首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the timing of DNA synthesis in the mitotic cycle under conditions where the average mitotic cycle of populations of human amnion and kitten lung cells in culture was variable. Three types of experiments were performed: (a) Autoradiographs were made of incorporated tritiated thymidine in cells whose mitotic histories were recorded microcinematographically allowing the measurement of telophase + G1 along with the total length of the mitotic cycle. (b) Measurement of the G2 + prophase part of the mitotic cycle was performed under various conditions by exposing cells to tritiated thymidine and observing the increase in labeled metaphases plus anaphases as a function of time. (c) The effect of a change in pH on parts of the mitotic cycle was tested by continuously photographing a single colony of cells first at pH 7.8 and then at pH 7.1. All of our data point to the same conclusion; namely, that within a population of cells with a given generation time, the length of each of the measurable parts of the mitotic cycle has a particular distribution of values and that, when there is a change in the generation time, under our conditions only the T + G1 distribution changes.  相似文献   

2.
Synchronous Chinese hamster ovary (CHO) cells were obtained by mitotic selection and the levels of globular (G) actin, filamentous (F) actin, and cytoskeletal-associated F-actin were determined as cells progressed through the cell cycle. Total actin levels remained quite constant when expressed as a percent of the total protein. An increase in F-actin occurred upon plating the mitotic cells, but this increase was shown to be a result of attachment to the substratum, since cells which remained attached during the second mitosis failed to show these changes. No large variation in the levels of either F-actin or cytoskeletal-associated F-actin occurred throughout the cell cycle. Therefore, changes in the morphology of the CHO cells which are accompanied by a reorganization of actin-containing microfilaments during the cell cycle are not accompanied by significant changes in the size of the monomeric actin pool.  相似文献   

3.
The regulation of the microtubule-mediated motions within eggs during fertilization was investigated in relation to the shift in intracellular pH (pHi) that occurs during the ionic sequence of egg activation in the sea urchins Lytechinus variegatus and Arbacia punctulata. Microtubule assembly during formation of the sperm aster and mitotic apparatus was detected by anti-tubulin immunofluorescence microscopy, and the microtubule-mediated migrations of the sperm and egg nuclei were studied with time-lapse video differential interference contrast microscopy. Manipulations of intracellular pH were verified by fluorimetric analyses of cytoplasmic fluorescein incorporated as fluorescein diacetate. The ionic sequence of egg activation was manipulated i) to block the pHi shift at fertilization or reduce the pHi of fertilized eggs to unfertilized values, ii) to elevate artificially the pHi of unfertilized eggs to fertilized values, and iii) to elevate artificially or permit the normal pHi shift in fertilized eggs in which the pHi shift at fertilization was previously prevented. Fertilized eggs in which the pHi shift was suppressed did not assemble microtubules or undergo the normal microtubule-mediated motions. In fertilized eggs in which the pHi was reduced to unfertilized levels after the assembly of the sperm aster, no motions were detected. If the intracellular pH was later permitted to rise, normal motile events leading to division and development occurred, delayed by the time during which the pH elevation was blocked. Microtubule-mediated events occurred in eggs in which the intracellular pH was elevated, even in unfertilized eggs in which the pH was artificially increased. These results indicate that the formation and normal functioning of the egg microtubules is initiated, either directly or indirectly, by the shift in intracellular pH that occurs during fertilization.  相似文献   

4.
Locke V  Davey R  Davey M 《Cytometry》2001,43(3):170-174
BACKGROUND: Recent studies have shown that paclitaxel (Taxol) is an active chemotherapeutic in the treatment of small cell lung cancer. Paclitaxel binds to tubulin and prevents depolymerization. This causes cells to arrest in the G(2)/M phase of the cell cycle, resulting in sensitization of cells to drug or radiation treatment. METHODS: A drug-resistant H69 small cell lung cancer subline was established. Cytotoxicity of cisplatin and chlorambucil was determined using the MTT cell viability assay and distribution of DNA in the cell cycle. DNA distribution was analyzed by flow cytometry after treatment with paclitaxel or the other tubulin-binding drugs, vinblastine and navelbine. RESULTS: The H69-EPR drug-resistant subline was resistant to epirubicin (sixfold) and was cross-resistant to cisplatin (7.5-fold) and chlorambucil (7.5-fold). Pretreatment with paclitaxel or vinblastine, but not navelbine, sensitized the subline to cisplatin and chlorambucil (P < 0.05), with no effect on parental H69 cells. Sensitization was dose dependent and occurred at doses below those that caused a G(2)/M block in the cell cycle. CONCLUSION: Sensitization of drug-resistant cells by paclitaxel was not associated with its ability to cause a G(2)/M block in the cell cycle. Sensitization by paclitaxel and vinblastine, but not navelbine, which preferentially targets mitotic tubulin, suggests that sensitization may involve changes in the tubulin-dependent intracellular transport processes rather than changes in mitotic tubulin and the G(2)/M block.  相似文献   

5.
The effect of slightly acidic intracellular pH (pHi) on the development of the sea urchin, Hemicentrotus pulcherrimus was investigated. At first cleavage, the fertilized eggs were treated with artificial sea water containing sodium acetate (Ac-pHSW) at pH 6.8 or 7.0 at the onset of nuclear envelope breakdown, and their pHi decreased from 7.30 to 6.68 or 6.78, respectively. When the eggs were observed after fixation by indirect immunofluorescence and differential interference contrast microscopy, the mitotic stage of the treated eggs was arrested at metaphase and the mitotic apparatus was maintained until more than 50 min after the treatment, although it was smaller in size than that of non-treated eggs. On the other hand, the number of the mitotic asters increased from 2 to 3-4, and further to 6-8 following prolonged exposure, suggesting that the centrosomes had divided and replicated. These results suggest that the centrosome cycle advanced at slightly acidic pHi, even when the mitotic cycle did not advance beyond metaphase.  相似文献   

6.
The equilibrium distribution of 5,5-dimethyloxazoladine 2,4-dione (DMO) between intra- and extracellular volume was used to estimate intracellular pH (pHi) in Tetrahymena pyiformis. In control experiments, DMO was found to equilibrate rapidly in response to a pH gradient. Under normal growth conditions, pHi was constant over a finite range of external pH, being maintained near pH 7.1 over the external pH range 5.2 to 7.3. This same range of external pH was also optimal for growth. pHi was monitored during the cell cycle of a synchronous population of T. pyriformis GL. The cells were synchronized either by starvation/refeeding or heat shock. Under both conditions, there were two alkaline shifts of approximately 0.4 pH units per cell cycle. These shifts in pH retained a constant remporal relationship to S phase and were not affected by changes in the time, duration, or magnitude of cytokinesis.  相似文献   

7.
Studies aiming to predict the impact on marine life of ocean acidification and of altered salinity have shown altered development in various species including sea urchins. We have analyzed how external Na, Ca, pH and bicarbonate control the first mitotic divisions of sea urchin embryos. Intracellular free Ca (Cai) and pH (pHi) and the activities of the MAP kinase ERK and of MPF regulate mitosis in various types of cells including oocytes and early embryos. We found that intracellular acidification of fertilized eggs by Na-acetate induces a huge activation of ERK at time of mitosis. This also stops the cell cycle and leads to cell death, which can be bypassed by treatment with the MEK inhibitor U0126. Similar intracellular acidification induced in external medium containing low sodium or 5-(N-Methyl-N-isobutyl) amiloride, an inhibitor of the Na+/H+ exchanger, also stops the cell cycle and leads to cell death. In that case, an increase in Cai and in the phosphorylation of tyr-cdc2 occurs during mitosis, modifications that depend on external Ca. Our results indicate that the levels of pHi and Cai determine accurate levels of Ptyr-Cdc2 and P-ERK capable of ensuring progression through the first mitotic cycles. These intracellular parameters rely on external Ca, Na and bicarbonate, alterations of which during climate changes could act synergistically to perturb the early marine life.  相似文献   

8.
Direct measurements of intracellular pH was made with recessed-tip pH microelectrodes in fertilized eggs of the frog, Xenopus laevis, from approximately 1 h after fertilization to mid-blastula. The intracellular pH just before first cleavage was 7.65 +/- 0.04 (SD; n = 9). By stage 5 to the middle of stage 6, average intracellular pH was 7.70 +/- 0.06 (SD; n = 16). A statistically significant alkalization of 0.18 +/- 0.03 pH unit (SD; n = 5) was observed beginning in early blastula. A cycle of less than or equal to 0.05 pH unit was occasionally observed during the pre-blastula period, but its significance is unknown. By exposing the early cleavage embryo to saline buffered with sodium propionate, pH 4.7-5.0, it was possible to lower intracellular pH with some degree of control. Apparently, normal cleavage continued to occur when intracellular pH had been forced as much as 0.3 unit below normal. We conclude that this implies no specific involvement of intracellular pH in mitosis and cytokinesis. If intracellular pH was lowered further, cell division ceased at about pH 7.2, and furrow regression began at about pH 7.0. Once furrow regression occurred, subsequent development was usually arrested or abnormal when the embryo was transferred back to normal saline.  相似文献   

9.
R L Barbour  C H Sotak  G C Levy  S H Chan 《Biochemistry》1984,23(25):6053-6062
A novel 31P NMR method is described that is capable of determining rapid changes in the intracellular levels of various phosphorus-containing compounds in an isolated, perfused working rat heart. This technique involves the gating of 31P NMR measurements to a heart that is alternately perfused with a modified Krebs-Henseleit medium containing 10 mM pyruvate and equilibrated with either 95% O2/5% CO2 or 95% N2/5% CO2. The experimental design allows up to three NMR measurements to be made during a single O2/N2 perfusion cycle. When these measurements are repeated at different intervals during the cycle, rapid changes in metabolite levels can be determined. Preliminary studies have shown that hearts remain hemodynamically stable to the aerobic/anoxic perfusion cycle as judged by heart rate, peak systolic pressure, aortic output, and coronary flow for at least 80 min in the magnet when subjected to cycle times of 4.5-s O2 and 1.5-s N2 perfusions. NMR measurements made under these conditions showed that a transition from full aerobic perfusion to this cycle revealed a new steady state, with an increased inorganic phosphate level from 6% total observable phosphorus to 10% and a possibly significant decreased measurement of creatine phosphate level (from 35 to 31%). Comparison of individual NMR measurements made during this perfusion cycle shows apparent rapid cyclical variations in intracellular pH and the levels of Pi, ATP, and NAD(H). These changes, expressed as variations above and below mean values measured during the cycle, showed that (a) intracellular pH, as measured by the chemical shift of Pi, reversibly decreases by more than 0.1 pH unit within 0.5-1 s following maximal anoxic perfusion and (b) coincident with a decrease in intracellular pH, Pi levels increased by a maximum of 30-40% whereas ATP levels decreased by a maximum of 15-20%. The amount of total observable phosphorous detected during the cycle is essentially constant. Unexpectedly, creatine phosphate levels are most stable, indicating that their levels are being maintained at the expense of ATP. Also unexpected is the finding that NAD(H) levels varied from maximal to undetectable levels during the perfusion cycle. The current method of aerobic/anoxic perfusion is capable of resolving metabolic events much faster than previous NMR methods and yielding information that is unobtainable by any other technique.  相似文献   

10.
To discover the mode of action of alkyl-lysophospholipids in Leishmania donovani, we studied the effects of edelfosine, miltefosine, and ilmofosine on intracellular pH, the parasite's cell cycle, and the induction of apoptosis. The effect of the alkyl-lysophospholipids was combined with that of inhibitors of some pumps and exchange regulators of intracellular pH (Na+/ H+; Cl-/CO- 3; and the Na+/K+ ATPase). The effect of the 3 alkyl-lysophospholipids on intracellular pH was indirect; the primary action occurred in the parasite's cell membrane. To determine intracellular pH, we used flow cytometry for the macrophages and axenic amastigotes and spectrofluorometry for the promastigote forms. Apoptosis and the cell cycle were studied by flow cytometry. Treatment of the extracellular promastigote form of L. donovani with the 3 alkyl-lysophospholipids induced death by apoptosis, whereas in the infected cell they caused necrosis rather than apoptosis. Miltefosine and ilmofosine at doses of 38 microM caused G2/M cell cycle inhibition in L. donovani promastigotes.  相似文献   

11.
The intracellular pH of Physarum plasmodia was monitored under conditions of growth and during starvation by means of recessed tip pH microelectrodes. There is a cycle of intracellular pH that corresponds to the period of the cell cycle, with a low point at mid-interphase of pH 7.0 and a peak of pH 7.5 just at mitosis. Experiments in which the intracellular pH is artificially lowered suggest that there is a critical period 1 h before mitosis in which the pH must be high (>7.2), but that mitosis itself can proceed at lower values. During the process of differentiation induced by starvation the intracellular pH drops to very low values (6.6 by 15 h) and refeeding can quickly reverse this condition and restore the pH cycle and nuclear division. Additionally, artificially lowering the intracellular pH will give rise to morphology which resembles the first stages of starvation-induced differentiation.  相似文献   

12.
Effects of pH on the stability of chromatin core particles.   总被引:2,自引:1,他引:1       下载免费PDF全文
Chromatin core particles near physiological ionic strength undergo a reversible transition induced by changes in pH near neutrality. While sedimentation studies indicate no significant effect on size or shape, changes in tyrosine fluorescence anisotropy and in circular dichroism suggest a somewhat looser structure at high pH. Further support of this suggestion is given by high salt dissociation experiments; at pH 8 core particles begin to show changes at lower salt concentration than at pH 6. The pH transition appears unaffected by the presence of Mg2+ but can be blocked by crosslinking of the histones. A possible relationship is suggested between this transition and increases in intracellular pH which correlate with enhancement in several aspects of cellular activity including DNA replication.  相似文献   

13.
Fructose metabolism has been studied with 31P n.m.r. in perfused livers from rats starved for 48h. The time course of changes in liver ATP, Pi and sugar phosphate (fructose l-phosphate) concentrations, and intracellular pH were followed in each perfusion after infusion of fructose to give an initial concentration of either 5mM or 10mM. Rapid falls in the concentrations of ATP and Pi and intracellular pH occurred after infusion of fructose, reaching a minimum after 4-5 min, which was lower in the 10mM group than in the 5mM group. These changes were accompanied by a rapid rise in fructose 1-phosphate, reaching a plateau also after 4-5 min. At both concentrations of fructose, after the early falls, some recovery of ATP, Pi and intracellular pH occurred; this was complete for Pi and intracellular pH in the 5mM-fructose experiments (within 12-30 min). Complete restoration of ATP to the pre-fructose value was not achieved in either the 5mM of 10mM groups. Measurements of the uptake of lactate by the liver indicated that the fall in intracellular pH was caused primarily by production of protons accompanying the formation of lactate from fructose with possibly a transient contribution generated during the rise in fructose 1-phosphate.  相似文献   

14.
Exponentially growing yeast cultures separated into discrete periods of the cell cycle by zonal rotor centrifugation show cyclic variation in both UV and nitrous acid induced cell lethality, mitotic gene conversion and mitotic crossing-over. Maximum cell survival after UV treatment was observed in the S and G2 phases of the cell cycle at a time when UV induction of both types of mitotic recombination was at a minimum. In contrast, cell inactivation by the chemical mutagen nitrous acid showed a single discrete period of sensitivity which occurred in S phase cells which are undergoing DNA synthesis. Mitotic gene conversion and mitotic crossing-over were induced by nitrous acid in cells at all stages of the cell cycle with a peak of induction of both events occurring at the time of maximum cell lethality. The lack of correlation observed between maximum cell and the maximum induction of mitotic intragenic recombination suggest that other DNA-repair mechanisms besides DNA-recombination repair are involved in the recovery of inactivated yeast cells during the cell cycle.  相似文献   

15.
Most, if not all, microtubules in vivo grow unidirectionally from a nucleation site such as the centrosome. This organized growth of microtubules can generate and maintain the radially symmetrical array of interphase microtubules as well as the bipolar mitotic apparatus. To investigate the regulation of polarized microtubule growth, we have prepared a cell-free extract from surf clam oocytes that exhibits unidirectional microtubule assembly. Immunofluorescence microscopy was used to visualize the net assembly of microtubules onto the fast (plus)- and slow (minus)- growing ends of isolated ciliary axonemes. All detectable microtubule growth in these cytoplasmic extracts occurred at the plus (+) ends and the extent of (+) end growth was regulated by subtle changes in pH. Microtubule assembly in these crude extracts was highly favored at pH 7.3, the pH of the post-fertilization cytoplasm. In contrast, when tubulin was purified from these oocyte extracts, integral components were lost, and microtubule growth became predominantly bidirectional and was favored at acidic pH. These results indicate that cytoplasmic factors may inhibit bidirectional growth in vivo and that temporal or local changes in cytoplasmic pH may influence microtubule assembly during the cell cycle.  相似文献   

16.
Rapidly proliferating, polyclonally stimulated mouse spleen lymphocytes were separated by density-gradient unit-gravity sedimentation. The following measurements were made on each fraction: the average intracellular water volume, the distribution of DNA content by flow microfluorometry, the rate of 3H-thymidine incorporation, and the intracellular pH. Fractions of cells with a small average intracellular volume were predominately in G0 or G1 phase of the cell cycle, while fractions of larger cells had higher proportions of cells in S or G2. Multiple regression analysis of the data for both T and B lymphocytes indicated that the intracellular pH of cells in G0, G1, or G2 is around pH 7.2, and that the intracellular pH of cells in S phase of the cell cycle is around pH 7.4.  相似文献   

17.
The role of intracellular pH as a modulator of basolateral K+ and Cl- conductances in epithelial cells was studied using digitonin-permeabilized colonic cell layers so that cytosolic pH could be clamped at specific values, while basolateral K+ and Cl- conductances were activated by stepwise increases in intracellular free Ca2+. Increasing the intracellular pH from 6.6 to 8.0 enhanced the sensitivity of both ionic conductances to intracellular Ca2+, but changing extracellular pH had no effect. Maximal K+ and Cl- currents activated by Ca2+ were not affected by changes in intracellular pH, suggesting that protons do not alter the conduction properties of the channels. Hill analysis of the Ca2+ activation process revealed that raising the cytosolic pH from 6.6 to 8.0 reduced the K1/2 for Ca2+ activation. In the absence of Ca2+, changes in intracellular pH did not have a significant effect on the basolateral K+ and Cl- conductances. These results are consistent with the notion that changes in cytosolic pH can modulate basolateral conductances by modifying the action of calcium, perhaps by acting at or near the activation site to provide a mechanism of variable "gain control."  相似文献   

18.
Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions   总被引:12,自引:0,他引:12  
Fertilized sea urchin eggs undergo a series of rapid and synchronized mitotic divisions. Extracts were made at various times throughout the first three mitotic divisions and assayed for phosphorylating activity toward histone H1. Histone H1 kinase (HH1K) undergoes a transient activation (8- to 10-fold increase) 20 min before each cleavage. The amplitude of the HH1K peak strongly depends on the synchrony of the egg population. Concomitant cytological observations show that the time-course of HH1K correlates with the time-course of nuclear envelope breakdown and of metaphase. This correlation is observed at each cell division cycle. HH1K from each of the three first mitoses show identical time- and concentration-dependence curves as well as identical dose-inhibition curves with 6-dimethylaminopurine and quercetin, suggesting that the same (group of) kinase(s) is (are) activated before each cleavage. Ionophore A23187 does not trigger, but inhibits, HH1K activation; however, partial activation of the eggs with ammonia at pH 9.0 (but not at pH 8.0) triggers the transient HH1K activation. Appearance of the HH1K cycle requires protein synthesis since it is completely abolished in emetine-treated eggs. Although cytochalasin B blocks egg cleavage, it does not inhibit HH1K activation nor nuclear divisions. A prolonged HH1K activation cycle is observed in eggs arrested in metaphase with colchicine or nocodazole. Despite the existence of a cycle in cAMP concentration during mitosis, forskolin, an activator of adenylate cyclase, does not modify the time-course of HH1K activation and of cell division. The cycling HH1K is independent of calcium-calmodulin, calcium-phospholipids, or cyclic AMP. It clearly resembles the mammalian "growth-associated histone kinase." The relationship between the transient activation of HH1K and the intracellular mitotic factors driving the cell cycle is discussed.  相似文献   

19.
Changes in pH have a marked influence on uterine contractility. Changes in uterine pH occur during pregnancy and labour, when marked endocrine changes are occurring. As hormonal status can also influence contractility, this study investigated whether pH-induced modulation of uterine force in influenced by hormonal changes. The effects of altering intracellular and extracellular pH on uterine contractions were studied in guinea-pigs on day 7 (high progesterone) and day 15 (low progesterone) of the oestrous cycle. Resting values of pH were significantly more acidic on day 15 compared with day 7, and more force was produced on day 15. Changing external pH produced similar changes in intracellular pH and force on both days. External acidification was associated with a large increase in force. In contrast, intracellular acidification, at constant external pH, reduced force. In conclusion, the stage of the oestrous cycle has a large effect on resting pH in the myometrium but only small effects on the pH-induced modulation of force, and the link between pH and force is complex.  相似文献   

20.
The sequential occurrence of plasma and mitochondrial membrane alterations, intra-cellular pH shifts and changes in intracellular Ca2+ concentration after induction of cell death was monitored by flow cytometry in Jurkat and HSB2-cells. Cell death was induced by treatment with anti-Fas antibodies or by irradiation. Phosphatidylserine (PS) exposure and plasma membrane integrity were measured with FITC-Annexin V adhesion and by Propidium Iodide exclusion. Transition of the mitochondrial membrane potential was monitored by the occurrence of decay of DiOC6 fluorescence. Intracellular pH shifts were monitored by changes in the ratio of fluorescence at 575 nm and at 635 nm of SNARF-1-AM. Fluctuations in intracellular Ca2+ concentration were established by changes in Fura red quenching.The Jurkat cells were sensitive to anti-Fas treatment, while HSB-2 cells were not. HSB-2 cells appeared more sensitive to radiation damage than Jurkat cells.In all experiments the transition of mitochondrial membrane potential occurred first, almost immediately followed by PS exposure. Fluctuations in intracellular Ca2+ concentration occurred later and were less outspoken. A decrease in intracellular pH occurred not earlier than 24 hours after anti-Fas treatment. Chelation of intracellular Ca2+ concentration with BAPTA-AM had no effect on the time sequence of cell death related events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号