首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To show the importance of priming prior to growth hormone (GH) stimulation tests in the diagnosis of GH deficiency, the effect of different doses and schedules of testosterone (T) on GH levels. PATIENTS AND METHODS: Eighty-four prepubertal and early pubertal boys whose heights were 2 SD below the mean and height velocities <4 cm per year and who failed in GH stimulation tests were included in the study. The boys were divided into two groups: the first group consisting of 41 boys was primed with 62.5 mg/m(2) (low dose testosterone - LDT) and the second group consisting of 43 boys with 125 mg/m(2) depot testosterone (conventional dose testosterone - CDT) intramuscularly 1 week before the stimulation test. Twenty-one boys out of 36 who failed in GH stimulation tests after one dose T injection were treated with three doses of 62.5 mg/m(2) T (multiple dose testosterone - MDT) injections monthly and retested. RESULTS: The GH levels increased from 4.80 +/- 2.78 to 11.50 +/- 8.84 ng/ml and from 4.76 +/- 2.46 to 12.98 +/- 8.30 ng/ml by priming with LDT and CDT respectively. The increment of mean GH levels by both LDT and CDT were found to be similar (p = 0.443). The peak GH levels were found to be elevated >10 ng/ml in 22/41 (54%) and 26/43 (60%) who received LDT and CDT respectively (p = 0.528). The mean GH level of 21 boys who received MDT was increased from 5.38 +/- 2.50 ng/ml (by priming with one dose T) to 10.19 +/- 6.13 ng/ml (p = 0.004). Twelve (57%) of 21 boys who received MDT responded to GH stimulation test >10 ng/ml. The T level increased from 0.71 +/- 0.97 to 4.54 +/- 2.80 ng/ml by LDT (p < 0.001) and from 0.65 +/- 0.71 to 7.18 +/- 3.18 ng/ml by CDT (p < 0.001). The increment of T level was higher by CDT than LDT (p = 0.001). There was no correlation between T and peak GH levels after priming. CONCLUSION: LDT is as effective as CDT in priming of GH stimulation tests. The ones who failed in GH stimulation tests after one dose T injection can be primed with MDT. The stimulated GH level after priming was related neither to the plasma level of T nor the dose of T.  相似文献   

2.
3.
A review of literature demonstrates that there are many ill-understood factors that determine the results of GH provocative (re)testing, so that these results should be interpreted with extreme caution when used for diagnosis or confirmation of diagnosis of GHD. GH provocation tests are probably of no value at all for what has been called 'partial GHD'. The phenomenon of 'normalization' of test results after long-term treatment with GH needs no 'transient GHD' hypothesis as it can be largely explained by the very low reproducibility of the tests and by a regression to the mean effect. Moreover, it is possible that 'normal values' increase with age. Other determinants of normal peak values may also change from childhood to adulthood and contribute to 'normalization'.  相似文献   

4.
5.
6.
To evaluate the dynamics of growth hormone (GH) secretion in healthy prepubertal children of normal stature, we determined spontaneous GH secretion by measuring GH every 30 min in 21 Japanese subjects, age: 5.4 +/- 2.3 (1.6-10.6) years; height: -1.4 +/- 1.1 (-1.98-1.77) SD. The 24-h mean GH concentration was 4.8 +/- 1.5 ng/ml. The 24-h mean GH was similar in boys and girls (mean +/- SD: 4.8 +/- 1.7 vs 4.7 +/- 1.1 ng/ml). No correlation was found between chronological age and the 24-h mean GH. The 24-h mean GH was closely correlated with GH pulse amplitude (r = 0.94; P less than 0.001), but not with the number of GH pulses. The 24-h mean GH was also highly correlated with 3-h mean GH after sleep and 3-h peak GH after sleep (r = 0.86; P less than 0.001 and r = 0.72; P less than 0.001, respectively). Our data suggest that in healthy prepubertal children of normal stature, (1) spontaneous GH secretion is independent of sex and age, (2) the amount of spontaneous GH secretion is controlled by pulse amplitude, not by number of pulses. (3) 3-h mean GH and 3-h peak GH after sleep might represent 24-h total spontaneous GH secretion.  相似文献   

7.
Ghrelin stimulates growth hormone (GH) secretion, but it is unknown whether there is a feedback of GH on ghrelin secretion. In this study, we characterized the relatedness of GH and ghrelin in a model of acute caloric deprivation in 10 healthy women (age 26.7 +/- 1.6 yr) during a 4-day fast in the early follicular phase. GH, ghrelin, and cortisol were assessed every hour over 24 h during an isocaloric diet and after a 4-day complete fast. Sampling during a normal diet at baseline demonstrated that ghrelin decreased 17.9% within 1 h after meals (P < 0.0001), but there was no meal effect on GH. BMI (22.3 +/- 0.4 vs. 21.5 +/- 0.4 kg/m2, P < 0.0001) and IGF-I (312 +/- 28 vs.124 +/- 22 ng/ml, P < 0.0001) decreased during fasting. Mean 24-h GH increased (2.6 +/- 0.5 vs. 5.6 +/- 0.5 ng/ml, P < 0.001), but ghrelin decreased (441.3 +/- 59.7 vs. 359.8 +/- 54.2 pg/ml, P = 0.012). The peak ghrelin level decreased from 483.5 to 375.6 pg/ml (P < 0.0001), and the time of the peak ghrelin changed from 0415 to 1715. In contrast, the diurnal pattern of GH was maintained, with increases in the nadir (1.1 to 3.4 ng/ml) and peak GH concentrations (4.1 to 7.9 ng/ml) from the fed to fasted state (P < 0.0001). The change in morning GH concentrations was inversely related to the change in ghrelin (r = -0.79, P = 0.012). During complete short-term caloric deprivation in healthy women, ghrelin decreases, even as GH rises, and these processes appear to be reciprocal, suggesting that GH exhibits feedback inhibition on ghrelin. Our data provide new evidence of the physiological relationship of GH and ghrelin in response to changes in protein-energy metabolism.  相似文献   

8.
Growth hormone (GH) has a positive impact on muscle mass, growth and bone formation. It is known to interact with the bone-forming unit, with well-documented increases in markers of bone formation and bone resorption within weeks of the start of GH therapy. These changes relate significantly to short-term growth rate, but it is not evident that they predict long-term response to GH therapy. The consequences of GH deficiency (GHD) and GH replacement therapy on bone mineral density (BMD) have been difficult to interpret in children because of the dependency of areal BMD on height and weight. Some studies have tried to overcome this problem by calculating volumetric BMD, but results are conflicting. The attainment of a normal peak bone mass in an individual is considered important for the future prevention of osteoporosis. From the limited data available, it appears difficult to normalize bone mass totally in GH-deficient individuals, despite GH treatment for long periods. Studies to date examining the interaction between GH and bone have included only small numbers of individuals, making it difficult to interpret the study findings. It is hoped that these issues can be clarified in future research by the direct measurement of bone density (using quantitative computer tomography). Mineralization is only one facet of bone strength, however; other important components (e.g. bone structure and geometry) should be addressed in future paediatric studies. Future studies could also address the importance of the degree of GHD in childhood; how GH dose and insulin-like growth factor-I levels achieved during therapy relate to the final outcome; whether or not the continuation of GH therapy after the attainment of final height may further enhance bone mass; whether the timing and dose of other treatments (e.g. sex hormone replacement therapy) are critical to the outcome; and whether GHD in childhood is associated with an increased risk of fracture.  相似文献   

9.
Human immunodeficiency virus (HIV)-lipodystrophy is a syndrome characterized by changes in fat distribution and insulin resistance. Prior studies suggest markedly reduced growth hormone (GH) levels in association with excess visceral adiposity among patients with HIV-lipodystrophy. We investigated mechanisms of altered GH secretion in a population of 13 male HIV-infected patients with evidence of fat redistribution, compared with 10 HIV-nonlipodystrophic patients and 11 male healthy controls similar in age and body mass index (BMI). Although similar in BMI, the lipodystrophic group was characterized by increased visceral adiposity, free fatty acids (FFA), and insulin and reduced extremity fat. We investigated ghrelin and the effects of acute lowering of FFA by acipimox on GH responses to growth hormone-releasing hormone (GHRH). We also investigated somatostatin tone, comparing GH response to combined GHRH and arginine vs. GHRH alone with a subtraction algorithm. Our data demonstrate an equivalent number of GH pulses (4.1 +/- 0.6, 4.7 +/- 0.8, and 4.5 +/- 0.3 pulses/12 h in the HIV-lipodystrophic, HIV-nonlipodystrophic, and healthy control groups, respectively, P > 0.05) but markedly reduced GH secretion pulse area (1.14 +/- 0.27 vs. 4.67 +/- 1.24 ng.ml(-1).min, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 1.14 +/- 0.27 vs. 3.18 +/- 0.92 ng.ml(-1).min, P < 0.05 HIV-lipodystrophic vs. control), GH pulse area, and GH pulse width in the HIV-lipodystrophy patients compared with the control groups. Reduced ghrelin (418 +/- 46 vs. 514 +/- 37 pg/ml, P < 0.05, HIV-lipodystrophic vs. HIV-nonlipodystrophic; 418 +/- 46 vs. 546 +/- 45 pg/ml, P < 0.05, HIV-lipodystrophic vs. control), impaired GH response to GHRH by excess FFA, and increased somatostatin tone contribute to reduced GH secretion in patients with HIV-lipodystrophy. These data provide novel insight into the metabolic regulation of GH secretion in subjects with HIV-lipodystrophy.  相似文献   

10.
In Prader-Willi syndrome (PWS) growth hormone therapy (GHT) improves height, body composition, agility and muscular strength. In such patients it is necessary to consider the potential diabetogenic effect of GHT, since they tend to develop type 2 diabetes, particularly after the pubertal age. The aim of our study was to investigate the effects of GHT on glucose and insulin homeostasis in PWS children. An oral glucose tolerance test (OGTT) was performed in 24 prepubertal PWS children (15 male, 9 female, age: 5.8 +/- 2.8 years), 16 were obese (group A) and 8 had normal weight (group B), before and after 2.7 +/- 1.3 years GHT (0.22 +/- 0.03 mg/kg/week) and, only at baseline, in 35 prepubertal children with simple obesity (19 male, 16 female) (group C). Fasting glucose and insulin, glucose tolerance, insulin sensitivity index (ISI), homeostasis model assessment of insulin resistance (HOMA-IR), quick insulin check index (QUICKI), area under the curves (AUC) of glucose and insulin were estimated. At the start of GHT, all PWS children were normoglycaemic and normotolerant but two developed impaired glucose tolerance after 2.2 and 1.9 years of therapy, respectively. At baseline, group A showed lower fasting insulin levels, HOMA-IR and AUC of insulin, higher ISI, QUICKI and AUC of glucose than group C. Comparing groups A and B, AUC of insulin was higher and ISI lower in group A. During GHT, a significant increase of fasting insulin and glucose, a worsening of insulin resistance (HOMA-IR) and insulin sensitivity (QUICKI) was found only in group A while ISI did not change. The AUC of glucose decreased in both groups instead AUC of insulin did not change. BMI-SDS decreased in group A and increased in group B. The increased insulin resistance and decreased insulin sensitivity in obese PWS patients, as well as the occurrence of impaired glucose tolerance during GHT, suggest that a close monitoring of glucose and insulin homeostasis is mandatory, especially in treated obese PWS children.  相似文献   

11.
15 prepubertal children with short stature and varying peak growth hormone (GH) levels were given daily injections of increasing doses of human growth hormone (hGH) for consecutive periods of 7 days. Somatomedin activity (SM-act) and total urinary hydroxyproline excretion (THP) were determined in each period. In patients with a varying degree of GH deficiency, but without non-pituitary dependent abnormalities, there was a high correlation between basal SM-act and height velocity. Patients with catch-up growth had an unproportionally low SM-act and the Prader-Willi and transient Cushing patients had an unproportionally high one. All patients showed increases of SM-act and THP on hGH administration, but there was considerable variation of the shape of the curve and of the amplitude of the response. 3 1/2 days after the last injection, SM-act was back to basal level. There was a good correlation between weight-for-height and SM-act during the first two hGH doses, which fits the hypothesis of GH and insulin synergism on SM generation.  相似文献   

12.
52 patients (42 children and 10 adults) with growth hormone deficiency (GHD), grouped into four diagnostic categories, and 6 children with constitutional short stature who served as controls were tested for plasma GH response to synthetic GH-RH1-44 given in an intravenous bolus. The response was classified into three degrees according to the magnitude of the maximal rise: Good, greater than 9 ng/ml; Partial, 3.1-9.0 ng/ml; None, less than or equal to 3 ng/ml. Among the GHD patients the highest response was observed in patients with partial growth hormone deficiency (PGHD), and 60% of the children with isolated GH deficiency (IGHD) showed an increase in plasma GH levels. Nevertheless, the response of the GHD patients was lower than that in the control group. In the children and adolescents with PGHD and IGHD the response was not age related. Among those with multiple pituitary hormone deficiencies-idiopathic (MPHD-ID) there was no response in the adolescents although a hypothalamic disorder had been documented by other tests. Among those with MPHD-organic (MPHD-ORG) the GH-RH stimulated GH secretion in the patients with glioma, who had received only irradiation treatment, and in the youngest of the patients with craniopharyngioma. Of the 10 young adults tested none showed a good response. It is concluded that GH-RH is useful in differentiating between GH deficiency of hypothalamic origin and that of pituitary origin, and in selecting those patients who might benefit from long-term treatment with GH-RH in the future.  相似文献   

13.
For some years, research in the field of growth endocrinology has been mainly focused on growth hormone (GH). However, it appears that GH does not always control growth rate. For instance, it does not clearly influence intra-uterine growth: moreover, although the results of GRF or GH administration appear convincing in rats, pigs or heifers, this is not the case in chickens and lambs. In addition, GH does not always clearly stimulate somatomedin production, particularly diring food restriction and fetal life, and in hypothyroid animals or sex-linked dwarf chickens. In such situations, this phenomenon is associated with a reduced T3 production, suggesting a significant influence of thyroid function on GH action, and more generally, on body growth. In fact, numerous data demonstrate that thyroid hormone is strongly involved in the regulation of body growth. In species with low maturity at birth, such as the rat. T4 and T3 affect postnatal growth eleven days earlier than the appearance of GH influence. In contrast to GH, thyroid hormone significantly influences fetal growth in sheep. Moreover, the body growth rate is clearly stimulated by T3 in dwarf animals. In addition to its complex metabolic effects involved in the general mechanisms of body growth, thyroid hormone stimulates the production of growth factors, particularly EGF and NGF. Moreover, it affects GH and somatomedin production and also their tissue activity. All these results strongly suggest that it would be difficult to study GH regulation and physiological effects without taking thyroid function into account.  相似文献   

14.
The effects of iv administration of growth hormone-releasing factor (GRF) on growth hormone (GH) release and on nitrogen metabolism were measured in prepubertal calves. Crossbred beef heifers (111 kg) were used in a Latin square design to test the effects of 0, 0.01, 0.033, 0.067, and 0.1 microgram human pancreatic (hp) GRF [hpGRF (1,40)OH]/kg body wt on plasma GH concentrations. When they were given doses of 0.067 and 0.1 microgram hpGRF/kg body wt, plasma GH increased (P less than 0.05) within 5-15 min, compared with injections of control buffer, and then returned to preinjection concentrations. The response to 0.067 microgram hpGRF/kg body wt every 3 hr for 42 hr was studied in five heifers (137 kg body wt). The animals responded to 50% of the GRF injections with an increase in plasma GH during every 6-hr period measured. Nitrogen retention, hormone concentrations, and weight gain were measured in five bull calves (90 kg body wt) administered 0 or 0.067 microgram Nle rat hypothalamic GRF (1,29)NH2/kg body wt every 4 hr for 10 days. Metabolic parameters were interpreted to indicate an anabolic response to GRF even though increases of 16% in nitrogen retention, 23% in plasma somatomedin C concentrations, and 36% in weight gain with pulsatile GRF treatment were variable and statistically similar to those of controls. These results indicate that GRF induces peak GH secretion within 15 min in prepubertal calves and that calves can respond to multiple injections of GRF with an increase in plasma GH.  相似文献   

15.
Ghrelin, a novel endogenous growth hormone (GH) secretagogue, has been shown to exert very potent and specific GH-releasing activity in rats and humans. However, little is known about its GH-releasing activity and endocrine effects in domestic animals. To clarify the effect of ghrelin on GH secretion in vivo in ruminants, plasma GH responses to intra-arterial and intra-hypothalamic injections of rat ghrelin (rGhrelin) were examined in goats and cattle. The intra-arterial injection of 1 microg/kg BW of rGhrelin in ovariectomized goats failed to stimulate GH release, however, a dosage of 3 microg/kg BW significantly increased plasma GH concentrations (P<0.05). GH levels peaked at 15 min after the injection, then decreased to basal concentrations within 1 h after the injection. However, the secretory response to 3 microg/kg BW of rGhrelin was weaker than that of growth hormone-releasing hormone (GHRH) (0.25 microg/kg BW) (P<0.05). An infusion of 10 nmol of ghrelin into the medial basal hypothalamus (arcuate nucleus) significantly stimulated the release of GH in male calves (P<0.05). GH levels began to rise just after the infusions and peaked at 10 min, then decreased to the basal concentrations within 1 h after the injection. The present results show that ghrelin stimulates GH release in ruminants.  相似文献   

16.
OBJECTIVE: To evaluate the factors influencing the growth hormone (GH) response to GH-releasing hormone (GHRH) test in idiopathic GH deficiency. METHODS: 28 patients aged 4.9 +/- 0.7 years with certain GH deficiency were given GHRH (2 microg/kg). RESULTS: The GH peak after GHRH was correlated negatively with age at evaluation (r = -0.37, p < 0.05) and body mass index (r = -0.44, p = 0.02), and positively with anterior pituitary height (r = 0.47, p = 0.02), GH peak after non-GHRH stimulation (r = 0.78, p < 0.0001) and spontaneous GH peak (r = 0.82, p = 0.007). It was lower in the patients aged >5 years than in the youngest (p = 0.04), but it was similar in the patients with and without features suggesting a hypothalamic origin. CONCLUSION: The GH response to GHRH test cannot be used to differentiate between hypothalamic and pituitary forms of idiopathic GH deficiency, probably because the GH response decreases after the first 5 years of life, whatever the origin of the deficiency.  相似文献   

17.
18.
Due to their lack of reproducibility, it is unlikely that GH stimulation tests can provide reliable diagnostic information to distinguish partial isolated GH deficiency (GHD) from idiopathic short stature (ISS). We hypothesized that the classical distinction between these groups, essentially based on stimulatory GH peaks, is artificial and that, as a consequence, the average response to GH treatment will not be different between them. The hypothesized lack of prognostic validity of stimulatory GH peaks was studied in 435 prepubertal children with nonorganic growth retardation. Children were categorized as 'severe GHD', 'partial GHD' or 'ISS', if the maximum rise in their serum GH during two GH stimulation tests was 0--10 mU/l, 10--20 mU/l, or >20 mU/l, respectively. Children with 'partial GHD' had short-term (1- and 2-year) and long-term (till final adult height) growth responses similar to those of children with ISS, significantly lower than the response seen in children with 'severe GHD'. In children with stimulatory GH peaks >10 mU/l, including those currently considered partially GH deficient, the maximum GH peak was not a significant determinant of growth response in the short or the long term. In conclusion, 'partial GHD' is ill defined and cannot be distinguished from ISS based on the currently applied auxological or GH stimulation test criteria alone. More research is required for better identification of (all) children who will respond to GH treatment, whether or not GH deficient.  相似文献   

19.
We previously demonstrated that a transient surge in plasma levels of ghrelin occurs just prior to a scheduled meal and that this surge is modified by the feeding regimen. This suggests that the ghrelin secretion is regulated by the autonomic nervous system, especially the cholinergic projections to the stomach. To test this hypothesis, we investigated changes in plasma ghrelin levels at feeding time in rams by administering cholinergic blockers (atropine and hexamethonium) and a cholinergic accelerator (metoclopramide). The average food intake in each group infused with atropine, hexamethonium, metoclopramide, and saline was 150+/-28, 137+/-46, 153+/-50, and 1075+/-25g, respectively. Plasma ghrelin concentrations increased (P<0.05) after i.v. infusion of hexamethonium and gradually decreased (P<0.05) after i.v. infusion of metoclopramide. Plasma ghrelin levels in hexamethonium-treated animals were greater (P<0.05) than those of atropine-treated animals. Plasma ghrelin levels were significantly (P<0.05) higher in sheep given i.v. infusions of atropine or hexamethonium than the levels in normal- or pair-fed sheep infused with saline. Plasma ghrelin levels were similar in metoclopramide-treated, pair-fed, and control animals. These results support the possibility that ghrelin secretion is regulated by cholinergic neurons of the vagus and that cholinergic activity suppresses ghrelin secretion in sheep.  相似文献   

20.
The effect of human growth hormone (hGH) on adrenal androgen secretion was assessed in 7 patients (5 males, 2 females) with GH deficiency but normal ACTH-cortisol function. Patients ranged in age from 9 5/12 to 14 8/12 years (median 12 years). Plasma concentrations of dehydroepiandrosterone-sulfate (DHEA-S) and urinary excretion of 17-ketosteroids (17-KS) and free cortisol were determined before, during short-term (2 U/day X 3) and after long-term (6 months) treatment with hGH. No significant change was noted in the plasma concentration or urinary excretion of steroids during the short-term administration of hGH. Despite a significant increase in growth velocity during 6 months of hGH therapy (8.2 vs. 4.5 cm/year, p less than 0.01), the plasma concentrations of DHEA-S and the urinary 17-KS and free cortisol levels were unchanged. These results fail to substantiate a role for hGH in the physiologic control of adrenal androgen secretion. Thus, the low plasma levels of adrenal androgens sometimes seen in GH-deficient patients are not due to the absence of GH per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号