首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
非甾体抗炎药物的研究应用现状   总被引:1,自引:0,他引:1  
非甾体抗炎药物种类繁多,用途广泛,占有巨大的市场份额。最近默克公司对罗非昔布的全球撤药事件告诫人们,必须科学和谨慎地看待这类药物的发展,通过深入的临床研究和实践总结来开发更为安全、经济合理的新药,以提高和改善患者的生命质量。  相似文献   

4.
Costa D  Gomes A  Reis S  Lima JL  Fernandes E 《Life sciences》2005,76(24):2841-2848
Hydrogen peroxide (H2O2) has been shown to be formed during inflammatory processes and is implicated in its pathophysiology. Thus, a putative scavenging activity against this reactive oxygen species (ROS) by anti-inflammatory drugs may be of great therapeutical value. The present study was undertaken to evaluate the scavenging activity for H2O2 by several non-steroidal anti-inflammatory drugs (NSAIDs), namely indomethacin, acemetacin, etodolac, tolmetin, ketorolac, oxaprozin, sulindac and its metabolites sulindac sulfide and sulindac sulfone. The H2O2 scavenging assay was performed by measuring H2O2-elicited lucigenin chemiluminescence using a microplate reader. The specificity of the method was confirmed by the use of catalase, which completely prevented the H2O2-induced lucigenin chemiluminescence. The endogenous antioxidants melatonin and reduced glutathione (GSH) were used as positive controls. The obtained results demonstrated that all the studied NSAIDs display H2O2 scavenging activity, although in different extents. The ranking order of potency found was sulindac sulfone > sulindac sulfide > GSH > sulindac > indomethacin > acemetacin > etodolac > oxaprozin > ketorolac approximately melatonin > tolmetin.  相似文献   

5.
Transplacental effects of 24 non-steroidal anti-inflammatory drugs (NSAIDs) on the fetal ductus arteriosus were studied in full-term pregnant rats using the whole-body freezing technique. All sixteen acidic NSAIDs constricted the fetal ductus in a dose-dependent relationship, but considerable differences in the intensity of effect was noticed with the clinical dose of each drug. Six of the eight basic NSAIDs did not constrict the fetal ductus at 50 to 100 times the usual clinical dose. It is concluded that acidic NSAIDs probably should not be administered to pregnant women. However, it may be established in the future that some basic NSAIDs can be administered safely to pregnant women without hazardous effect on the fetus.  相似文献   

6.
7.
There has been studied the influence of a number of nonsteroidal antiinflammatory agents (NSAID ) on the humoral immune response of mice in immunization with erythrocytic and viral antigen. It has been found out that NSAID have immunomodulating effect, stimulating humoral immune response (4-iodantipyrine, 4-bromantipyrine) or suppressing it (butadione, sodium salicylate). Apparently the mechanism of NSAID ++ immunostimulating effect is related to the inhibition of T-suppressors ++ function by the latter ones.  相似文献   

8.
The Drosophila TRPC channels TRP and TRPL are the founding members of the TRP superfamily of ion channels, proteins likely to be important components of calcium influx pathways. The activation of these channels in the context of fly phototransduction is one of the few in vivo models for TRPC channel activation and has served as a paradigm for understanding TRPC function. TRP and TRPL are activated by G-protein coupled PI(4,5)P(2) hydrolysis through a mechanism in which IP(3) receptor mediated calcium release seems dispensable. Recent analysis has provided compelling evidence that the accurate turnover of PI(4,5)P(2) generated lipid messengers in essential for regulating TRP and TRPL activity. TRP channels also appear to exist in the context of a macromolecular complex containing key components involved in activation such as phospholipase Cbeta and protein kinase C. This complex may be important for activation. The role of these protein and lipid elements in regulating TRP and TRPL activity is discussed in this review.  相似文献   

9.
10.
11.
The Drosophila TRPC channels TRP and TRPL are the founding members of the TRP superfamily of ion channels, which are important components of calcium influx pathways in virtually all cells. The activation of these channels in the context of fly phototransduction is one of the few in vivo models for TRPC channel activation and has served as a paradigm for understanding TRPC function. TRP and TRPL are activated by G-protein coupled PIP2 hydrolysis through a mechanism in which IP3 receptor mediated calcium release seems dispensable. Recent analysis has provided compelling evidence that one or more PIP2 generated lipid messengers, as well as PIP2 itself, are essential for regulating TRP and TRPL activity. Evidence on the role of these lipid elements in regulating TRP and TRPL activity is discussed in this review.  相似文献   

12.
Activation of human TRPC6 channels by receptor stimulation   总被引:14,自引:0,他引:14  
The human TRPC6 channel was expressed in human embryonic kidney (HEK) cells, and activity was monitored using the giga-seal technique. Whole cell membrane currents with distinctive inward and outward rectification were activated by carbachol (CCh) in TRPC6-expressing cells, but not in lacZ-transfected controls. The effect of CCh was steeply dose-dependent with a K(0.5) of approximately 10 microm and a Hill coefficient of 3-4. A steep concentration-response relationship was also observed when TRPC6 activity was measured using a fluorescence-based imaging plate reader (FLIPR) assay for membrane depolarization. Ionomycin, thapsigargin, and dialysis of the cell with inositol 1,4,5-trisphosphate via the patch pipette had no effect on TRPC6 currents, but exogenous application of 1-oleoyl acetyl-sn-glycerol (OAG, 30-300 microm) produced a slow increase in channel activity. The PKC activator, phorbol 12-myristate 13-acetate (PMA, 0.5 microm) had no significant acute effect on TRPC6, or on the subsequent response to OAG. In contrast, the response to CCh was blocked >90% by PMA pretreatment. To further explore the role of DAG in receptor stimulation, TRPC6 currents were monitored following the sequential addition of CCh and OAG. Surprisingly, concentrations of CCh that produced little or no response in the absence of OAG, produced increases in TRPC6 currents in the presence of OAG that were larger than the sum of either agent alone. Likewise, the response to OAG was superadditive following prior stimulation of the cells with near threshold concentrations of CCh. Overall, these results suggest that generation of DAG alone may not fully account for activation of TRPC6, and that other receptor-mediated events act synergistically with DAG to stimulate channel activity. This synergy may explain, at least in part, the steep dose-response relationship observed for CCh-induced TRPC6 currents expressed in HEK cells.  相似文献   

13.
14.
Although the analysis of the enantiomers of chiral non-steroidal anti-inflammatory drugs (NSAIDs) has been carried out for over 20 years, there often remains a deficit within the pharmaceutical and medical sciences to address this issue. Hence, despite world-wide therapeutic use of chiral NSAIDs the importance of stereoselectivity in pharmacokinetic, pharmacodynamic and pharmacological activity and disposition has often been ignored. This review presents both the general principles that allow separation of chiral NSAID enantiomers, and discusses both the advantages and disadvantages of the available chromatographic assay methods and procedures used to separately quantify NSAID enantiomers in biological matrices.  相似文献   

15.
16.
It has long been known that singlet oxygen ((1)O2) is generated during inflammatory processes. Once formed in substantial amounts, (1)O2 may have an important role in mediating the destruction of infectious agents during host defense. On the other hand, (1)O2 is capable of damaging almost all biological molecules and is particularly genotoxic, which gives a special relevance to the scavenging of this ROS throughout anti-inflammatory treatments. Considering that the use of non-steroidal anti-inflammatory drugs (NSAIDs) constitutes a first approach in the treatment of persistent inflammatory processes (due to their ability to inhibit cyclooxygenase), a putative scavenging activity of NSAIDs for (1)O2 would also represent a significant component of their therapeutic effect. The aim of the present study was to evaluate the scavenging activity for (1)O2 by several chemical families of NSAIDs. The results suggested that the pyrazole derivatives (dipyrone and aminopyrine) are, by far, the most potent scavengers of (1)O2 (much more potent compared to the other tested NSAIDs), displaying IC(50)-values in the low micromolar range. There was a lack of activity for most of the arylpropionic acid derivatives tested, with only naproxen and indoprofen displaying residual activities, as for the oxazole derivative, oxaprozin. On the other hand, the pyrrole derivatives (tolmetin and ketorolac), the indolacetic acid derivatives (indomethacin, and etodolac), as well as sulindac and its metabolites (sulindac sulfide and sulindac sulfone) displayed scavenging activity in the high micromolar range. Thus, the scavenging effect observed for dipyrone and aminopyrine will almost certainly contribute to their healing effect in the treatment of prolonged or chronic inflammation, while that of the other studied NSAIDs may have a lower contribution, though these assumptions still require further in vivo validation.  相似文献   

17.
Regulation of TRPC6 channel activity by tyrosine phosphorylation   总被引:13,自引:0,他引:13  
Various hormonal stimuli and growth factors activate the mammalian canonical transient receptor potential (TRPC) channel through phospholipase C (PLC) activation. However, the precise mechanism of the regulation of TRPC channel activity remains unknown. Here, we provide the first evidence that direct tyrosine phosphorylation by Src family protein-tyrosine kinases (PTKs) is a novel mechanism for modulating TRPC6 channel activity. We found that TRPC6 is tyrosine-phosphorylated in COS-7 cells when coexpressed with Fyn, a member of the Src family PTKs. We also found that Fyn interacts with TRPC6 and that the interaction is mediated by the SH2 domain of Fyn and the N-terminal region of TRPC6 in a phosphorylation-independent manner. In addition, we demonstrated the physical association of TRPC6 with Fyn in the mammalian brain. Moreover, we showed that stimulation of the epidermal growth factor receptor induced rapid tyrosine phosphorylation of TRPC6 in COS-7 cells. This epidermal growth factor-induced tyrosine phosphorylation of TRPC6 was significantly blocked by PP2, a specific inhibitor of Src family PTKs, and by a dominant negative form of Fyn, suggesting that the direct phosphorylation of TRPC6 by Src family PTKs could be caused by physiological stimulation. Furthermore, using single channel recording, we showed that Fyn modulates TRPC6 channel activity via tyrosine phosphorylation. Thus, our findings demonstrated that tyrosine phosphorylation by Src family PTKs is a novel regulatory mechanism of TRPC6 channel activity.  相似文献   

18.
19.
20.
Epidemiological, clinical and animal studies indicate non-steroidal anti-inflammatory drugs (NSAIDs) to be chemopreventive for colorectal cancer. The best established target for NSAIDs are the two isoforms of cyclooxygenase (COX), a key enzyme in the biosynthesis of prostaglandins. Recent investigations using human colorectal tumor cell lines have focused on the cellular and molecular mechanisms potentially underlying the chemopreventive effect of NSAIDs. These studies have used traditional NSAIDs and their metabolites which either do not inhibit COX, are non-selective for the COX isoforms or selectively inhibit COX-1 over COX-2, and recently developed NSAIDs that are highly selective for COX-2. In vitro, apoptosis is the dominant anti-proliferative effect of each of these classes of NSAID and sensitivity to NSAID-induced apoptosis increases with the malignant potential of the tumor cells. Limited in vivo evidence backs up these findings. Cell cycle arrest also contributes to the in vitro growth inhibitory effect of traditional NSAIDs. The induction of apoptosis by NSAIDs may result from the inhibition of the COX isoforms but other as yet undefined paths to NSAID-induced apoptosis clearly exist. A member of each class of NSAID is under trial as a chemopreventive agent for colorectal cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号