首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Chinese hamster ovary cells were found to be nonpermissive for vaccinia virus. Although early virus-induced events occurred in these cells (RNA and polypeptide synthesis), subsequent events appeared to be prevented by a very rapid and nonselective shutoff of protein synthesis. Within less than 2 h after infection, both host and viral protein syntheses were arrested. At low multiplicities of infection, inhibition of RNA synthesis with cordycepin resulted in failure of the virus to block protein synthesis. Moreover, infection of the cells in the presence of cycloheximide prevented the immediate onset of shutoff after reversal of cycloheximide. Inactivation of virus particles by UV irradiation also impaired the capacity of the virus to inhibit protein synthesis. These results suggested that an early vaccinia virus-coded product was implicated in the shutoff of protein synthesis. Either the nonpermissive Chinese hamster ovary cells were more sensitive to this inhibition than permissive cells, or a regulatory control of the vaccinia shutoff function was defective.  相似文献   

2.
3.
Inhibition of cellular DNA synthesis began 6 to 8 h after reovirus infection at a multiplicity of infection of 10 PFU per cell. However, as the multiplicity of infection was increased to a maximum of 103 PFU/cell, inhibition of DNA synthesis began earlier after infection (2-4 h postinfection), and the initial rate of inhibition increased. The enhanced inhibition of DNA replication at high virus multiplicities appeared to be selective since RNA synthesis was not detectably altered as late as 9 h postinfection and inhibition of protein synthesis did not begin until 7 to 9 h after infection. Early inhibition of DNA synthesis did not appear to be related to changes in thymidine pool characteristics, thymidine kinase activity, or detectable degradation of cellular DNA. Even though the particle-to-PFU ratio was increased by ultraviolet light inactivation of virus, the ability to induce early inhibition of DNA synthesis was not diminished.  相似文献   

4.
Infectious B particles of vesicular stomatitis virus (VSV) are capable of inhibiting the replication of pseudorabies virus (PSR) in a variety of cell lines. Even under conditions of an abortive infection in a continuous line of rabbit cornea cells (RC-6O), B particles interfere with the replication of PSR with high efficiency. Particle per cell dose-response analysis of B particle populations revealed that the number of VSV particles capable of inhibiting PSR replication exceeds the number of PFU by a factor of 32 to 64. When B particles are treated with UV irradiation, a drastic increase in the multiplicity of infection is required to inhibit PSR replication. Whereas one infective B particles per cell is sufficient to prevent replication of PSR, 800 to 1,000 VSV particles rendered noninfective by UV irradiation are required to compensate for the loss of VSV synthetic activity that results from irradiation. Temperature-sensitive mutants representing five complementation groups of VSV were tested at low multiplicities of infection for their effect on PSR replication at the nonpermissive temperature. Generally, the ability of the different complementation groups to amplify virion products at the nonpermissive temperature is associated with their ability to inhibit PSR replication. These results imply that at low multiplicities of infection, amplification of infecting VSV components is necessary for inhibition of PSR replication., but at high multiplicities of infection with VSV, a virion component can prevent PSR replication in the absence of de novo VSV RNA or protein synthesis.  相似文献   

5.
We have previously shown that herpes simplex virus type 1 (HSV-1) infection is associated with early destabilization/degradation of infected cell mRNAs and consequent shutoff of host protein synthesis by the activity of the virion-associated host shutoff (vhs) UL41 protein. Wild-type (wt) virus destabilized/degraded the housekeeping beta-actin and alpha-tubulin mRNAs as well host stress functions, like the heat shock 70 protein induced postinfection. vhs mutants did not degrade the mRNAs. Elaborate studies by others have been concerned with the mode of mRNA degradation and the mRNAs affected. We now describe vhs activity in primary cultures of mouse cerebellar granule neurons (CGNs). Specifically, (i) upon infection in the presence of actinomycin D to test activity of input viral particles, there was a generalized inhibition of protein synthesis, which depended on the input multiplicity of infection (MOI). (ii) Low-MOI infection with vhs-1 mutant virus was associated with increased synthesis of all apparent proteins. Higher MOIs caused some shutoff, albeit significantly lower than that of wt virus. This pattern could reflect an interaction(s) of vhs-1 protein with host machinery involved in cellular mRNA destabilization/degradation, sequestering this activity. (iii) wt virus infection was associated with cell survival, at least for a while, whereas mutant virus induced apoptotic cell death at earlier times. (iv) wt virus replicated well in the CGNs, whereas there was no apparent replication of the vhs-1 mutant virus. (v) The vhs-1 mutant could serve as helper virus for composite amplicon vectors carrying marker genes and the human p53 gene. Ongoing studies test the use of vhs-1-based composite oncolytic vectors towards cancer gene therapy.  相似文献   

6.
Inhibition of HeLa Cell Protein Synthesis by the Vaccinia Virion   总被引:42,自引:30,他引:12       下载免费PDF全文
  相似文献   

7.
Effects of herpes simplex virus on mRNA stability.   总被引:28,自引:24,他引:4       下载免费PDF全文
  相似文献   

8.
Addition of monensin or nigericin after poliovirus entry into HeLa cells prevents the inhibition of host protein synthesis by poliovirus. The infected cells continue to synthesize cellular proteins at control levels for at least 8 h after infection in the presence of the ionophore. Cleavage of p220 (gamma subunit of eukaryotic initiation factor 4 [eIF-4 gamma]), a component of the translation initiation factor eIF-4F, occurs to the same extent in poliovirus-infected cells whether or not they are treated with monensin. Two hours after infection there is no detectable intact p220, but the cells continue to translate cellular mRNAs for several hours at levels similar to those in uninfected cells. Nigericin or monensin prevented the arrest of host translation at all the multiplicities of poliovirus infection tested. At high multiplicities of infection, an unprecedented situation was found: cells synthesized poliovirus and cellular proteins simultaneously. Superinfection of vesicular stomatitis virus-infected HeLa cells with poliovirus led to a profound inhibition of vesicular stomatitis virus protein synthesis, while nigericin partially prevented this blockade. Drastic inhibition of translation also took place in influenza virus-infected Vero cells treated with nigericin and infected with poliovirus. These findings suggest that the translation of newly synthesized mRNAs is dependent on the integrity of p220, while ongoing cellular protein synthesis does not require an intact p220. The target of ionophore action during the poliovirus life cycle was also investigated. Addition of nigericin at any time postinfection profoundly blocked the synthesis of virus RNA, whereas viral protein synthesis was not affected if nigericin was added at 4 h postinfection. These results agree well with previous findings indicating that inhibitors of phospholipid synthesis or vesicular traffic interfere with poliovirus genome replication. Therefore, the action of nigericin on the vesicular system may affect poliovirus RNA synthesis. In conclusion, monensin and nigericin are potent inhibitors of poliovirus genome replication that prevent the shutoff of host translation by poliovirus while still permitting cleavage of p220.  相似文献   

9.
Infection of animal cells by a number of viruses generally results in an array of metabolic defects, including inhibition of host DNA, RNA, and protein synthesis, and morphological alterations known as cytopathic effects. For adenovirus infection there is a profound loss of cell structural integrity and a marked inhibition of host protein synthesis, the latter generally assumed necessary to enhance virus production. We examined the purpose of viral inhibition of cell translation and found that it was related in part to cytopathic wasting of infected cells. We show that viral shutoff of host translation promotes destruction of the intermediate filament network, particularly cytokeratins which are proteolysed at keratins K7 and K18 by the adenovirus late-acting L3 23-kDa proteinase. We found that if adenovirus is prevented from inhibiting cell translation, the intermediate filament network remains relatively intact, keratin proteins are still synthesized, and cells possess an almost normal morphological appearance and lyse poorly, reducing the release of nascent virus particles by several hundredfold. Remarkably, in tissue culture cells the accumulation of late viral structural proteins is only marginally reduced if host translation shutoff does not occur. Thus, a surprising major function for adenovirus inhibition of cellular protein synthesis is to enhance impairment of cellular structural integrity, facilitating cell lysis and release of progeny adenovirus particles.  相似文献   

10.
A study of protein and ribonucleic acid (RNA) synthesis in cells infected by foot-and-mouth disease virus has indicated possible mechanisms of viral control over host cell metabolism. Foot-and-mouth disease virus infection of baby hamster kidney cells resulted in 50% inhibition of host cell protein synthesis at 180 min postinfection. A viral-induced interference with host cell RNA methylation was observed to be more rapidly inhibited than protein synthesis. To determine the nature of methylation inhibition, the kinetics of several host cell methylated RNA species were examined subsequent to virus infection. Data from sucrose zonal centrifugation and methylated albumin kieselguhr chromatography showed that methylation of nuclear RNA was inhibited 50% at 60 min postinfection. Inhibition of nuclear ribosomal RNA precursors and formation of nascent ribosomes correlated with inhibition kinetics of nuclear RNA methylation. It is suggested that the viral interference with the host nuclear RNA methylation is directly responsible for the observed loss of nascent ribosome formation. Moreover, early in the infectious cycle, methylation inhibition of host cell RNA could, in part, account for the cessation of host protein synthesis.  相似文献   

11.
The synthesis of closed circular simian virus 40 (SV40) deoxyribonucleic acid (DNA) containing sequences homologous to host cell DNA depends upon the conditions under which the cells are infected. When BS-C-1 monkey cells were infected with non-plaque-purified virus at low multiplicity of infection [MOI, 0.032 plaque-forming units (PFU)/cell], little, if any, of the SV40 DNA extracted from the infected cells hybridized to host DNA; but when increasingly higher multiplicities were used (in the range 0.16 to 3,000 PFU/cell), an increasingly greater amount of the extracted SV40 DNA hybridized to host DNA. The same effect was observed when the closed circular SV40 DNA was extracted from purified virions (grown at low and high MOI) rather than from the infected cell complex. When the cells were infected at high MOI with plaque-purified virus (11 viral clones were tested), none of the SV40 DNA extracted from the cells hybridized detectably with host cell DNA. However, plaque-purified virus that was serially passaged, undiluted, induced the synthesis of virus DNA which again showed extensive homology to host DNA. It is suggested that, under certain circumstances, recombination occurs between viral and host DNA during lytic infection which results in the incorporation of host DNA sequences into closed circular SV40 DNA.  相似文献   

12.
Infection of L cells with wild-type (L(1)) vesicular stomatitis virus at high or low multiplicities does not result in the production of interferon; however, infection of L cells with low multiplicities of a small-plaque mutant (S(2)) results in the synthesis of large amounts of interferon. In chick embryo (CE) cells, both viruses induce synthesis of interferon; there is no significant multiplicity effect in CE cells. The rate and efficiency of shutoff of macromolecular synthesis in the different host cells is a critical factor in determining the ability of the viruses to induce interferon synthesis. If host ribonucleic acid or protein synthesis is shut off by the virus before the required new ribonucleic acid is transcribed or translated, interferon production does not occur. The relative yield of the two viruses in CE and L cells is not related to the effects of interferon produced during the course of infection.  相似文献   

13.
14.
15.
The presence of a leader peptide in picornaviruses is restricted to the Cardiovirus and Aphthovirus genera. However, the leader peptides of these two genera are structurally and functionally unrelated. The aphthovirus leader is a protease involved in viral polyprotein processing and host cell translation shutoff. The function of the cardiovirus leader peptide is still unknown. To gain an insight into the function of the cardiovirus leader peptide, a mengovirus leader peptide deletion mutant was constructed. The deletion mutant was able to grow at a reduced rate in baby hamster kidney cells (BHK-21). Mutant virus production in mouse fibroblasts (L929 cells), however, could be demonstrated only after inoculation of BHK-21 cells with the transfected L929 cells. Analysis of cellular and viral protein synthesis in mutant virus-infected cells showed a delayed inhibition of host cell protein synthesis and a reduced production of viral proteins. In a single-cycle infection, mutant virus produced only 1% of wild-type virus yield at 8 h postinfection. Host cell translation shutoff in L929 cells infected with mutant virus was restored by the addition of the kinase inhibitor 2-aminopurine. Mutant virus production in 2-aminopurine-treated L929 cells was increased to 60% of wild-type virus yield at 8 h postinfection. Our results suggest that the cardiovirus leader peptide is involved in the inhibition of host cell protein synthesis.  相似文献   

16.
The ability of herpes simplex virus types 1 and 2 (HSV-1 and HSV-2, respectively) to repress host cell protein synthesis early in infection has been studied extensively and found to involve the activities of the UL41 gene product, the virion-associated host shutoff (vhs) protein. To date, UL41 homologs have been identified in the genomes of three other alphaherpesviruses: equine herpesvirus 1 (EHV-1), varicella-zoster virus, and pseudorabies virus, but very little is known about the putative products of these homologous genes. Our earlier observations that no rapid early host protein shutoff occurred in EHV-1-infected cells led us to test EHV-1 vhs activity more thoroughly and to examine the expression and function of the EHV-1 UL41 homolog, ORF19. In the present study, the effects of EHV-1 and HSV-1 infections on cellular protein synthesis and mRNA degradation were compared at various multiplicities of infection in several cell types under an actinomycin D block. No virion-associated inhibition of cellular protein synthesis or vhs-induced cellular mRNA degradation was detected in cells infected with any of three EHV-1 strains (Ab4, KyA, and KyD) at multiplicities of infection at which HSV-1 strain F exhibited maximal vhs activity. However, further analyses revealed that (i) the EHV-1 vhs homolog gene, ORF19, was transcribed and translated into a 58-kDa protein in infected cells; (ii) the ORF19 protein was packaged into viral particles in amounts detectable in Western blots (immunoblots) with monoclonal antibodies; (iii) in cotransfection vhs activity assays, transiently-expressed ORF19 protein had intrinsic vhs activity comparable to that of wild-type HSV-1 vhs; and (iv) this intrinsic vhs activity was ablated by in vitro site-directed mutations in which either the functionally inactive HSV-1 vhs1 UL41 mutation (Thr at position 214 replaced by Ile [Thr-214-->Ile]) was recreated within ORF19 or two conserved residues within the putative poly(A) binding region of the ORF19 sequence were altered (Tyr-190, 192-->Phe). From these results we conclude that EHV-1's low vhs activity in infected cells is not a reflection of the ORF19 protein's intrinsic vhs activity but may be due instead to the amount of ORF19 protein associated with viral particles or to modulation of ORF19 protein's intrinsic activity by another viral component(s).  相似文献   

17.
18.
Antibodies directed to Sindbis virus (SV) envelope protein E2 are able to control virus replication in vivo and in persistently infected cultures of neurons in vitro. We investigated the mechanisms by which anti-E2 monoclonal antibody (MAb) alters virus replication by using AT3 rat prostatic carcinoma cells expressing the inhibitor of apoptosis bcl-2. Treatment of SV-infected AT3-bcl-2 cells with anti-E2 MAb G5 for 2 h decreased the rate of virus release for 6 to 8 h after removal of the antibody. Electron microscopic analysis of MAb-treated cells revealed that failure of virus release was linked to a defect in the budding process. The decrease in extracellular virus particles occurred despite continued formation of nucleocapsids and synthesis of envelope glycoproteins. MAb treatment delayed the inhibition of K+ influx and shutoff of host cell protein synthesis by SV infection in a dose-dependent manner. Synthesis of host cell factors and of nonstructural polyprotein precursors required for the formation of initial replication complexes was also prolonged, causing a slower shutdown of overall viral RNA synthesis. We conclude that one mechanism by which anti-E2 MAb treatment down-regulates SV replication is by reestablishing certain critical host cell functions in infected cells.  相似文献   

19.
Replication-defective mutants of herpes simplex virus type 1 (HSV-1) may prove useful as vectors for gene transfer, particularly to nondividing cells. Cgal delta 3 is an immediate-early gene 3 (IE 3) deletion mutant of HSV-1 that expresses the lacZ gene of Escherichia coli from the human cytomegalovirus immediate-early control region but does not express viral early or late genes. This vector was able to efficiently infect and express lacZ in cells refractory to traditional methods of gene transfer. However, 1 to 3 days postinfection, Cgal delta 3 induced cytopathic effects (CPE) in many cell types, including neurons. In human primary fibroblasts Cgal delta 3 induced chromosomal aberrations and host cell DNA fragmentation. Other HSV-1 strains that caused CPE, tested under conditions of viral replication-inhibition, included mutants of the early gene UL42, the virion host shutoff function, single mutants of IE 1, IE 2, and IE 3, and double mutants of IE 3 and 4 and IE 3 and 5. Inhibition of viral gene expression by UV irradiation of virus stocks or by preexposure of cells to interferon markedly reduced the CPE. We conclude from these studies that HSV-1 IE gene expression is sufficient for the induction of CPE, although none of the five IE gene products appear to be solely responsible. After infection of human fibroblasts with Cgal delta 3 at a low multiplicity of infection, we were able to recover up to 6% of the input virus 2 weeks later by a superinfection-rescue procedure, even though the virally transduced human cytomegalovirus-lacZ transgene was not expressed at this time. It is therefore likely that inhibition or inactivation of viral IE gene expression, either for establishing latency or for the long-term transduction of foreign genes by HSV-1 vectors, is essential to avoid the death of infected cells.  相似文献   

20.
Treatment of HeLa cells with lymphoblastoid interferon leads to a drastic inhibition of infective poliovirus. Even relatively high concentrations of human lymphoblastoid interferon HuIFN-alpha (Ly) (400 IU/ml) do not prevent destruction of the cell monolayer after most of the cells have been infected with poliovirus. Analysis of macromolecular synthesis in a single step growth cycle of poliovirus in interferon-treated cells detected no viral protein synthesis. In spite of this inhibition of viral translation, the shut-off of host protein synthesis in interferon-treated cells is apparent when they are infected both at low and high multiplicities. Although viral RNA synthesis is inhibited considerably in cells treated with interferon, a certain amount is detected, suggesting that some viral replication takes place. Analysis of membrane permeability after poliovirus infection shows a leakage to 86Rb+ ions and modification of membrane permeability to the translation inhibitor hygromycin B at the moment when the bulk of virus protein synthesis occurs. These changes are delayed and even prevented if cells are pretreated with interferon. A situation is described in which host protein synthesis is shut-down with no major changes in membrane permeability, as studied by the two tests mentioned above. Prevention of viral gene expression by inactivation with ultraviolet light of the input virus or by treatment with cycloheximide blocks the shut-off of protein synthesis. This does not occur in the presence of 3 mM guanidine. These observations are in agreement with the idea that some poliovirus protein synthesis takes place in interferon-treated cells and this early gene expression is necessary to block cellular protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号