首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tau gene encodes a microtubule-associated protein that is critical for neuronal survival and function. Splicing defects in the human tau gene lead to frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), an autosomal dominant neurodegenerative disorder. Genetic mutations associated with FTDP-17 often affect tau exon 10 alternative splicing. To investigate mechanisms regulating tau exon 10 alternative splicing, we have developed a green fluorescent protein reporter for tau exon 10 skipping and an expression cloning strategy to identify splicing regulators. A role for SRp54 (also named SFRS11) as a tau exon 10 splicing repressor has been uncovered using this strategy. The overexpression of SRp54 suppresses tau exon 10 inclusion. RNA interference-mediated knock-down of SRp54 increases exon 10 inclusion. SRp54 interacts with a purine-rich element in exon 10 and antagonizes Tra2beta, an SR-domain-containing protein that enhances exon 10 inclusion. Deletion of this exonic element eliminates the activity of SRp54 in suppressing exon 10 inclusion. Our data support a role of SRp54 in regulating tau exon 10 splicing. These experiments also establish a generally useful approach for identifying trans-acting regulators of alternative splicing by expression cloning.  相似文献   

2.
Mutations that stimulate exon 10 inclusion into the human tau mRNA cause frontotemporal dementia with parkinsonism, associated with chromosome 17 (FTDP-17), and other tauopathies. This suggests that the ratio of exon 10 inclusion to exclusion in adult brain is one of the factors to determine biological functions of the tau protein. To investigate the underlying splicing mechanism and identify potential therapeutic targets for tauopathies, we generated a series of mini-gene constructs with intron deletions from the full length of tau exons 9-11 mini-gene construct. RT-PCR results demonstrate that there is a minimum distance requirement between exon 10 and 11 for correct splicing of the exon 10. In addition, SRp20, a member of serine-arginine (SR) protein family of splicing factors was found to facilitate exclusion of exon 10 in a dosage-dependent manner. Significantly, SRp20 also induced exon 10 skipping from pre-mRNAs containing mutations identified in FTDP-17 patients. Based on those results, we generated a cell-based system to measure inclusion to exclusion of exon 10 in the tau mRNA using the luciferase reporter. The firefly luciferase was fused into exon 11 in frame, and a stop code was also created in exon 10. Inclusion of exon 10 prevents luciferase expression, whereas exclusion of exon 10 generates luciferase activity. To minimize baseline luciferase expression, our reporter construct also contains a FTDP-17 mutation that increases exon 10 inclusion. We demonstrate that the splicing pattern of our reporter construct mimics that of endogenous tau gene. Co-transfection of SRp20 and SRp55, two SR proteins that promote exon 10 exclusion, increases production of luciferase. We conclude that this cell-based system can be used to identify biological substances that modulate exon 10 splicing.  相似文献   

3.
Wang Y  Wang J  Gao L  Stamm S  Andreadis A 《Gene》2011,485(2):130-138
Tau is a neuronal-specific microtubule-associated protein that plays an important role in establishing neuronal polarity and maintaining the axonal cytoskeleton. Aggregated tau is the major component of neurofibrillary tangles (NFTs), structures present in the brains of people affected by neurodegenerative diseases called tauopathies. Tauopathies include Alzheimer's disease (AD), frontotemporal dementia with Parkinsonism (FTDP-17), the early onset dementia observed in Down syndrome (DS; trisomy 21) and the dementia component of myotonic dystrophy type 1 (DM1). Splicing misregulation of adult-specific exon 10, which codes for a microtubule binding domain, results in expression of abnormal ratios of tau isoforms, leading to FTDP-17. Positions 3 to 19 of the intron downstream of exon 10 define a hotspot of splicing regulation: the region diverges between humans and rodents, and point mutations within it result in tauopathies. In this study, we investigated three regulators of exon 10 splicing: serine/arginine-rich protein SRp75 and heterogeneous nuclear ribonucleoproteins hnRNPG and hnRNPE2. SRp75 and hnRNPG inhibit splicing of exon 10 whereas hnRNPE2 activates it. Using co-transfections, co-immunoprecipitations and RNAi we discovered that SRp75 binds to the proximal downstream intron of tau exon 10 at the FTDP-17 hotspot region; and that hnRNPG and hnRNPE2 interact with SRp75. Thus, increased exon 10 inclusion in FTDP mutants may arise from weakened SRp75 binding. This work provides insights into the splicing regulation of the tau gene and into possible strategies for correcting the imbalance in tauopathies caused by changes in the ratio of exon 10.  相似文献   

4.
Six tau isoforms differing in their affinity for microtubules are produced by alternative splicing from the MAPT (microtubule-associated protein tau) gene in adult human brain. Several MAPT mutations causing the familial tauopathy, FTDP-17 (frontotemporal dementia with parkinsonism linked to chromosome 17), affect alternative splicing of exon 10, encoding a microtubule-binding motif. Advanced RNA analysis methods have suggested that levels of exon 10-containing MAPT mRNA are elevated in Alzheimer's disease. Furthermore, the MAPT H1 haplotype, associated with Alzheimer's disease, promotes exon 10 inclusion in MAPT mRNA. Thus an accurate regulation of tau alternative splicing is critical for the maintenance of neuronal viability, and its alteration might be a contributing factor to Alzheimer's disease. Tau alternative splicing could represent a target for therapeutic intervention to delay the progression of pathology in familial as well as sporadic tauopathies.  相似文献   

5.
Mutations in the tau gene are pathogenic causing autosomal dominant frontotemporal dementia with Parkinsonism-chromosome 17 type (FTDP-17). Some mutations in tau exon 10 (E10) and immediately adjacent sequences cause disease by altering E10 splicing. To determine the mechanism of normal E10 splicing regulation and how FTDP-17 mutations alter splicing, mutational analysis of E10 was performed. The results show that E10 contains a complex array of both enhancer and inhibitor cis-acting elements that modulate usage of a weak 5' splice site. The 5' end of E10 contains a previously unrecognized multipartite exon splicing enhancer (ESE) composed of an SC35-like binding sequence, a purine-rich sequence, and an AC-rich element. Downstream of this ESE is a purine-rich exon splicing inhibitor. Intronic sequences immediately downstream of E10 also are inhibitory. The results support an alternative model in which I10 inhibitory sequences appear to function as a linear sequence. The cis-elements described are not redundant, and all appear required for normal E10 splicing. Results with double mutations demonstrate that the ESE and the intronic inhibitory element collaborate to regulate splicing. Thus splicing of tau E10 is regulated by a complex set of cis-acting elements that span nearly the entire exon and also include intronic sequences.  相似文献   

6.
Regulation of tau isoform expression and dementia   总被引:8,自引:0,他引:8  
In the central nervous system (CNS), aberrant changes in tau mRNA splicing and consequently in protein isoform ratios cause abnormal aggregation of tau and neurodegeneration. Pathological tau causes neuronal loss in Alzheimer's disease (AD) and a diverse group of disorders called the frontotemporal dementias (FTD), which are two of the most common forms of dementia and afflict more than 10% of the elderly population. Autosomal dominant mutations in the tau gene cause frontotemporal dementia with parkinsonism-chromosome 17 type (FTDP-17). Just over half the mutations affect tau protein function and decrease its affinity for microtubules (MTs) or increase self-aggregation. The remaining mutations occur within exon 10 (E10) and intron 10 sequences and alter complex regulation of E10 splicing by multiple mechanisms. FTDP-17 splicing mutations disturb the normally balanced levels of distinct protein isoforms that result in altered biochemical and structural properties of tau. In addition to FTDP-17, altered tau isoform levels are also pathogenically associated with other FTD disorders such as progressive supranuclear palsy (PSP), corticobasal degeneration and Pick's disease; however, the mechanisms remain undefined and mutations in tau have not been detected. FTDP-17 highlights the association between splicing mutations and the pronounced variability in pathology as well as phenotype that is characteristic of inherited disorders.  相似文献   

7.
Tau protein, which binds to and stabilizes microtubules, is critical for neuronal survival and function. In the human brain, tau pre-mRNA splicing is regulated to maintain a delicate balance of exon 10-containing and exon 10-skipping isoforms. Splicing mutations affecting tau exon 10 alternative splicing lead to tauopathies, a group of neurodegenerative disorders including dementia. Molecular mechanisms regulating tau alternative splicing remain to be elucidated. In this study, we have developed an expression cloning strategy to identify splicing factors that stimulate tau exon 10 inclusion. Using this expression cloning approach, we have identified a previously unknown tau exon 10 splicing regulator, RBM4 (RNA binding motif protein 4). In cells transfected with a tau minigene, RBM4 overexpression leads to an increased inclusion of exon 10, whereas RBM4 down-regulation decreases exon 10 inclusion. The activity of RBM4 in stimulating tau exon 10 inclusion is abolished by mutations in its RNA-binding domain. A putative intronic splicing enhancer located in intron 10 of the tau gene is required for the splicing stimulatory activity of RBM4. Immunohistological analyses reveal that RBM4 is expressed in the human brain regions affected in tauopathy, including the hippocampus and frontal cortex. Our study demonstrates that RBM4 is involved in tau exon 10 alternative splicing. Our work also suggests that down-regulating tau exon 10 splicing activators, such as RBM4, may be of therapeutic potential in tauopathies involving excessive tau exon 10 inclusion.  相似文献   

8.
Mutations in the tau gene cause frontotemporal dementia and parkinsonism linked to chromosome-17 (FTDP-17). Functionally, about half of the known mutations increase the alternative mRNA splicing of exon 10 of the tau gene, resulting in the overproduction of tau isoforms with four microtubule-binding repeats. The other mutations reduce the ability of tau to interact with microtubules, with some mutations also increasing the propensity of tau to assemble into filaments. Here we have examined the functional effects of the recently described tau gene mutations deltaN296 and N296H. Both mutations reduced the ability of tau to promote microtubule assembly, without having a significant effect on tau filament formation. By exon trapping, they increased the splicing of exon 10. DeltaN296 and N296H thus define a class of tau mutations with effects at both the RNA and the protein level.  相似文献   

9.
Abnormal alternative splicing of tau exon 10 results in imbalance of 3R-tau and 4R-tau expression, which is sufficient to cause neurofibrillary degeneration. Splicing factor SC35, a member of the superfamily of the serine/arginine-rich (SR) proteins, promotes tau exon 10 inclusion. The molecular mechanism by which SC35 participates in tau exon 10 splicing remains elusive. In the present study, we found that tau pre-mRNA was coprecipitated by SC35 tagged with HA. Mutation of the SC35-like exonic splicing enhancer located at exon 10 of tau affected both the binding of SC35 to tau pre-mRNA and promotion of tau exon 10 inclusion, suggesting that SC35 acts on the SC35-like exonic splicing enhancer to promote tau exon 10 inclusion. Dyrk1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A) phosphorylated SC35 in vitro and interacted with it in cultured cells. Overexpression of Dyrk1A suppressed SC35's ability to promote tau exon 10 inclusion. Downregulation of Dyrk1A promoted 4R-tau expression. Therefore, upregulation of Dyrk1A in Down syndrome brain or Alzheimer's brain may cause dysregulation of tau exon 10 splicing through SC35, and probably together with other splicing factors, leading to the imbalance in 3R-tau and 4R-tau expression, which may initiate or accelerate tau pathology and cause neurofibrillary degeneration in the diseases.  相似文献   

10.
Frontotemporal dementia accounts for a significant fraction of dementia cases. Frontotemporal dementia with parkinsonism linked to chromosome 17 is associated with either exonic or intronic mutations in the tau gene. This highlights the involvement of aberrant pre-mRNA splicing in the pathogenesis of neurodegenerative disorders. Little is known about the molecular mechanisms of the splicing defects underlying these diseases. To establish a model system for studying the role of pre-mRNA splicing in neurodegenerative diseases, we have constructed a tau minigene that reproduces tau alternative splicing in both cultured cells and in vitro biochemical assays. We demonstrate that mutations in a nonconserved intronic region of the human tau gene lead to increased splicing between exon 10 and exon 11. Systematic biochemical analyses indicate the importance of U1 snRNP and, to a lesser extent, U6 snRNP in differentially recognizing wild-type versus intron mutant tau pre-mRNAs. Gel mobility shift assays with purified U1 snRNP and oligonucleotide-directed RNase H cleavage experiments support the idea that the intronic mutations destabilize a stem-loop structure that sequesters the 5' splice site downstream of exon 10 in tau pre-mRNA, leading to increases in U1 snRNP binding and in splicing between exon 10 and exon 11. Thus, mutations in nonconserved intronic regions that increase rather than decrease alternative splicing can be an important pathogenic mechanism for the development of human diseases.  相似文献   

11.
Mutations in the human tau gene leading to aberrant splicing have been identified in FTDP-17, an autosomal dominant hereditary neurodegenerative disorder. Molecular mechanisms by which such mutations cause tau aberrant splicing were not understood. We characterized two mutations in exon 10 of the tau gene, N279K and Del280K. Our results revealed an exonic splicing enhancer element located in exon 10. The activity of this AG-rich splicing enhancer was altered by N279K and Del280K mutations. This exonic enhancer element interacts with human Tra2 beta protein. The interaction between Tra2 beta and the exonic splicing enhancer correlates with the activity of this enhancer element in stimulating splicing. Biochemical studies including in vitro splicing and RNA interference experiments in transfected cells support a role for Tra2 beta protein in regulating alternative splicing of human tau gene. Our results implicate the human tau gene as a target gene for the alternative splicing regulator Tra2 beta, suggesting that Tra2 beta may play a role in aberrant tau exon 10 alternative splicing and in the pathogenesis of tauopathies.  相似文献   

12.
tau mutations that deregulate alternative exon 10 (E10) splicing cause frontotemporal dementia with parkinsonism chromosome 17-type by several mechanisms. Previously we showed that E10 splicing involved exon splicing enhancer sequences at the 5' and 3' ends of E10, an exon splicing silencer, a weak 5' splice site, and an intron splicing silencer (ISS) within intron 10 (I10). Here, we identify additional regulatory sequences in I10 using both non-neuronal and neuronal cells. The ISS sequence extends from I10 nucleotides 11-18, which is sufficient to inhibit use of a weakened 5' splice site of a heterologous exon. Furthermore, ISS function is location-independent but requires proximity to a weak 5' splice site. Thus, the ISS functions as a linear sequence. A new cis-acting element, the intron splicing modulator (ISM), was identified immediately downstream of the ISS at I10 positions 19-26. The ISM and ISS form a bipartite regulatory element, within which the ISM functions when the ISS is present, mitigating E10 repression by the ISS. Additionally, the 3' splice site of E10 is weak and requires exon splicing enhancer elements for efficient E10 inclusion. Thus far, tau FTDP-17 splicing mutations affect six predicted cis-regulatory sequences.  相似文献   

13.
14.
Approximately 15% of human genetic diseases are estimated to involve dysregulation of alternative pre-mRNA splicing. Antisense molecules designed to alter these and other splicing events typically target continuous linear sequences of the message. Here, we show that a structural feature in a pre-mRNA can be targeted by bipartite antisense molecules designed to hybridize with the discontinuous elements that flank the structure and thereby alter splicing. We targeted a hairpin structure at the boundary between exon 10 and intron 10 of the pre-mRNA of tau. Mutations in this region that are associated with certain forms of frontotemporal dementia, destabilize the hairpin to cause increased inclusion of exon 10. Via electrophoretic mobility shift and RNase protection assays, we demonstrate that bipartite antisense molecules designed to simultaneously interact with the available sequences that immediately flank the tau pre-mRNA hairpin do indeed bind to this structured region. Moreover, these agents inhibit exon 10 splicing and reverse the effect of destabilizing disease-causing mutations, in both in vitro splicing assays and cell culture. This general bipartite antisense strategy could be employed to modulate other splicing events that are regulated by RNA secondary structure.  相似文献   

15.
Hyperphosphorylation and deposition of tau into neurofibrillary tangles is a hallmark of Alzheimer disease (AD). Alternative splicing of tau exon 10 generates tau isoforms containing three or four microtubule binding repeats (3R-tau and 4R-tau), which are equally expressed in adult human brain. Dysregulation of exon 10 causes neurofibrillary degeneration. Here, we report that cyclic AMP-dependent protein kinase, PKA, phosphorylates splicing factor SRSF1, modulates its binding to tau pre-mRNA, and promotes tau exon 10 inclusion in cultured cells and in vivo in rat brain. PKA-Cα, but not PKA-Cβ, interacts with SRSF1 and elevates SRSF1-mediated tau exon 10 inclusion. In AD brain, the decreased level of PKA-Cα correlates with the increased level of 3R-tau. These findings suggest that a down-regulation of PKA dysregulates the alternative splicing of tau exon 10 and contributes to neurofibrillary degeneration in AD by causing an imbalance in 3R-tau and 4R-tau expression.  相似文献   

16.
17.
18.
Spinal muscular atrophy is a genetic disease in which the SMN1 gene is deleted. The SMN2 gene exists in all of the patients. Alternative splicing of these two genes are different. More than 90% of exon 7 included form is produced from SMN1 pre-mRNA, whereas only ~20% of exon 7 included form is produced from SMN2 pre-mRNA. Only exon 7 inclusion form produces functional protein. Exon 7 skipped SMN isoform is unstable. Here we constructed a GFP reporter system that recapitulates the alternative splicing of SMN1 and SMN2 pre-mRNA. We designed a system in which GFP protein is expressed only when exon 7 of is included in alternative splicing. The stable cell that expresses SMN1-GFP produces ~4 times more GFP protein than the stable cell line that expresses SMN2-GFP; as demonstrated by microscopy, FACS analysis and immunoblotting. In addition the ratio of exon 7 inclusion and skipping of SMN1-GFP and SMN2-GFP pre-mRNA was similar to endogenous SMN1 and SMN2 pre-mRNA as shown in RT-PCR. Furthermore the knockdown with hnRNP A1 shRNA, a known protein which promotes exon 7 skipping of SMN2, induces exon 7 inclusion of exon 7 in SMN2-GFP pre-mRNA in SMN2-GFP cell line. We conclude that we have established the stable cell lines that recapitulate alternative splicing of the SMN1 and SMN2 genes. The stable cell line can be used to identify the trans-acting elements with siRNA.  相似文献   

19.
The dopamine D2 receptor (D2R) plays a crucial role in the regulation of diverse key physiological functions, including motor control, reward, learning, and memory. This receptor is present in vivo in two isoforms, D2L and D2S, generated from the same gene by alternative pre-mRNA splicing. Each isoform has a specific role in vivo, underlining the importance of a strict control of its synthesis, yet the molecular mechanism modulating alternative D2R pre-mRNA splicing has not been completely elucidated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a key molecule controlling D2R splicing. We show that binding of hnRNP M to exon 6 inhibited the inclusion of this exon in the mRNA. Importantly, the splicing factor Nova-1 counteracted hnRNP M effects on D2R pre-mRNA splicing. Indeed, mutations of the putative Nova-1-binding site on exon 6 disrupted Nova-1 RNA assembly and diminished the inhibitory effect of Nova-1 on hnRNP M-dependent exon 6 exclusion. These results identify Nova-1 and hnRNP M as D2R pre-mRNA-binding proteins and show their antagonistic role in the alternative splicing of D2R pre-mRNA.  相似文献   

20.
Neurofibrillary tangles containing filaments of the microtubule-associated protein tau are found in a variety of neurodegenerative diseases. Mutations in the tau gene itself cause frontotemporal dementia with parkinsonism, demonstrating the critical role of tau in pathogenesis. Many of these mutations in tau are silent, are found at the 5'-splice site of exon 10, and lead to increased inclusion of exon 10. These silent mutations are predicted to destabilize a stem loop structure at the exon 10 5'-splice site; however, the existence of this stem loop under physiological conditions and its role in splice regulation are controversial. Here we show that base changes that stabilize this stem loop in vitro substantially decrease exon 10 inclusion in a wild type tau minigene and rescue the increase in exon 10 splicing caused by a dementia-causing point mutation. Moreover, we probed the intracellular structure of the tau stem loop with antisense RNA and demonstrate that the stability of the stem loop dictates antisense effectiveness. Together these results validate the stem loop as a bona fide structure regulating tau exon 10 splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号