首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome "bouquet" was impaired, and all chromosomes were univalent in meiotic metaphase I in 96% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase II. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species.  相似文献   

2.
Increasing crop yields through plant breeding is time consuming and laborious, with the generation of novel combinations of alleles being limited by chromosomal linkage blocks and linkage-drag. Meiotic recombination is essential to create novel genetic variation via the reshuffling of parental alleles. The exchange of genetic information between homologous chromosomes occurs at crossover (CO) sites but CO frequency is often low and unevenly distributed. This bias creates the problem of linkage-drag in recombination ‘cold’ regions, where undesirable variation remains linked to useful traits. In plants, programmed meiosis-specific DNA double-strand breaks, catalysed by the SPO11 complex, initiate the recombination pathway, although only ~5% result in the formation of COs. To study the role of SPO11-1 in wheat meiosis, and as a prelude to manipulation, we used CRISPR/Cas9 to generate edits in all three SPO11-1 homoeologues of hexaploid wheat. Characterization of progeny lines shows plants deficient in all six SPO11-1 copies fail to undergo chromosome synapsis, lack COs and are sterile. In contrast, lines carrying a single copy of any one of the three wild-type homoeologues are phenotypically indistinguishable from unedited plants both in terms of vegetative growth and fertility. However, cytogenetic analysis of the edited plants suggests that homoeologues differ in their ability to generate COs and in the dynamics of synapsis. In addition, we show that the transformation of wheat mutants carrying six edited copies of SPO11-1 with the TaSPO11-1B gene, restores synapsis, CO formation, and fertility and hence opens a route to modifying recombination in this agronomically important crop.  相似文献   

3.
Expression and inheritance of the sy18 mutation causing impairment of synapsis homology were studied. It was established that the abnormal phenotype is determined by a recessive allele of the sy18 gene. Univalents and multivalents are observed in homozygotes for this mutant allele. According to the electron microscopic analysis of synaptonemal complexes in mutants, homologous synapsis occurs together with nonhomologous synapsis. The sy18 gene was found to have no allelism with asynaptic genes sy1 and sy9 and with genes sy10 and sy19 causing, like sy18, disturbances in synapsis homology.  相似文献   

4.

Sirtuins are NAD+-dependent protein deacylases and ADP-ribosyltransferases that are involved in a wide range of cellular processes including genome homeostasis and metabolism. Sirtuins are expressed in human and mouse oocytes yet their role during female gamete development are not fully understood. Here, we investigated the role of a mammalian sirtuin member, SIRT7, in oocytes using a mouse knockout (KO) model. Sirt7 KO females have compromised fecundity characterized by a rapid fertility decline with age, suggesting the existence of a diminished oocyte pool. Accordingly, Sirt7 KO females produced fewer oocytes and ovulated fewer eggs. Because of the documented role of SIRT7 in DNA repair, we investigated whether SIRT7 regulates prophase I when meiotic recombination occurs. Sirt7 KO pachynema-like staged oocytes had approximately twofold increased γH2AX signals associated with regions with unsynapsed chromosomes. Consistent with the presence of asynaptic chromosome regions, Sirt7 KO oocytes had fewer MLH1 foci (~one less), a mark of crossover-mediated repair, than WT oocytes. Moreover, this reduced level of crossing over is consistent with an observed twofold increased incidence of aneuploidy in Metaphase II eggs. In addition, we found that acetylated lysine 18 of histone H3 (H3K18ac), an established SIRT7 substrate, was increased at asynaptic chromosome regions suggesting a functional relationship between this epigenetic mark and chromosome synapsis. Taken together, our findings demonstrate a pivotal role for SIRT7 in oocyte meiosis by promoting chromosome synapsis and have unveiled the importance of SIRT7 as novel regulator of the reproductive lifespan.

  相似文献   

5.
Two paracentric inversions in the mouse, In(1)1 Rk and In(2)5 Rk, have been studied in surface microspreads of spermatocytes from heterozygotes. At zytogene, synaptic initiation occurs independently in three regions: within the inversion, and without, on either side. Synaptonemal complex (SC) formation is restricted to homologous regions, resulting in inversion loops in all early pachytene spermatocytes. An adjusting phase then occurs during pachytene in which the inversion loop is reduced by desynapsis of homologously synapsed SC, followed immediately by non-homologous synapsis with the alternate pairing partner, progressing from the ends toward the middle. Adjustment occurs during the first half of pachytene, but is not closely synchronized with sub-stage. It is complete by late pachytene, the loop having been eliminated in all cases and replaced by straight SCs in which the inverted region is heterosynapsed. Synapsis in the adjustment phase is evidently permitted only after the homosynaptic phase, and is indifferent to homology. It may lead to heterosynapsis, as in the inversion region, or to synapsis of homologous regions not synapsed at zytogene. The anaphase bridge frequency, a measure of crossing over within the inversion, is about 34% for both inversions studied, indicating that such crossovers do not block adjustment, that crossing over probably occurs before or during the adjustment period, and that there is some crossover suppression. The last could be the consequence of blocking by desynapsis/heterosynapsis. Synaptic adjustment appears to be a general phenomenon that occurs to varying extents in different forms. A hypothetical scheme for two phases of synapsis is proposed: at zytogene, a basic propensity for indifferent SC formation is limited by a restricting condition to synapsis between homologous regions. Subsequently, the restriction is lifted, whereupon synaptic instability is resolved by desynapsis, followed by resynapsis that is indifferent to homology, but that results in a topologically more stable structure.  相似文献   

6.
Synapsis of homologous chromosomes is a key event in meiosis as it is essential for normal chromosome segregation and is implicated in the regulation of crossover frequency. We have previously reported the identification and cytological characterisation of a T-DNA-tagged asynaptic mutant of Arabidopsis thaliana. We have demonstrated that this mutant, asy1, is defective in meiosis in both males and females. Cloning and nucleotide sequencing of the ASY1 gene has revealed that it encodes a polypeptide of 596 amino acids that exhibits similarity to the HOP1 gene of Saccharomyces cerevisiae, which is known to encode a protein essential for synaptonemal complex assembly and normal synapsis. Expression studies indicate that, in common with a number of other Arabidopsis meiotic genes, ASY1 exhibits low-level expression in a range of plant tissues. Southern analysis coupled with database searching has resulted in the identification of an ASY1 homologue, ASY2. Although asy1 exhibits a strong asynaptic phenotype, a residual low level of synapsis indicates that ASY1 and ASY2 may exhibit a low degree of functional redundancy. Received: 22 September 1999; in revised form: 18 October 1999 / Accepted: 18 October 1999  相似文献   

7.

Background  

Pairing and synapsis of homologous chromosomes is required for normal chromosome segregation and the exchange of genetic material via recombination during meiosis. Synapsis is complete at pachytene following the formation of a tri-partite proteinaceous structure known as the synaptonemal complex (SC). In yeast, HOP1 is essential for formation of the SC, and localises along chromosome axes during prophase I. Homologues in Arabidopsis (AtASY1), Brassica (BoASY1) and rice (OsPAIR2) have been isolated through analysis of mutants that display decreased fertility due to severely reduced synapsis of homologous chromosomes. Analysis of these genes has indicated that they play a similar role to HOP1 in pairing and formation of the SC through localisation to axial/lateral elements of the SC.  相似文献   

8.
Meiotic chromosome segregation relies on homologous chromosomes being linked by at least one crossover, the obligate crossover. Homolog pairing, synapsis and meiosis specific DNA repair mechanisms are required for crossovers but how they are coordinated to promote the obligate crossover is not well understood. PCH-2 is a highly conserved meiotic AAA+-ATPase that has been assigned a variety of functions; whether these functions reflect its conserved role has been difficult to determine. We show that PCH-2 restrains pairing, synapsis and recombination in C. elegans. Loss of pch-2 results in the acceleration of synapsis and homolog-dependent meiotic DNA repair, producing a subtle increase in meiotic defects, and suppresses pairing, synapsis and recombination defects in some mutant backgrounds. Some defects in pch-2 mutants can be suppressed by incubation at lower temperature and these defects increase in frequency in wildtype worms grown at higher temperature, suggesting that PCH-2 introduces a kinetic barrier to the formation of intermediates that support pairing, synapsis or crossover recombination. We hypothesize that this kinetic barrier contributes to quality control during meiotic prophase. Consistent with this possibility, defects in pch-2 mutants become more severe when another quality control mechanism, germline apoptosis, is abrogated or meiotic DNA repair is mildly disrupted. PCH-2 is expressed in germline nuclei immediately preceding the onset of stable homolog pairing and synapsis. Once chromosomes are synapsed, PCH-2 localizes to the SC and is removed in late pachytene, prior to SC disassembly, correlating with when homolog-dependent DNA repair mechanisms predominate in the germline. Indeed, loss of pch-2 results in premature loss of homolog access. Altogether, our data indicate that PCH-2 coordinates pairing, synapsis and recombination to promote crossover assurance. Specifically, we propose that the conserved function of PCH-2 is to destabilize pairing and/or recombination intermediates to slow their progression and ensure their fidelity during meiotic prophase.  相似文献   

9.
Spontaneous meiotic mutations of winter rye Secale cereale L. (2n = 14) were revealed in inbred F2 progenies, which were obtained by self-pollination of F1 hybrids resulting from crosses of individual plants of cultivar Vyatka or weedy rye with plants of self-fertile inbred lines. The mutations cause partial or complete sterility, and are maintained in heterozygote condition. Six types of mutations were distinguished as the result of cytological analysis of meiosis and genetic analysis. (1) Plants with nonallelic asynaptic mutations sy1 and sy9 lacked bivalents in 96.8 and 67.0% metaphase I cells, respectively, formed only axial elements but not the mature synaptonemal complex (SC), and had defects in telomere clustering in early prophase I. (2) Weak asynaptic mutant sy3 showed incomplete synapsis at the start of SC degradation at diplotene and lower chiasma number; yet only 2% meiocytes lacked bivalents in MI. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19 caused nonhomologous synapsis; i.e., a varying number of univalents and occasional multivalents were observed in MI, which was preceded by switches of pairing partners and fold-back synapsis at mid-prophase I. (4) Mutation mei6 led to the formation of protrusions and minor branched structures of the SC lateral elements. (5) Allelic mutations mei8 and mei8-10 caused irregular chromatin condensation along the chromosome length in prophase I, which was accompanied by chromosome sticking and fragmentation in MI. (6) Allelic mutations mei5 and mei10 determined chromosome supercondensation, caused the disturbance of meiotic spindle assembly, arrested meiosis at various stages but did not affect formation of the pollen wall, thus arrested meiocytes got covered with the pollen wall. Analysis of double mutants revealed recessive epistatic interactions for some mutations; the epistatic group was sy9 > sy1 > sy3 > sy19. This reflects the sequence of meiotic events controlled by the corresponding genes. The expression of sy2 and sy19 proved to be modified by additional genes. Most meiotic mutations found in rye have analogs in other plants.  相似文献   

10.
The synaptonemal complex (SC) is an intricate structure that forms between homologous chromosomes early during the meiotic prophase, where it mediates homolog pairing interactions and promotes the formation of genetic exchanges. In Drosophila melanogaster, C(3)G protein forms the transverse filaments (TFs) of the SC. The N termini of C(3)G homodimers localize to the Central Element (CE) of the SC, while the C-termini of C(3)G connect the TFs to the chromosomes via associations with the axial elements/lateral elements (AEs/LEs) of the SC. Here, we show that the Drosophila protein Corona (CONA) co-localizes with C(3)G in a mutually dependent fashion and is required for the polymerization of C(3)G into mature thread-like structures, in the context both of paired homologous chromosomes and of C(3)G polycomplexes that lack AEs/LEs. Although AEs assemble in cona oocytes, they exhibit defects that are characteristic of c(3)G mutant oocytes, including failure of AE alignment and synapsis. These results demonstrate that CONA, which does not contain a coiled coil domain, is required for the stable ‘zippering’ of TFs to form the central region of the Drosophila SC. We speculate that CONA's role in SC formation may be similar to that of the mammalian CE proteins SYCE2 and TEX12. However, the observation that AE alignment and pairing occurs in Tex12 and Syce2 mutant meiocytes but not in cona oocytes suggests that the SC plays a more critical role in the stable association of homologs in Drosophila than it does in mammalian cells.  相似文献   

11.
Mitra N  Roeder GS 《Genetics》2007,176(2):773-787
During meiotic prophase, assembly of the synaptonemal complex (SC) brings homologous chromosomes into close apposition along their lengths. The Zip1 protein is a major building block of the SC in Saccharomyces cerevisiae. In the absence of Zip1, SC fails to form, cells arrest or delay in meiotic prophase (depending on strain background), and crossing over is reduced. We created a novel allele of ZIP1, zip1-4LA, in which four leucine residues in the central coiled-coil domain have been replaced by alanines. In the zip1-4LA mutant, apparently normal SC assembles with wild-type kinetics; however, crossing over is delayed and decreased compared to wild type. The zip1-4LA mutant undergoes strong checkpoint-induced arrest in meiotic prophase; the defect in cell cycle progression is even more severe than that of the zip1 null mutant. When the zip1-4LA mutation is combined with the pch2 checkpoint mutation, cells sporulate with wild-type efficiency and crossing over occurs at wild-type levels. This result suggests that the zip1-4LA defect in recombination is an indirect consequence of cell cycle arrest. Previous studies have suggested that the Pch2 protein acts in a checkpoint pathway that monitors chromosome synapsis. We hypothesize that the zip1-4LA mutant assembles aberrant SC that triggers the synapsis checkpoint.  相似文献   

12.
Meiotic recombination (MR) drives novel combinations of alleles and contributes to genomic diversity in eukaryotes. In this study, we showed that heat stress (36°C–38°C) over the fertile threshold fully abolished crossover formation in Arabidopsis (Arabidopsis thaliana). Cytological and genetic studies in wild-type plants and syn1 and rad51 mutants suggested that heat stress reduces generation of SPO11-dependent double-strand breaks (DSBs). In support, the abundance of recombinase DMC1, which is required for MR-specific DSB repair, was significantly reduced under heat stress. In addition, high temperatures induced disassembly and/or instability of the ASY4- but not the SYN1-mediated chromosome axis. At the same time, the ASY1-associated lateral element of the synaptonemal complex (SC) was partially affected, while the ZYP1-dependent central element of SC was disrupted, indicating that heat stress impairs SC formation. Moreover, expression of genes involved in DSB formation; e.g. SPO11-1, PRD1, 2, and 3 was not impacted; however, recombinase RAD51 and chromosome axis factors ASY3 and ASY4 were significantly downregulated under heat stress. Taken together, these findings revealed that heat stress inhibits MR via compromised DSB formation and homolog synapsis, which are possible downstream effects of the impacted chromosome axis. Our study thus provides evidence shedding light on how increasing environmental temperature influences MR in Arabidopsis.

Heat stress inhibits CO formation by affecting SPO11-dependent DSB formation and synapsis of homologous chromosomes, probably through its impact on chromosome axis.  相似文献   

13.
Summary Two recessive mutants spo76 and spo77, altered in U.V. sensitivity, protoplast regeneration and meiotic recombination were isolated in Sordaria macrospora. The suppression of the spo76 phenotype by spo77 suggests that they are involved in the same pathway. The asynaptic spo77 exhibits a rare synaptonemal complex (SC) with abnormally thick and double lateral elements (LE). In spo76, an early centromere cleavage leads to a meiotic arrest after metaphase I; SC are formed, but their discontinuous LE appear to be either unique or split into two thin LE. It is suggested that the corresponding wild-type functions are required for the sister chromatid cohesiveness.  相似文献   

14.
Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome “bouquet” was impaired, and all chromosomes were univalent in meiotic metaphase I in 96.8% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase I. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with 14 univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei8-10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species.  相似文献   

15.
Synapsis of homologs during meiotic prophase I is associated with a protein complex built along the bivalents—the synaptonemal complex (SC). Mutations in the SC-component gene ZIP1 diminish SC formation, leading to reduced recombination levels and low spore viability. Here we show that in SK1 strains heterozygous for a deletion of ZIP1 in certain regions meiotic interference are impaired with no decrease in recombination levels. The extent of synapsis is over all reduced and NDJ levels of a large endogenous chromosome and of artificial chromosomes (YACs) rise to twice the level of wild type strains. A substantial proportion of mis-segregating YACs had undergone crossing over. This demonstrates that different functions of Zip1 display differential sensitivities to changes in expression levels.  相似文献   

16.
The budding yeast MSH4 gene encodes a MutS homolog produced specifically in meiotic cells. Msh4 is not required for meiotic mismatch repair or gene conversion, but it is required for wild-type levels of crossing over. Here, we show that a msh4 null mutation substantially decreases crossover interference. With respect to the defect in interference and the level of crossing over, msh4 is similar to the zip1 mutant, which lacks a structural component of the synaptonemal complex (SC). Furthermore, epistasis tests indicate that msh4 and zip1 affect the same subset of meiotic crossovers. In the msh4 mutant, SC formation is delayed compared to wild type, and full synapsis is achieved in only about half of all nuclei. The simultaneous defects in synapsis and interference observed in msh4 (and also zip1 and ndj1/tam1) suggest a role for the SC in mediating interference. The Msh4 protein localizes to discrete foci on meiotic chromosomes and colocalizes with Zip2, a protein involved in the initiation of chromosome synapsis. Both Zip2 and Zip1 are required for the normal localization of Msh4 to chromosomes, raising the possibility that the zip1 and zip2 defects in crossing over are indirect, resulting from the failure to localize Msh4 properly.  相似文献   

17.
M P Maguire  R W Riess 《Génome》1996,39(6):1194-1198
More detailed observations of the synaptonemal complex (SC) in asynaptic maize plants have been faciliated by superior silver-staining procedures. These suggest that central region components of the SC are strongly implicated as defective in asynaptic. Apparently homologous axial elements tend to follow roughly parallel courses within the nucleus at pachytene, in some short segments apparently synapsed and in others at wider separation than normal synapsis yet close enough to allow observation of thin central element segments and also occasional thin transverse element-type structures. This kind of transverse filament may be weakened and severely stretched yet associated with both axial elements. Small nodules, similar to recombination nodules, appear at corresponding positions in widely separated axial elements. Key words : synaptonemal complex, central element, transverse filament, recombination nodule.  相似文献   

18.
Analysis of manifestation and inheritance of a new mutation inducing irregular synapsis in rye showed that abnormal phenotype is determined by a recessive allele of the sy19 gene. In the homozygotes for this mutation, even at the light microscopic level, abnormal formation of bivalents is already observed at pachytene–diakinesis. At metaphase I, the univalent frequency varies from 0 to 14; in a few cells, multivalent associations of chromosomes, which are not clearly oriented in the spindle, are detected. Electron microscopy of synaptonemal complexes revealed both homologous and heterologous synapsis in homozygotes for sy19, namely partial loss of the ability to stringent homology search. Analysis of joint inheritance of sy19 and asynaptic sy1 mutations showed that they are nonallelic, inherited independently, and interact by recessive epistasis. The phenotype of doublesy1sy19 mutants indicates that thesy19 gene conditioning heterologous synapsis operates at meiosis later than the synaptic gene sy1. The epistatic group of mutations, sy9 > sy1 > sy19 and sy3, was determined.  相似文献   

19.
Meiotic chromosome synapsis in a haploid yeast   总被引:14,自引:0,他引:14  
An extensive synaptonemal complex (SC) is found at pachytene in whole mount spread preparations of a haploid yeast, Saccharomyces cerevisiae, strain. Whereas unsynapsed axial elements are present only in a few nuclei, in others non-homologous synapsis involves virtually the whole chromosome set. This suggests that homology is not an indispensable precondition for SC formation in yeast but that chromosomes engage in non-homologous synapsis if no homologous partner is available. Recent evidence that in the sporulation deficient yeast mutants rad50 and mer1 axial elements do form but remain unsynapsed in the majority of nuclei is discussed in the light of the above findings.by D. Schweizer  相似文献   

20.
Formation of the synaptonemal complex (SC), or synapsis, between homologs in meiosis is essential for crossing over and chromosome segregation [1-4]. How SC assembly initiates is poorly understood but may have a critical role in ensuring synapsis between homologs and regulating double-strand break (DSB) and crossover formation. We investigated the genetic requirements for synapsis in Drosophila and found that there are three temporally and genetically distinct stages of synapsis initiation. In "early zygotene" oocytes, synapsis is only observed at the centromeres. We also found that nonhomologous centromeres are clustered during this process. In "mid-zygotene" oocytes, SC initiates at several euchromatic sites. The centromeric and first euchromatic SC initiation sites depend on the cohesion protein ORD. In "late zygotene" oocytes, SC initiates at many more sites that depend on the Kleisin-like protein C(2)M. Surprisingly, late zygotene synapsis initiation events are independent of the earlier mid-zygotene events, whereas both mid and late synapsis initiation events depend on the cohesin subunits SMC1 and SMC3. We propose that the enrichment of cohesion proteins at specific sites promotes homolog interactions and the initiation of euchromatic SC assembly independent of DSBs. Furthermore, the early euchromatic SC initiation events at mid-zygotene may be required for DSBs to be repaired as crossovers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号