epithelial cancer cells transform to facilitate the loss of epithelial features and gain of mesenchymal phenotype. EMT promotes cancer cell progression and metastasis, and is involved in the regulation of cancer stem cells (CSCs) which have self-renewal capacity and are resistant to chemotherapy and target therapy. We showed that p38γ MAPK significantly increased EMT in breast cancer cells; over-expression of p38γ MAPK enhanced EMT while its down-regulation inhibited EMT. Meanwhile, p38γ MAPK augmented CSC population while knock down of p38γ MAPK decreased CSC ratio in breast cancer cells. MicroRNA-200b (miR-200b) was down-stream of p38γ MAPK and inhibited by p38γ MAPK; miR-200b mimics blocked p38γ MAPK-induced EMT while miR-200b inhibitors promoted EMT. p38γ MAPK regulated miR-200b through inhibiting GATA3. p38γ MAPK induced GATA3 ubiquitination, leading to its proteasome-dependent degradation. Suz12, a Polycomb group protein, was down-stream of miR-200b and involved in miR-200b regulation of EMT. Thus, our study established an important role of p38γ MAPK in EMT and identified a novel signaling pathway for p38γ MAPK–mediated tumor promotion.  相似文献   

11.
12.
Epithelial mesenchymal transition (EMT) in development, tissue repair and carcinogenesis involves cellular plasticity with varying degrees of epithelial and mesenchymal properties. Several recent studies have focused on EMT phenotypic dynamism; however, information on cellular interaction in the context of EMT is inadequate. In our previous study, we investigated EMT phenotypic plasticity and anticipated it as a population driven interactive process. Present study has characterized cellular connectivity as a representative of interactivity during EMT in epithelial normal and cancer cell. It has also explored dynamism of connectivity and phenotype employing Markov model. Further, plasticity was substantiated with cell surface microvilli and molecular marker. The study unveiled interplay between phenotype and connectivity too. Findings have revealed that intercellular connectivity fueled EMT plasticity and its dynamism was more prominent in cancer population. However, normal cells are more vibrant in transition and phenotypic plasticity. We have proposed connectivity plasticity as a hallmark of EMT and needs to be studied in depth. Present study also paves the way in translating in vitro EMT findings in histopathological practices.  相似文献   

13.
Epithelial-mesenchymal transition (EMT) is an essential developmental program that becomes reactivated in adult tissues to promote the progression of cancer. EMT has been largely studied by examining the beginning epithelial state or the ending mesenchymal state without studying the intermediate stages. Recent studies using trophoblast stem (TS) cells paused in EMT have defined the molecular and epigenetic mechanisms responsible for modulating the intermediate “metastable” stages of EMT. Targeted inactivation of MAP3K4, knockdown of CBP or overexpression of SNAI1 in TS cells induced similar metastable phenotypes. These TS cells exhibited epigenetic changes in the histone acetylation landscape that cause loss of epithelial maintenance while preserving self-renewal and multipotency. A similar phenotype was found in claudin-low breast cancer cells with properties of EMT and stemness. This intersection between EMT and stemness in TS cells and claudin-low metastatic breast cancer demonstrates the usefulness of developmental EMT systems to understand EMT in cancer.Key words: EMT, metastable EMT, TS cells, claudin-low breast cancer, EMT and stemness, epigenetics, MAP3K4, CBP, histone acetylation  相似文献   

14.
15.
Epithelial-mesenchymal transition (EMT) is an essential developmental program that becomes reactivated in adult tissues to promote the progression of cancer. EMT has been largely studied by examining the beginning epithelial state or the ending mesenchymal state without studying the intermediate stages. Recent studies using trophoblast stem (TS) cells paused in EMT have defined the molecular and epigenetic mechanisms responsible for modulating the intermediate "metastable" stages of EMT. Targeted inactivation of MAP3K4, knockdown of CBP, or overexpression of SNAI1 in TS cells induced similar metastable phenotypes. These TS cells exhibited epigenetic changes in the histone acetylation landscape that cause loss of epithelial maintenance while preserving self-renewal and multipotency. A similar phenotype was found in claudin-low breast cancer cells with properties of EMT and stemness. This intersection between EMT and stemness in TS cells and claudin-low metastatic breast cancer demonstrates the usefulness of developmental EMT systems to understand EMT in cancer.  相似文献   

16.
Living cells communicate with their microenvironment and exchange information through signaling pathways in order to carry out most biological processes. The CCN family of proteins has the ability to coordinate the extracellular and intracellular signaling pathways and epithelial-stromal cross-talks. CCN proteins have been shown to play roles in multiple processes including cancer, either as tumor suppressors or oncogenes. Particularly, loss of CCN6 expression has been reported in highly aggressive breast cancer types, especially in inflammatory breast cancer and breast cancer with axillary lymph node metastasis. Recent findings can better explain the biological relevance of CCN6 as a tumor suppressor protein in breast tumorigenesis. CCN6 loss triggers the process of epithelial to mesenchymal transition (EMT), which converts epithelial cells into migratory and invasive mesenchymal-like cells at least in part through modulation of IGF-1 receptor signaling pathway. Emerging data support the hypothesis that CCN6 also exerts growth factor independent functions, especially related to cell survival and anoikis resistance. Thus, our work provides new insights into the functions and mechanisms of tumor suppression exerted by CCN6 in the breast.  相似文献   

17.
The platelet-derived growth factor (PDGF) signaling pathway has been found to play important roles in the development and progression of human cancers by regulating the processes of cell proliferation, apoptosis, migration, invasion, metastasis, and the acquisition of the epithelial-mesenchymal transition (EMT) phenotype. Moreover, PDGF signaling has also been found to alter the expression profile of miRNAs, leading to the reversal of EMT phenotype. Although the role of miRNAs in cancer has been documented, there are very few studies documenting the cellular consequences of targeted re-expression of specific miRNAs. Therefore, we investigated whether the treatment of human pancreatic cancer cells with PDGF could alter the expression profile of miRNAs, and we also assessed the cellular consequences. Our study demonstrates that miR-221 is essential for the PDGF-mediated EMT phenotype, migration, and growth of pancreatic cancer cells. Down-regulation of TRPS1 by miR-221 is critical for PDGF-mediated acquisition of the EMT phenotype. Additionally, the PDGF-dependent increase in cell proliferation appears to be mediated by inhibition of a specific target of miR-221 and down-regulation of p27Kip1.  相似文献   

18.
19.
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer internationally. As the precise molecular pathways that regulate pancreatic cancer are incompletely understood, appropriate targets for drug intervention remain elusive. It is being increasingly appreciated that the cellular microenvironment plays an important role in driving tumor growth and metastasis. CCN1, a member of the CCN family of secreted matricellular proteins, is overexpressed in pancreatic cancer, and may represent a novel target for therapy. Sonic hedgehog (SHh) is responsible for PDAC cell proliferation, epithelial-mesenchymal transition (EMT), maintenance of cancer stemness, migration, invasion, and metastatic growth; in a recent report, it was shown that CCN1 is a potent regulator of SHh expression via Notch-1. CCN1 activity was mediated, at least in part, through altering proteosome activity. These results suggest that CCN1 may be an ideal target for treating PDAC.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号