首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The selenoenzyme sperm nuclei glutathione peroxidase (snGPx), also called the nuclear form of phospholipid hydroperoxide glutathione peroxidase (n-PHGPx), was found to be involved in the stabilization of condensed sperm chromatin, most likely by thiol to disulfide oxidation of the cysteine residues of the mammalian protamines, small nuclear basic proteins in the nuclei of sperm cells. By applying Acidic Urea-PAGE in combination with SDS-PAGE, snGPx with an apparent molecular mass of 34 kDa and a 24-kDa protein were purified from rat sperm nuclei. The 24-kDa protein was identified by means of mass spectrometry as a truncated form of snGPx produced by cleavage at the N-terminal end. After defined processing of spermatozoa and detergent treatment of the sperm nuclei fraction, snGPx and its truncated form were shown to be the only selenoproteins present in mature mammalian sperm nuclei. Both forms were found in mature rat and horse sperm nuclei but in man only snGPx was detected. In trout and chicken, species with sperm cells which likewise undergo chromatin condensation but do not contain cysteine in their protamines, the snGPx proteins were missing. This can be taken as an indirect proof of the function of snGPx to act as protamine cysteine thiol peroxidase in the mammalian species with cysteine-containing protamines.  相似文献   

2.
3.
4.
Bryant D  Cummins I  Dixon DP  Edwards R 《Phytochemistry》2006,67(14):1427-1434
A glutathione transferase (GST) related to the theta (T) class of enzymes found in plants and animals has been cloned from the potato pathogen Phytophthora infestans. The cDNA encoded a 25kDa polypeptide termed PiGSTT1 which was expressed in E. coli as the native protein. The purified recombinant enzyme behaved as a dimer (PiGSTT1-1) and while being unable to catalyse the glutathione conjugation of 1-chloro-2,4-dintrobenzene, was highly active as a glutathione peroxidase with organic hydroperoxide substrates. In addition to reducing the synthetic substrate cumene hydroperoxide, PiGSTT1-1 was shown to be highly active toward 9(S)-hydroperoxy-(10E,12Z,15Z)-octadecatrienoic acid=9(S)-HPOT, which is formed in potato plants during infection by P. infestans as a precursor of the antifungal oxylipin colnelenic acid. An antiserum was raised to PiGSTT1-1 and used to demonstrate that the respective enzyme was abundantly expressed in P. infestans both cultured on pea agar and during the infection of potato plants.  相似文献   

5.
We report here that spermatozoa of mice lacking both the sperm nucleus glutathione peroxidase 4 (snGPx4) and the epididymal glutathione peroxidase 5 (GPx5) activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the epididymis of the double KO animals mounted an antioxydant response resulting in a strong increase in the global H(2)O(2)-scavenger activity especially in the cauda epididymis. Quantitative RT-PCR data show that together with the up-regulation of epididymal scavengers (of the thioredoxin/peroxiredoxin system as well as glutathione-S-transferases) the epididymis of double mutant animals increased the expression of several disulfide isomerases in an attempt to recover normal disulfide-bridging activity. Despite these compensatory mechanisms cauda-stored spermatozoa of double mutant animals show high levels of DNA oxidation, increased fragmentation and greater susceptibility to nuclear decondensation. Nevertheless, the enzymatic epididymal salvage response is sufficient to maintain full fertility of double KO males whatever their age, crossed with young WT female mice.  相似文献   

6.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase   总被引:17,自引:0,他引:17  
The reduction of membrane-bound hydroperoxides is a major factor acting against lipid peroxidation in living systems. This paper presents the characterization of the previously described 'peroxidation-inhibiting protein' as a 'phospholipid hydroperoxide glutathione peroxidase'. The enzyme is a monomer of 23 kDa (SDS-polyacrylamide gel electrophoresis). It contains one gatom Se/22 000 g protein. Se is in the selenol form, as indicated by the inactivation experiments in the presence of iodoacetate under reducing conditions. The glutathione peroxidase activity is essentially the same on different phospholipids enzymatically hydroperoxidized by the use of soybean lipoxidase (EC 1.13.11.12) in the presence of deoxycholate. The kinetic data are compatible with a tert-uni ping-pong mechanism, as in the case of the 'classical' glutathione peroxidase (EC 1.11.1.9). The second-order rate constants (K1) for the reaction of the enzyme with the hydroperoxide substrates indicate that, while H2O2 is reduced faster by the glutathione peroxidase, linoleic acid hydroperoxide is reduced faster by the present enzyme. Moreover, the phospholipid hydroperoxides are reduced only by the latter. The dramatic stimulation exerted by Triton X-100 on the reduction of the phospholipid hydroperoxides suggests that this enzyme has an 'interfacial' character. The similarity of amino acid composition, Se content and kinetic mechanism, relative to the difference in substrate specificity, indicates that the two enzymes 'classical' glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are in some way related. The latter is apparently specialized for lipophylic, interfacial substrates.  相似文献   

7.
8.
Setaria cervi a bovine filarial parasite secretes selenium glutathione peroxidase during in vitro cultivation. A significant amount of enzyme activity was detected in the somatic extract of different developmental stages of the parasite. Among different stages, microfilariae showed a higher level of selenium glutathione peroxidase activity followed by males then females. However, when the activity was compared in excretory secretory products of these stages males showed higher activity than microfilariae and female worms. The enzyme was purified from female somatic extract using a combination of glutathione agarose and gel filtration chromatography, which migrated as a single band of molecular mass approximately = 20 kDa. Selenium content of purified enzyme was estimated by atomic absorption spectroscopy and found to be 3.5 ng selenium/microg of protein. Further, inhibition of enzyme activity by potassium cyanide suggested the presence of selenium at the active site of enzyme. This is the first report of identification of selenium glutathione peroxidase from any filarial parasite.  相似文献   

9.
In higher plants, C6 and C9 aldehydes are formed from C18 fatty acids, such as linoleic or linolenic acid, through formation of 13- and 9-hydroperoxides, followed by their stereospecific cleavage by fatty acid hydroperoxide lyases (HPL). Some marine algae can also form C6 and C9 aldehydes, but their precise biosynthetic pathway has not been elucidated fully. In this study, we show that Laminaria angustata, a brown alga, formed C6 and C9 aldehydes enzymatically. The alga forms C9 aldehydes exclusively from the C20 fatty acid, arachidonic acid, while C6 aldehydes are derived either from C18 or from C20 fatty acid. The intermediates in the biosynthetic pathway were trapped by using a glutathione/glutathione peroxidase system, and subjected to structural analyses. Formation of (S)-12-, and (S)-15-hydroperoxy arachidonic acids [12(S)HPETE and 15(S)HPETE] from arachidonic acid was confirmed by chiral HPLC analyses. These account respectively for C9 aldehyde and C6 aldehyde formation, respectively. The HPL that catalyzes formation of C9 aldehydes from 12(S)HPETE seems highly specific for hydroperoxides of C20 fatty acids.  相似文献   

10.
Boar ejaculate owes its characteristic large volume mainly to accessory sex gland (ASG) secretions. These are main contributors to the protective functions of seminal plasma, especially against oxidative damage. Numerous antioxidants have been detected in ASG secretions, and, respectively, in seminal plasma. However, as regards one key antioxidant protector -- the Se-dependent enzyme glutathione peroxidase (GPx) -- there is no agreement yet among researchers as to its presence in boar seminal plasma. Nevertheless, the beneficial effect of dietary Se supplementation on male fertility has been widely recognized. The aim of the present study was to investigate the localization and characterization of GPx in boar ASGs, seminal plasma, and spermatozoa, as well as to evaluate GPx activity in boar semen. Immunohistochemical assays demonstrated GPx presence in the epithelial cells, vacuole membranes, and vascular endothelium of boar seminal vesicle, prostate and bulbourethral glands. Western blot analysis demonstrated the presence of a monomer form of GPx with MW 20 kDa in lysates from seminal vesicle, prostate, bulbourethral glands, and spermatozoa, but not in seminal plasma. Surprisingly, peroxidase activity detected in seminal plasma from normal ejaculates was nearly three times as high as in spermatozoa. Our findings confirmed the presence of immunoreactive GPx in the boar reproductive tract, while further investigation is still warranted to uncover the exact protein forms involved and their function.  相似文献   

11.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) is regarded as the major molecular target of selenodeficiency in rodents, accounting for most of the histopathological and structural abnormalities of testicular tissue and male germ cells. PHGPx exists as a cytosolic form, mitochondrial form, and nuclear form (nPHGPx) predominantly expressed in late spermatids and spermatozoa. Here, we demonstrate that mice with a targeted deletion of the nPHGPx gene were, unlike mice with the full knockout (KO) of PHGPx, not only viable but also, surprisingly, fully fertile. While both morphological analysis of testis and epididymis and sperm parameter measurements did not show any apparent abnormality, toluidine blue and acridine orange stainings of spermatozoa indicated defective chromatin condensation in the KO sperm isolated from the caput epididymis. Furthermore, upon drying and hydrating, KO sperm exhibited a significant proportion of morphologically abnormal heads. Monobromobimane labeling and protein-free thiol titration revealed significantly less extensive oxidation in the cauda epididymis when compared to that in the wild type. We conclude that nPHGPx, by acting as a protein thiol peroxidase in vivo, contributes to the structural stability of sperm chromatin.  相似文献   

12.
Oxidative stress,spermatogenesis and fertility   总被引:4,自引:0,他引:4  
Reactive oxygen species production and glutathione depletion in mammalian male germ cells are physiological events that are requisite to the functional maturation and capacitation of spermatozoa. In relation to this oxidative stress, an oxidation of the bulk of protein sulfydryl groups takes place during the final phases of male germ cell maturation. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase catalyzes this reaction, and accounts for both the assembly of the mid-piece of spermatozoa and chromatin condensation. This process highlights the role of H2O2 and selenium in spermatogenesis and provides a mechanism for coupling a 'physiologically controlled' oxidative stress to a specialized phenotypic function.  相似文献   

13.
14.
Human tumor cell lines cultured in 75Se-containing media demonstrate four major 75Se-labeled cellular proteins (57, 22, 18, and 12 kDa) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Among these selenoproteins, an enzymatic activity is known only for the 22-kDa protein, since this protein has been identified as the monomer of glutathione peroxidase. However, all tested cell lines also contained a peroxidase activity with phospholipid hydroperoxides that is completely accounted for by the other selenoenzyme, phospholipid hydroperoxide glutathione peroxidase (PHGPX) (Ursini, F., Maiorino, M., and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62-70). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography of 75Se-labeled proteins separated by gel permeation chromatography supported the identification of PHGPX as the monomeric protein matching the 18 kDa band. This paper is the first report on the identification of PHGPX in human cells.  相似文献   

15.
Ebselen is an organoselenium compound that acts as a glutathione peroxidase mimic. Since ebselen is a hydrophobic, thio-reactive compound capable of interacting with Keap-1, we tested its ability to activate nrf-2-dependent responses in the human hepatocarcinoma derived cell line, HepG2. Ebselen (25 microM) increased expression of an nrf-2 response element reporter in transient transfection experiments by 4-fold. Although, the induction was lower than that observed with classic nrf-2 inducer, sulforaphane (10 microL; 7-fold), ebselen also induced expression of native NAD(P)H:quinone oxidoreductase (1.6-fold) activity; induction of this protein is known to be dependent on nrf-2 action. Treatment of HepG2 cells with ebselen increased glutathione levels after 12 (1.5-fold) or 24 (1.9-fold)h of treatment. Treatment of the cells with either sulforaphane or ebselen 24 h prior to treatment with varying concentrations of t-butyl hydroperoxide increased the half maximal lethal dose from 28 to 42 microM and 58 microM for sulforaphane and ebselen, respectively. The protective effects of ebselen treatment were greater with pretreatment (IC50=58 microM) than simultaneous addition (IC50=45 microM). The protein synthesis inhibitor cycloheximide blocked increases in intracellular glutathione synthesis and partially blocked the protective effects of this regimen on increasing cell survival following t-butyl hydroperoxide treatment. Likewise co-treatment with the MEK 1 inhibitor, PD98059, which has been shown to inhibit nrf-2-dependent gene activation, partially inhibited the ebselen-dependent increases in IC50 while not affecting the control cells. We conclude that nrf-2 activation augments the role of ebselen as an antioxidant or by indirect induction of cellular antioxidant defences.  相似文献   

16.
17.
Mouse and human spermatozoa, but not rabbit spermatozoa, have long been known to be sensitive to loss of motility induced by exogenous H2O2. Recent work has shown that loss of sperm motility in these species correlates with the extent of spontaneous lipid peroxidation. In this study, the effect of H2O2 on this reaction in sperm of the three species was investi gated. The rate of spontaneous lipid peroxidation in mouse and human sperm is markedly enhanced in the presence of 1-5 mM H2O2, while the rate in rabbit sperm is unaffected by H2O2. The enhancement of lipid peroxidation, the rate of reaction of H2O2 with the cells, the activity of sperm glutathione peroxidase, and the endogenous glutathione content are highest in mouse sperm, intermediate in human sperm, and very low in rabbit sperm. Inac tivation of glutathione peroxidase occurs in the presence of H2O2 due to complete conver sion of endogenous glutathione to GSSG: No GSH is available as electron donor substrate to the peroxidase. Inactivation of glutathione peroxidase by the inhibitor mercaptosucci nate has the same effect on rate of lipid peroxidation and loss of motility in mouse and human sperm as does H2O2. This implies that H2O2 by itself at 1-5 mM is not intrinsically toxic to the cells. With merceptosuccinate, the endogenous glutathione is present as GSH in mouse and human sperm, indicating that the redox state of intracellular glutathione by itself plays little role in protecting the cell against spontaneous lipid peroxidation. Mouse and human sperm also have high rates of superoxide production. We conclude that the key intermediate in spontaneous lipid peroxidation is lipid hydroperoxide generated by a chain reaction initiated by and utilizing superoxide. Removal of this hydroperoxide by gluta thione peroxidase protects these sperm against peroxidation; inactivation of the peroxidase allows lipid hydroperoxide to increase and so increases the peroxidation rate. Rabbit sperm have low rates of superoxide reaction due to high activity of their superoxide dismutase; lack of endogenous glutathione and low peroxidase activity does not affect their rate or lipid peroxidation. As a result, these sperm are not affected by either H2O2 or mercapto-succinate. These results lead us to postulate a mechanism for spontaneous lipid peroxida tion in mammalian sperm which involves reaction of lipid hydroperoxide and O2 as the rate-determining step.  相似文献   

18.
A glutathione peroxidase (GPX) protein was purified approximately 1000-fold from Southern bluefin tuna (Thunnus maccoyii) liver to a final specific activity of 256 micromol NADPH oxidised min(-1) mg(-1) protein. Gel filtration chromatography and denaturing protein gel electrophoresis of the purified preparation indicated that the protein has a native molecular mass of 85 kDa and is most likely a homotetramer with subunits of approximately 24 kDa. The Km values of the purified enzyme for hydrogen peroxide, cumene hydroperoxide, t-butyl hydroperoxide and glutathione were 12, 90, 90 and 5900 microM, respectively. The Km values for cumene hydroperoxide and t-butyl hydroperoxide were approximately 8-fold greater than the Km value for hydrogen peroxide. Thus, the SBT liver GPX has a considerably greater affinity for hydrogen peroxide than for the other two substrates. The pH optimum of the purified enzyme was pH 8.0. Immunoblotting experiments with polyclonal antibodies, raised against a recombinant human GPX, provided further evidence that the purified SBT enzyme is a genuine GPX.  相似文献   

19.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   

20.
The effects of Triton X-100, deoxycholate, and fatty acids were studied on the two steps of the ping-pong reaction catalyzed by Se-dependent glutathione peroxidases. The study was carried out by analyzing the single progression curves where the specific glutathione oxidation was monitored using glutathione reductase and NADPH. While the "classic" glutathione peroxidase was inhibited only by Triton, the newly discovered "phospholipid hydroperoxide glutathione peroxidase" was inhibited by deoxycholate and by unsaturated fatty acids. The kinetic analysis showed that in the case of glutathione peroxidase only the interaction of the lipophilic peroxidic substrate was hampered by Triton, indicating that the enzyme is not active at the interface. Phospholipid hydroperoxide glutathione peroxidase activity measured with linoleic acid hydroperoxide as substrate, on the other hand, was not stimulated by the Triton concentrations which have been shown to stimulate the activity on phospholipid hydroperoxides. Furthermore a slight inhibition was apparent at high Triton concentrations and the effect could be attributed to a surface dilution of the substrate. Deoxycholate and unsaturated fatty acids were not inhibitory on glutathione peroxidase but inhibited both steps of the peroxidic reaction of phospholipid hydroperoxide glutathione peroxidase, in the presence of either amphiphilic or hydrophilic substrates. This inhibition pattern suggests an interaction of anionic detergents with the active site of this enzyme. These results are in agreement with the different roles played by these peroxidases in the control of lipid peroxide concentrations in the cells. While glutathione peroxidase reduces the peroxides in the water phase (mainly hydrogen peroxide), the new peroxidase reduces the amphyphilic peroxides, possibly at the water-lipid interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号