首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A monohalomethane-producing enzyme, S-adenosyl-L-methionine-dependent halide ion methyltransferase (EC 2.1.1.-) was purified from the marine microalga Pavlova pinguis by two anion exchange, hydroxyapatite and gel filtration chromatographies. The methyltransferase was a monomeric molecule having a molecular weight of 29,000. The enzyme had an isoelectric point at 5.3, and was optimally active at pH 8.0. The Km for iodide and SAM were 12 mM and 12 μM, respectively, which were measured using a partially purified enzyme. Various metal ions had no significant effect on methyl iodide production, suggesting that the enzyme does not require metal ions. The enzyme reaction strictly depended on SAM as a methyl donor, and the enzyme catalyzed methylation of the I-,Br-, and Cl- to corresponding monohalomethanes and of bisulfide to methyl mercaptan.  相似文献   

2.
The product of the dcm gene is the only DNA cytosine-C5 methyltransferase of Escherichia coli K-12; it catalyses transfer of a methyl group from S-adenosyl methionine (SAM) to the C-5 position of the inner cytosine residue of the cognate sequence CCA/TGG. Sequence-specific, covalent crosslinking of the enzyme to synthetic oligonucleotides containing 5-fluoro-2'-deoxycytidine is demonstrated. This reaction is abolished if serine replaces the cysteine at residue #177 of the enzyme. These results lend strong support to a catalytic mechanism in which an enzyme sulfhydryl group undergoes Michael addition to the C5-C6 double bond, thus activating position C-5 of the substrate DNA cytosine residue for electrophilic attack by the methyl donor SAM. The enzyme is capable of self-methylation in a DNA-independent reaction requiring SAM and the presence of cysteine at position #177.  相似文献   

3.
Toda H  Itoh N 《Phytochemistry》2011,72(4-5):337-343
Several marine algae including diatoms exhibit S-adenosyl-l-methionine (SAM) halide/thiol methyltransferase (HTMT) activity, which is involved in the emission of methyl halides. In this study, the in vivo biogenic emission of methyl iodide from the diatom Phaeodactylum tricornutum was found to be clearly correlated with iodide concentration in the incubation media. The gene encoding HTMT (Pthtmt) was isolated from P. tricornutum CCAP 1055/1, and expressed in Escherichia coli. The molecular weight of the enzyme was 29.7kDa including a histidine tag, and the optimal pH was around pH 7.0. The kinetic properties of recombinant PtHTMT towards Cl(-), Br(-), I(-), [SH](-), [SCN](-), and SAM were 637.88mM, 72.83mM, 8.60mM, 9.92mM, 7.9mM, and 0.016mM, respectively, and were similar to those of higher-plant HTMTs, except that the activity towards thiocyanate was lower. The biogenic emission of methyl halides from the cultured cells and the enzymatic properties of HTMT suggest that the HMT/HTMT reaction is key to understanding the biogenesis of methyl halides in oceanic environments as well as terrestrial ones.  相似文献   

4.
S-Adenosylmethionine (SAM) has been used to directly cross-link a polysaccharide specific methyltransferase isolated from Rhizobium meliloti HA. This peculiar enzyme transfers a methyl group to the 2-O-galacturonosyl residue of a teichuronic type polysaccharide and was very unstable. The apparent Km for SAM was 0.46 mM. The Hill coefficient, n, was 1. The enzyme had an optimum pH of 8.2 and requires Mn2+ at concentration of 2 mM. The enzyme was inactivated by saline concentrations of 120 mM or greater and was eluted from Superose columns with an apparent molecular weight of 28 kDa. The isoelectric point was close to 7.0. To elucidate the relationship between chemical structure and catalytic function, (3H)SAM was cross-linked to the enzyme and the enzymatic activity was assayed in presence and in absence of commercial substrate analogs. Cross-linking was performed by direct irradiation of enzyme and (3H)SAM. The uptake of radioactivity was linear up to about 20 min and then reached a plateau. This irreversible junction is specific, as shown by a number of different criteria. Several competitive inhibitors were able to affect this photoactivated cross-linkage. As the concentration of inhibitors increased, both, the level of photolabeling and enzyme activity always decreased. The SAM-enzyme adduct was shown to be a single protein band by SDS polyacrylamide gel electrophoresis.  相似文献   

5.
A novel S-adenosyl-L-methionine (SAM)-dependent methyltransferase catalyzing the O methylation of several chlorophenols and other halogenated phenols was purified 220-fold to apparent homogeneity from mycelia of Trichoderma longibrachiatum CECT 20431. The enzyme could be identified in partially purified protein preparations by direct photolabeling with [methyl-(3)H]SAM, and this reaction was prevented by previous incubation with S-adenosylhomocysteine. Gel filtration indicated that the M(r) was 112,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme was composed of two subunits with molecular weights of approximately 52,500. The enzyme had a pH optimum between 8.2 and 8.5 and an optimum temperature of 28 degrees C, with a pI of 4.9. The K(m) values for 2,4,6-trichlorophenol and SAM were 135.9 +/- 12.8 and 284.1 +/- 35.1 micro M, respectively. S-Adenosylhomocysteine acted as a competitive inhibitor, with a K(i) of 378.9 +/- 45.4 micro M. The methyltransferase was also strongly inhibited by low concentrations of several metal ions, such as Cu(2+), Hg(2+), Zn(2+), and Ag(+), and to a lesser extent by p-chloromercuribenzoic acid, but it was not significantly affected by several thiols or other thiol reagents. The methyltransferase was specifically induced by several chlorophenols, especially if they contained three or more chlorine atoms in their structures. Substrate specificity studies showed that the activity was also specific for halogenated phenols containing fluoro, chloro, or bromo substituents, whereas other hydroxylated compounds, such as hydroxylated benzoic acids, hydroxybenzaldehydes, phenol, 2-metoxyphenol, and dihydroxybenzene, were not methylated.  相似文献   

6.
EcoP15I DNA methyltransferase catalyzes the transfer of the methyl group of S-adenosyl-l-methionine to the N6 position of the second adenine within the double-stranded DNA sequence 5'-CAGCAG-3'. To achieve catalysis, the enzyme requires a magnesium ion. Binding of magnesium to the enzyme induces significant conformational changes as monitored by circular dichroism spectroscopy. EcoP15I DNA methyltransferase was rapidly inactivated by micromolar concentrations of ferrous sulfate in the presence of ascorbate at pH 8.0. The inactivated enzyme was cleaved into two fragments with molecular masses of 36 and 35 kDa. Using this affinity cleavage assay, we have located the magnesium binding-like motif to amino acids 355-377 of EcoP15I DNA methyltransferase. Sequence homology comparisons between EcoP15I DNA methyltransferase and other restriction endonucleases allowed us to identify a PD(X)n(D/E)XK-like sequence as the putative magnesium ion binding site. Point mutations generated in this region were analyzed for their role in methyltransferase activity, metal coordination, and substrate binding. Although the mutant methyltransferases bind DNA and S-adenosyl-l-methionine as well as the wild-type enzyme does, they are inactive primarily because of their inability to flip the target base. Collectively, these data are consistent with the fact that acidic amino acid residues of the region 355-377 in EcoP15I DNA methyltransferase are important for the critical positioning of magnesium ions for catalysis. This is the first example of metal-dependent function of a DNA methyltransferase. These findings provide impetus for exploring the role(s) of metal ions in the structure and function of DNA methyltransferases.  相似文献   

7.
Recently, a novel family of methyltransferases was identified in plants. Some members of this newly discovered and recently characterized methyltransferase family catalyze the formation of small-molecule methyl esters using S-adenosyl-L-Met (SAM) as a methyl donor and carboxylic acid-bearing substrates as methyl acceptors. These enzymes include SAMT (SAM:salicylic acid carboxyl methyltransferase), BAMT (SAM:benzoic acid carboxyl methyltransferase), and JMT (SAM:jasmonic acid carboxyl methyltransferase). Moreover, other members of this family of plant methyltransferases have been found to catalyze the N-methylation of caffeine precursors. The 3.0-A crystal structure of Clarkia breweri SAMT in complex with the substrate salicylic acid and the demethylated product S-adenosyl-L-homocysteine reveals a protein structure that possesses a helical active site capping domain and a unique dimerization interface. In addition, the chemical determinants responsible for the selection of salicylic acid demonstrate the structural basis for facile variations of substrate selectivity among functionally characterized plant carboxyl-directed and nitrogen-directed methyltransferases and a growing set of related proteins that have yet to be examined biochemically. Using the three-dimensional structure of SAMT as a guide, we examined the substrate specificity of SAMT by site-directed mutagenesis and activity assays against 12 carboxyl-containing small molecules. Moreover, the utility of structural information for the functional characterization of this large family of plant methyltransferases was demonstrated by the discovery of an Arabidopsis methyltransferase that is specific for the carboxyl-bearing phytohormone indole-3-acetic acid.  相似文献   

8.
The structural features of S-adenosyl-L-methionine (SAM)3 required for optimal binding to a nucleolar 2'-O-methyltransferase were elucidated using various analogs of SAM with modifications of the amino acid, sugar, sulfonium center, and base portions of the molecule. Equilibrium binding constants for SAM and each analog were determined by a nitrocellulose filter binding assay. To ensure the chiral and chemical purity of the 3H-labeled SAM used in the binding experiments, a cation-exchange HPLC procedure was developed to separate degradation products of SAM such as adenine and 5'-deoxy-5'-methylthioadenosine, as well as to separate the (S,S)-SAM from the biologically inactive (R,S)-SAM stereoisomer. Results from these studies demonstrated that S-adenosyl-L-homocysteine, a product of the methyltransferase reaction, bound equally as well as (S,S)-SAM, indicating that neither the charge nor the methyl group at the sulfonium center of (S,S)-SAM is essential for maximal binding. Other modifications of the sulfonium center demonstrated that a sulfur to carbon atom replacement had little effect on binding affinity, whereas substituting an ethyl group for the methyl group greatly reduced the binding affinity. In addition, the chirality at the sulfonium center was important. The naturally occurring S-chiral form had a 10-fold higher binding affinity than the R-chiral form. No significant stereospecificity was observed relative to the chiral alpha-carbon of the methionine moiety in SAM. The alpha-amino group of methionine and the 6-amino group of adenine were both required for maximal binding, while the loss of the 2'-hydroxyl group on the ribose moiety was not. Taken together, these results defined some of the specific geometric and functional group requirements which affect the specificity of interaction between S-adenosyl-L-methionine and the nucleolar 2'-O-methyltransferase.  相似文献   

9.
Five functional isoforms of a novel plant thiol methyltransferase from the leaves of cabbage (Brassica oleracea L.) were purified to electrophoretic homogeneity. Pooled, partly purified preparations of the enzyme were previously shown to methylate thiol compounds released upon the hydrolysis of glucosinolates. The enzyme could also accept halide ions as substrates. The estimated molecular masses of the purified isoforms ranged between 26 and 31 kDa. The three most abundant isoforms of the enzyme could all catalyze the S-adenosyl-l-methionine-dependent methylation of thiocyanate, a number of organic thiols and iodide. However, the kinetic properties of these forms toward various substrates differed widely. None of the isoforms examined methylated the O- and N-equivalents of the thiol substrates. The three isoforms also had distinct pH optima, covering the range from 5 to 9. Their kinetic analysis indicated that they shared a sequential substrate binding mechanism and an Ordered Bi Bi mechanism for substrate binding and product release. Partial internal amino acid sequence from one isoform showed high similarity to an Arabidopsis EST of unknown function, and to a recently cloned methyl chloride transferase from Batis maritima. The differences in the pH optima and kinetic properties of the isoforms suggest that each may methylate a specific substrate or a narrow group of substrates under cellular conditions.  相似文献   

10.
The 16S rRNA methyltransferase Sgm from "Micromonospora zionensis" confers resistance to aminoglycoside antibiotics by specific modification of the 30S ribosomal A site. Sgm is a member of the FmrO family, distant relatives of the S-adenosyl-L-methionine (SAM)-dependent RNA subfamily of methyltransferase enzymes. Using amino acid conservation across the FmrO family, seven putative key amino acids were selected for mutation to assess their role in forming the SAM cofactor binding pocket or in methyl group transfer. Each mutated residue was found to be essential for Sgm function, as no modified protein could effectively support bacterial growth in liquid media containing gentamicin or methylate 30S subunits in vitro. Using isothermal titration calorimetry, Sgm was found to bind SAM with a K(D) (binding constant) of 17.6 microM, and comparable values were obtained for one functional mutant (N179A) and four proteins modified at amino acids predicted to be involved in catalysis in methyl group transfer. In contrast, none of the G135, D156, or D182 Sgm mutants bound the cofactor, confirming their role in creating the SAM binding pocket. These results represent the first functional characterization of any FmrO methyltransferase and may provide a basis for a further structure-function analysis of these aminoglycoside resistance determinants.  相似文献   

11.
Methyltransferases possess a homologous domain that requires both a divalent metal cation and S-adenosyl-L-methionine (SAM) to catalyze its reactions. The kinetics of several methyltransferases has been well characterized; however, the details regarding their structural mechanisms have remained unclear to date. Using catechol O-methyltransferase (COMT) as a model, we perform discrete molecular dynamics and computational docking simulations to elucidate the initial stages of cofactor binding. We find that COMT binds SAM via an induced-fit mechanism, where SAM adopts a different docking pose in the absence of metal and substrate in comparison to the holoenzyme. Flexible modeling of the active site side-chains is essential for observing the lowest energy state in the apoenzyme; rigid docking tools are unable to recapitulate the pose unless the appropriate side-chain conformations are given a priori. From our docking results, we hypothesize that the metal reorients SAM in a conformation suitable for donating its methyl substituent to the recipient ligand. The proposed mechanism enables a general understanding of how divalent metal cations contribute to methyltransferase function.  相似文献   

12.
Carboxylesterase [EC 3.1.1.1] was purified from rabbit liver lysosomes by means of detergent solubilization, and by hydroxyapatite, phenyl-Sepharose and chromatofocusing column chromatographies. The purified enzyme appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be 58,000. This enzyme was eluted at an isoelectric point of approximately 5.8 by chromatofocusing, and exhibited a broad pH optimum of between 6.0 and 9.0. The enzyme hydrolyzed 4-methylumbelliferyl esters of saturated fatty acids (C2-C12), and it also hydrolyzed p-nitrophenylacetate, methyl butyrate, and tributyrin, but not acetanilide. Its activity was completely inhibited by diisopropyl-fluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF) at 10(-4) M, but was not affected by eserine, or by alpha- or beta-naphthyl acetate at 10(-3) M. Various metal ions (Mg2+, Mn2+, Ca2+, Co2+, Cu2+, Zn2+, Ni2+) at 10(-3) M also had no effect on the enzyme activity.  相似文献   

13.
Flaviviruses encode a single methyltransferase domain that sequentially catalyzes two methylations of the viral RNA cap, GpppA-RNA-->m(7)GpppA-RNA-->m(7)GpppAm-RNA, by using S-adenosyl-l-methionine (SAM) as a methyl donor. Crystal structures of flavivirus methyltransferases exhibit distinct binding sites for SAM, GTP, and RNA molecules. Biochemical analysis of West Nile virus methyltransferase shows that the single SAM-binding site donates methyl groups to both N7 and 2'-O positions of the viral RNA cap, the GTP-binding pocket functions only during the 2'-O methylation, and two distinct sets of amino acids in the RNA-binding site are required for the N7 and 2'-O methylations. These results demonstrate that flavivirus methyltransferase catalyzes two cap methylations through a substrate-repositioning mechanism. In this mechanism, guanine N7 of substrate GpppA-RNA is first positioned to SAM to generate m(7)GpppA-RNA, after which the m(7)G moiety is repositioned to the GTP-binding pocket to register the 2'-OH of the adenosine with SAM, generating m(7)GpppAm-RNA. Because N7 cap methylation is essential for viral replication, inhibitors designed to block the pocket identified for the N7 cap methylation could be developed for flavivirus therapy.  相似文献   

14.
A novel dehalogenating/transhalogenating enzyme, halomethane:bisulfide/halide ion methyltransferase, has been isolated from the facultatively methylotrophic bacterium strain CC495, which uses chloromethane (CH(3)Cl) as the sole carbon source. Purification of the enzyme to homogeneity was achieved in high yield by anion-exchange chromatography and gel filtration. The methyltransferase was composed of a 67-kDa protein with a corrinoid-bound cobalt atom. The purified enzyme was inactive but was activated by preincubation with 5 mM dithiothreitol and 0.5 mM CH(3)Cl; then it catalyzed methyl transfer from CH(3)Cl, CH(3)Br, or CH(3)I to the following acceptor ions (in order of decreasing efficacy): I(-), HS(-), Cl(-), Br(-), NO(2)(-), CN(-), and SCN(-). Spectral analysis indicated that cobalt in the native enzyme existed as cob(II)alamin, which upon activation was reduced to the cob(I)alamin state and then was oxidized to methyl cob(III)alamin. During catalysis, the enzyme shuttles between the methyl cob(III)alamin and cob(I)alamin states, being alternately demethylated by the acceptor ion and remethylated by halomethane. Mechanistically the methyltransferase shows features in common with cobalamin-dependent methionine synthase from Escherichia coli. However, the failure of specific inhibitors of methionine synthase such as propyl iodide, N(2)O, and Hg(2+) to affect the methyltransferase suggests significant differences. During CH(3)Cl degradation by strain CC495, the physiological acceptor ion for the enzyme is probably HS(-), a hypothesis supported by the detection in cell extracts of methanethiol oxidase and formaldehyde dehydrogenase activities which provide a metabolic route to formate. 16S rRNA sequence analysis indicated that strain CC495 clusters with Rhizobium spp. in the alpha subdivision of the Proteobacteria and is closely related to strain IMB-1, a recently isolated CH(3)Br-degrading bacterium (T. L. Connell Hancock, A. M. Costello, M. E. Lidstrom, and R. S. Oremland, Appl. Environ. Microbiol. 64:2899-2905, 1998). The presence of this methyltransferase in bacterial populations in soil and sediments, if widespread, has important environmental implications.  相似文献   

15.
S-Adenosyl-L-methionine (SAM): coclaurine N-methyltransferase (CNMT), which catalyzes the transfer of a methyl group from S-adenosyl-L-methionine to the amino group of the tetrahydrobenzylisoquinoline alkaloid coclaurine. was purified 340-fold from Coptis japonica cells in 1% yield to give an almost homogeneous protein. The purified enzyme, which occurred as a homotetramer with a native Mr of 160 kDa (gel-filtration chromatography) and a subunit Mr of 45 kDa (SDS-polyacrylamide gel electrophoresis), had an optimum pH of 7.0 and a pI of 4.2. Whereas (R)-coclaurine was the best substrate for enzyme activity, Coptis CNMT had broad substrate specificity and no stereospecificity CNMT methylated norlaudanosoline, 6,7-dimethoxyl-1,2,3,4-tetrahydroisoquinoline and 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline. The enzyme did not require any metal ion. p-Chloromercuribenzoate and iodoacetamide did not inhibit CNMT activity, but the addition of Co2+, Cu2+ or Mn2+ at 5 mM severely inhibited such activity by 75, 47 and 57%, respectively. The substrate-saturation kinetics of CNMT for norreticuline and SAM were of the typical Michaelis-Menten-type with respective Km values of 0.38 and 0.65 mM.  相似文献   

16.
Activity staining of extracts of Methanosarcina barkeri electrophoresed in polyacrylamide gels revealed an additional methylcobalamin:coenzyme M (methylcobalamin:CoM) methyltransferase present in cells grown on acetate but not in those grown on trimethylamine. This methyltransferase is the 480-kDa corrinoid protein previously identified by its methylation following inhibition of methyl-CoM reductase in otherwise methanogenic cell extracts. The methylcobalamin:CoM methyltransferase activity of the purified 480-kDa protein increased from 0.4 to 3.8 micromol/min/mg after incubation with sodium dodecyl sulfate (SDS). Following SDS-polyacrylamide gel electrophoresis analysis of unheated protein samples, a polypeptide with an apparent molecular mass of 48 kDa which possessed methylcobalamin:CoM methyltransferase activity was detected. This polypeptide migrated with an apparent mass of 41 kDa when the 480-kDa protein was heated before electrophoresis, indicating that the alpha subunit is responsible for the activity. The N-terminal sequence of this subunit was 47% similar to the N termini of the A and M isozymes of methylcobalamin:CoM methyltransferase (methyltransferase II). The endogenous methylated corrinoid bound to the beta subunit of the 480-kDa protein could be demethylated by CoM, but not by homocysteine or dithiothreitol, resulting in a Co(I) corrinoid. The Co(I) corrinoid could be remethylated by methyl iodide, and the protein catalyzed a methyl iodide:CoM transmethylation reaction at a rate of 2.3 micromol/min/mg. Methyl-CoM was stoichiometrically produced from CoM, as demonstrated by high-pressure liquid chromatography with indirect photometric detection. Two thiols, 2-mercaptoethanol and mercapto-2-propanol, were poorer substrates than CoM, while several others tested (including 3-mercaptopropanesulfonate) did not serve as methyl acceptors. These data indicate that the 480-kDa corrinoid protein is composed of a novel isozyme of methyltransferase II which remains firmly bound to a corrinoid cofactor binding subunit during isolation.  相似文献   

17.
A soluble enzyme which catalyzes the transfer of the methyl group from S-adenosyl-L-methionine to the nitrogen atom of pyridine-3-carboxylic acid (nicotinic acid) could be detected in protein preparations from heterotrophic cell suspension cultures of soybean (Glycine max L.). Enzyme activity was enriched nearly 100-fold by ammonium sulfate precipitation, gel filtration, and ion-exchange chromatography to study kinetic properties. S-adenosyl-L-methionine:nicotinic acid-N-methyltransferase (EC 2.1.1.7) showed a pH optimum at pH 8.0 and a temperature optimum between 35 and 40 degrees C. The apparent KM values were determined to be 78 microM for nicotinic acid and 55 microM for the cosubstrate. S-Adenosyl-L-homocysteine was a competitive inhibitor of the methyltransferase with a KI value of 95 microM. The native enzyme had a molecular mass of about 90 kDa. The catalytic activity was inhibited by reagents blocking SH groups, whereas other divalent cations did not significantly influence of the enzyme reaction. The purified methyltransferase revealed a remarkable specificity for nicotinic acid. No other pyridine derivative was a suitable methyl group acceptor. To study a potential methyltransferase activity with nicotinamide as substrate, an additional purification step was necessary to remove nicotinamide amidohydrolase activity from the enzyme preparation. This was achieved by affinity chromatography on S-adenosyl-L-homocysteine-Sepharose thus leading to a 580-fold purified enzyme which showed no methyltransferase activity toward nicotinamide as substrate.  相似文献   

18.
19.
Pectin methyltransferase (PMT) catalyzing the transfer of the methyl group from S-adenosyl-L-methionine (SAM) to the C-6 carboxyl group of galactosyluronic acid residues in pectin was found in a membrane preparation of etiolated hypocotyls from 6-d-old soybean (Glycinemax Merr.). The enzyme was maximally active at pH 6.8 and 35–40 °C, and required 0.5% (w/v) Triton X-100. The incorporation of the methyl group was significantly enhanced by addition of a pectin with a low (22%) degree of methyl-esterification (DE) as exogenous acceptor substrate. The apparent Michaelis constants for SAM and the pectin (DE22) were 0.23 mM and 66 μg · ml−1, respectively. Attachment of the methyl group to the carboxyl group of the pectin via ester linkage was confirmed by analyzing radiolabeled product from incubation of the enzyme with [14C]methyl SAM and the acceptor pectin. Size-exclusion chromatography showed that both enzymatic hydrolysis with a pectin methylesterase and a mild alkali treatment (saponification) led to the release of radioactive methanol from the product. Enzymatic hydrolysis of the product with an endopolygalacturonase degraded it into small pectic fragments with low relative molecular mass, which also supports the idea that the methyl group is incorporated into the pectin. The soybean hypocotyls were fractionated into their cell wall components by successive extraction with water, EDTA, and alkali treatment. Among the resulting polysaccharide fractions, high PMT activity was observed when a de-esterified polysaccharide derived from the EDTA-soluble fraction (the pectic fraction) was added as an alternative acceptor substrate, indicating that the enzyme may be responsible for producing methyl-esterified pectin in vivo. Received: 10 September 1999 / Accepted: 11 October 1999  相似文献   

20.
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung + host proficient in uracil excision repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号