首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasma cholesteryl ester transfer protein (CETP) has a profound effect on neutral lipid transfers between HDLs and apolipoprotein B (apoB)-containing lipoproteins when it is expressed in combination with human apoA-I in HuAI/CETP transgenic (Tg) rodents. In the present study, human apoA-I-mediated lipoprotein changes in HuAI/CETPTg rats are characterized by 3- to 5-fold increments in the apoB-containing lipoprotein-to-HDL cholesterol ratio, and in the cholesteryl ester-to-triglyceride ratio in apoB-containing lipoproteins. These changes occur despite no change in plasma CETP concentration in HuAI/CETPTg rats, as compared with CETPTg rats. A number of HDL apolipoproteins, including rat apoA-I and rat apoC-I are removed from the HDL surface as a result of human apoA-I overexpression. Rat apoC-I, which is known to constitute a potent inhibitor of CETP, accounts for approximately two-thirds of CETP inhibitory activity in HDL from wild-type rats, and the remainder is carried by other HDL-bound apolipoprotein inhibitors. It is concluded that human apoA-I overexpression modifies HDL particles in a way that suppresses their ability to inhibit CETP. An apoC-I decrease in HDL of HuAI/CETPTg rats contributes chiefly to the loss of the CETP-inhibitory potential that is normally associated with wild-type HDL.  相似文献   

2.
Electron microscopic studies of perfused rat adrenals indicate that plasma lipoproteins become concentrated in a specialized cell surface compartment called microvillar channels. Closely associated plasma membranes of sinusoidal microvilli of zona fasciculata cells form channels that normally are filled with electron dense particles the size of high density lipoproteins (HDL). In rats made acutely deficient in plasma lipoproteins (by treatment with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) for 1 day), particles within the microvillar channels are decreased in number. When adrenal glands of these rats are perfused with media lacking plasma lipoproteins, many but not all of these HDL-like particles are washed out. However, when these adrenals are perfused with large amounts (100-500 micrograms protein/ml) of HDL, microvillar channels become packed with electron dense particles similar to those found in vivo. These microvillar channels become wider and filled with larger particles when low density lipoproteins (LDL) are perfused through the adrenals. Autoradiograms of 125I-labeled HDL-perfused adrenals show silver grains specifically associated with the cell surface microvillar channels, and confirm the notion that the particles filling the channels are exogenously delivered HDL. Physiologic data from similarly perfused adrenals in a parallel study show that the channel-refilling process is directly related to selective (i.e., nonendocytic) cholesterol uptake and that this cholesterol uptake is associated with corticosterone production. Together, these data suggest the hypothesis that plasma lipoprotein cholesterol utilized for corticosteroid synthesis in rat adrenal fasciculata cells may be derived from lipoproteins trapped in surface-associated microvillar channels. Although the mechanism responsible for the cholesterol transfer is not yet defined, it is clearly distinct from the classical process of receptor-mediated endocytosis and catabolism of lipoprotein particles.  相似文献   

3.
Serum lipid and lipoprotein composition in spontaneously diabetic BB Wistar rats, nondiabetic littermates, and control Wistar rats was studied to elucidate diabetes-related abnormalities of lipoprotein composition. Serum total triglycerides and pre-beta-lipoprotein concentrations of insulin-treated spontaneously diabetic BB and nondiabetic littermate rats were significantly higher than those of control Wistar rats. Serum cholesterol and HDL cholesterol concentrations of spontaneously diabetic BB and nondiabetic littermate rats did not differ from controls. Concentrations of very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL) of spontaneously diabetic BB and nondiabetic littermate rats were higher than those of normal rats. With sodium dodecylsulfate-polyacrylamide gel electrophoresis it was observed that the spontaneously diabetic BB and nondiabetic littermate rat VLDL contained higher percentages of apoE relative to total apoC when compared with control Wistar rats. With isoelectric focusing, apoC-II relative percentages in VLDL and HDL of both spontaneously diabetic BB and nondiabetic littermate rats were higher than apoC-II proportions in VLDL and HDL of controls. Apolipoprotein A-I of the control rat HDL showed four isoforms that focused at pI 5.8 (17.3%), 5.75 (30.6%), 5.65 (31.8%), and 5.55 (20.5%); however, the spontaneously diabetic BB and nondiabetic littermate rat HDL apoA-I was mainly represented by two isoforms that focused at pI 5.8 and 5.75. VLDL of both diabetic and nondiabetic BB rats contained higher levels of acidic apoE isoforms compared to their counterparts in control Wistar rats. Although HDL cholesterol concentrations of spontaneously diabetic BB rats remained normal, protein concentrations were higher resulting in a low cholesterol/protein ratio in HDL suggesting that the cholesterol-carrying capacity of spontaneously diabetic BB rat HDL could be less than normal and may be due to an abnormal apoA-I composition. Quantitative alterations of lipid and lipoprotein composition appear in the BB Wistar rat when compared to the Wistar rat, but some of the changes are more pronounced in the spontaneously diabetic BB Wistar rat.  相似文献   

4.
Incubation of freshly isolated rat serum induces a large number of changes in the properties of the serum lipoproteins, especially the high density lipoproteins (HDL). The particle diameter of the HDL increases from about 10.4 nm to 12.3 nm and the protein content appears to increase by about 60,000 Daltons. Reactions catalyzed by lecithin:cholesterol acyltransferase (LCAT) lead to a marked decrease in cholesterol and phospholipid content, and an even greater increase in cholesteryl ester content. Especially noteworthy are the marked increases in apoE and apoA-IV which are found associated with HDL as a result of this process. Data indicate that the affinity of apoE and apoA-IV for the HDL particles may be influenced by the proportion of surface to core lipid and by the presence of products of the LCAT reaction. Changes in the apoprotein content of very low density lipoproteins are also observed, with A-I and A-IV appearing in this density interval. All of the above changes can be prevented by the inclusion of 5,5'dithiobis(2-nitrobenzoate) or p-chloromercuriphenylsulfonate during the incubation, or by heat treatment of serum at 56 degrees C for 30 min; these treatments are known to inhibit LCAT activity. It is concluded that LCAT action is the major cause of the various changes in HDL structure that are observed and that alterations in apoprotein content occur to correct the resultant imbalance between core lipid and coverage of this core by amphiphilic components. Increased apoE association with cholesteryl ester-rich HDL may provide an efficient means for receptor-mediated removal of cholesterol from the circulation.  相似文献   

5.
Characterization of the apolipoproteins of rat plasma lipoproteins.   总被引:3,自引:0,他引:3  
Purified fractions of three major rat high-density lipoproteins (HDL) and one rat very low-density lipoprotein (VLDL) were isolated by Sephadex gel chromatography or preparative sodium dodecyl sulfate gel electrophoresis. These proteins were characterized by amino acid analysis, end-group analysis, molecular-weight determination, polyacrylamide gel electrophoresis, and circular dichroism. One of these rat proteins, of molecular weight 27 000, appears to be homologous with the human A-I protein. However, rat HDL possesses two additional major components not reported in human HDL - an arginine-rich protein of molecular weight 35 000 and a protein of molecular weight 46 000. The arginine-rich protein of the rat is similar in size and amino acid analysis to the arginine-rich protein reported in human VLDL. A major component of rat VLDL of 35 000 molecular weight appears similar or identical to the arginine-rich protein in rat HDL by every criterion employed for their characterization.  相似文献   

6.
Host range among the African trypanosomes, protozoa that cause fatal diseases both in humans and livestock, may be, in part, regulated by toxic properties associated with host high density lipoproteins (HDL). High density lipoproteins from hosts resistant (baboon, human) or susceptible (rabbit, rat) to Trypanosoma brucei infection were isolated and their trypanocidal activity was determined in in vitro cell lysis assays. Rabbit and rat HDL were not cytotoxic while baboon and human HDL rapidly lysed trypanosomes within 2 h at 37 degrees C. Analysis of the phospholipid composition of HDL preparations from these species suggested a correlation between trypanocidal activity and low phosphatidylinositol content. Phospholipase digestion of HDL resulted in a loss of trypanocidal activity, indicating the importance of native phospholipids in maintaining this biological activity of HDL. Cell lysis and loss of trypanosome infectivity induced by baboon HDL could be inhibited either by addition of rabbit or rat HDL to the incubation medium or by addition of purified phospholipids, phosphatidylinositol being the most effective inhibitor. Although the mechanism by which HDL lyses trypanosomes remains to be elucidated, these results suggest an important role for phospholipids in determining the specificity of this cytotoxic property of HDL.  相似文献   

7.
The delivery of cholesterol to canine serum or plasma altered the distribution of cholesterol and apoproteins in subclasses of high density lipoproteins (HDL). In these experiments, two in vitro systems were employed. The first system used cholesterol-celite particles to deliver cholesterol to canine plasma during 4-h incubations. When the cholesterol distribution in the lipoproteins was analyzed by Geon-Pevikon electrophoresis, an increase in cholesterol content was found in the slower migrating subclasses of HDL (HDL1 and HDLc). A large increase in apoprotein E (apo-E) was also observed in the lipoproteins. Densitometric analysis of lipid-stained, 4 to 30% gradient acrylamide gels of canine plasma after incubation with cholesterol-celite revealed that the concentration of the major high density lipoproteins (HDL3) decreased, and the concentration of subclasses of HDL-with apo-E (HDL1 and HDLc) increased 2- to 5-fold. In the second system, cholesterol-loaded mouse peritoneal macrophages released cholesterol to HDL in an incubation medium containing 10 to 20% canine serum. The HDL1 and HDLc, which demonstrated slower electrophoretic mobility as determined by Geon-Pevikon block electrophoresis, became enriched in cholesterol and cholesteryl esters. Gradient gel electrophoresis showed substantial increases in these subclasses of HDL-with apo-E. The cholesterol-loaded mouse peritoneal macrophages synthesized and secreted apo-E into the medium. When L-[35S]methionine was used as a precursor, 65 to 90% of the 35S-labeled protein associated with the lipoproteins in the 1.02 to 1.09 density range was immunoprecipitated with antibody directed against rat apo-E. Gradient gel electrophoresis of density fractions demonstrated the presence of HDL1 and HDLc as the major lipoproteins. In addition, when canine 125I-HDL3 (primarily apo-A-I-containing HDL) were added to canine serum and incubated with cholesterol-loaded macrophages, the appearance of HDL1 and HDLc was associated with a marked increase in the 125I label in these newly formed, cholesteryl ester-rich lipoproteins. There was a corresponding marked reduction in the 125I-HDL3 in the serum. Similar results were observed using human HDL3 and human serum.  相似文献   

8.
Plasma metabolism of apolipoprotein A-IV in humans   总被引:5,自引:0,他引:5  
As assessed by molecular sieve chromatography and quantitation by a specific radioimmunoassay, apoA-IV is associated in plasma with the triglyceride-rich lipoproteins, to a high density lipoprotein (HDL) subfraction of smaller size than HDL3, and to the plasma lipoprotein-free fraction (LFF). In this study, the turnover of apoA-IV associated to the triglyceride-rich lipoproteins, HDL and LFF was investigated in vivo in normal volunteers. Human apoA-IV isolated from the thoracic duct lymph chylomicrons was radioiodinated and incubated with plasma withdrawn from normal volunteers after a fatty meal. Radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, HDL, and LFF were then isolated by chromatography on an AcA 34 column. Shortly after the injection of the radioiodinated apoA-IV-labeled triglyceride-rich lipoproteins, most of the radioactivity could be recovered in the HDL and LFF column fractions. On the other hand, when radioiodinated apoA-IV-labeled HDL or LFF were injected, the radioactivity remained with the originally injected fractions at all times. The residence time in plasma of 125I-labeled apoA-IV, when injected in association with HDL or LFF, was 1.61 and 0.55 days, respectively. When 125I-labeled apoA-IV was injected as a free protein, the radioactivity distributed rapidly among the three plasma pools in proportion to their mass. The overall fractional catabolic rate of apoA-IV in plasma was measured in the three normal subjects and averaged 1.56 pools per day. The mean degradation rate of apoA-IV was 8.69 mg/kg X day. The results are consistent with the conclusions that: apoA-IV is present in human plasma in three distinct metabolic pools; apoA-IV associated with the triglyceride-rich lipoproteins is a precursor to the apoA-IV HDL and LFF pools; apoA-IV in LFF is not a free protein and its turnover rate is faster than that of apoA-IV in HDL; since no transfer of apoA-IV from the HDL or the LFF occurs, these pools may represent a terminal pathway for the catabolism of apoA-IV; and the catabolism of apoA-IV in HDL is dissociated from that of apoA-I although both apoproteins may reside on the same lipoprotein particles.  相似文献   

9.
Degradation of serum amyloid A by isolated perfused rat liver   总被引:1,自引:0,他引:1  
Degradation of serum amyloid A (SAA) was studied in the isolated perfused rat liver. Radioiodinated SAA was reconstituted with high density lipoproteins (HDL) and administered to rats. Plasma was taken 1 h later, and the HDL were isolated for use as tracer. HDL-bound 125I-SAA was cleared from the plasma of intact animals at a rate similar to SAA in native human HDL. Catabolism of SAA and HDL apoproteins was studied in parallel in the perfused liver. In a 3-h perfusion, 21% of SAA was degraded in contrast to 13% of apoC-III, 7% of apoA-I, and 6% of apoA-II. SAA1 (47% in 3 h) was degraded more rapidly than SAA5 (37%) although their in vivo clearance rates were similar. Degradation of SAA was inhibited when lipoproteins were added to the perfusate. At a protein concentration of 0.15 mg/ml, low density lipoproteins inhibited 47%, HDL 62%, and SAA-rich HDL 75%. Lipid-free normal HDL (0.3 mg/ml perfusate) did not appreciably affect SAA degradation; however, delipidated SAA-rich HDL (0.3 mg of protein/ml; 0.02 mg of SAA/ml) inhibited SAA degradation by 40%. Isolated perfused mouse liver proved more effective than rat liver in degrading SAA (5.3% versus 2.8%/g of liver/h). Degradation appeared to be mediated by cell-associated enzymes since perfusate, which had been recirculated through the liver for 3 h, accounted for less than 15% of the total degradation. Partial (38%) hepatectomy did not significantly reduce apoA-I clearance but reduced that of SAA by 16%, providing additional evidence for hepatic SAA catabolism. We conclude from these studies that SAA is catabolized independently of other HDL proteins, that association with lipoproteins retards SAA clearance, and that SAA catabolism is, in part, a specific process.  相似文献   

10.
High-density lipoprotein (HDL)-associated sphingosine 1-phosphate mediates a variety of lipoprotein-induced actions in vascular cell systems. However, it remains unknown whether extracellular S1P is associated with lipoproteins to exert biological actions in central nervous system. Human cerebrospinal fluid (CSF) induced rat astrocyte migration in a manner sensitive to S1P receptor antagonist VPC23019 and the migration activity was recovered in S1P fraction by thin-layer chromatography. Density-gradient separation of CSF revealed that the major S1P activity was detected in the HDL fraction. In conditioned medium of rat astrocytes cultured with sphingosine, the S1P activity was recovered again in the HDL fraction. The HDL fraction also induced migration of astrocytes and process retraction of oligodendrocytes in a manner similar to S1P. We concluded that S1P is accumulated in HDL-like lipoproteins in CSF and mediates some of lipoprotein-induced neural cell functions in central nervous system.  相似文献   

11.
Apolipoprotein (apo) A-I-containing lipoproteins can be separated into two subfractions, pre-beta HDL and alpha HDL (high density lipoproteins), based on differences in their electrophoretic mobility. In this report we present results indicating that these two subfractions are metabolically linked. When plasma was incubated for 2 h at 37 degrees C, apoA-I mass with pre-beta electrophoretic mobility disappeared. This shift in apoA-I mass to alpha electrophoretic mobility was blocked by the addition of either 1.4 mM DTNB or 10 mM menthol to the plasma prior to incubation, suggesting that lecithin:cholesterol acyltransferase (LCAT) activity was involved. There was no change in the electrophoretic mobility of either pre-beta HDL or alpha HDL when they were incubated with cholesterol-loaded fibroblasts. However, after exposure to the fibroblasts, the cholesterol content of the pre-beta HDL did increase approximately sixfold, suggesting that pre-beta HDL can associate with appreciable amounts of cellular cholesterol. Pre-beta HDL-like particles appear to be generated by the incubation of alpha HDL with cholesteryl ester transfer protein (CETP) and either very low density lipoproteins (VLDL) or low density lipoproteins (LDL). This generation of pre-beta HDL-like particles was documented both by immunoelectrophoresis and by molecular sieve chromatography. Based on these findings, we propose a cyclical model in which 1) apoA-I mass moves from pre-beta HDL to alpha HDL in connection with the action of LCAT and the generation of cholesteryl esters within the HDL, and 2) apoA-I moves from alpha HDL to pre-beta HDL in connection with the action of CETP and the movement of cholesteryl esters out of the HDL. Additionally, we propose that the relative plasma concentrations of pre-beta HDL and alpha HDL reflect the movement of cholesteryl esters through the HDL. Conditions that result in the accumulation of HDL cholesteryl esters will be associated with low concentrations of pre-beta HDL, whereas conditions that result in the depletion of HDL cholesteryl esters will be associated with elevated concentrations of pre-beta HDL. This postulate is consistent with published findings in patients with hypertriglyceridemia and LCAT deficiency.  相似文献   

12.
Rat plasma low- and high-density lipoproteins were labeled with [3H]cholesteryl linoleyl ether and isolated by rate-zonal ultracentrifugation into apolipoprotein B-containing LDL, apolipoprotein E-containing HDL1 and apolipoprotein E-poor HDL2. These fractions were incubated with cultured rat hepatocytes and comparable amounts of all lipoproteins were taken up by the cells. Rat HDL was isolated at d 1.085-1.21 g/ml and apolipoprotein E-free HDL was prepared by heparin Sepharose chromatography. The original HDL and the apolipoprotein E-free HDL were labeled with 125I or with [3H]cholesteryl linoleyl ether and incubated with rat hepatocytes or adrenal cells in culture. The uptake of apolipoprotein E-free [3H]cholesterol linoleyl ether HDL by the cultured hepatocytes was 20-40% more than that of the original HDL. Comparison of uptake of cholesteryl ester moiety (represented by uptake of [3H]cholesteryl linoleyl ether) and of protein moiety (represented by metabolism of 125I-labeled protein) was carried out using both original and apolipoprotein E-free HDL. In experiments in which low concentrations of HDL were used, the ratio of 3H/125I exceeded 1.0. In cultured adrenal cells, the uptake of [3H]cholesteryl linoleyl ether-labeled HDL was stimulated 3-6-fold by 1 X 10(-7) M ACTH, while the uptake of 125I-labeled HDL increased about 2-fold. The ratio of 3H/125I representing cellular uptake was 2-3 and increased to 5 in ACTH-treated cells. The present results indicate that in cultured rat hepatocytes the uptake of homologous HDL does not depend on the presence of apolipoprotein E. Evidence was also presented for an uptake of cholesteryl ester independent of protein uptake in cultured rat adrenal cells and to a lesser extent in rat hepatocytes.  相似文献   

13.
The present study was designed to examine the effect of streptozotocin (STZ)-induced diabetes on the plasma lipoprotein profile and hepatic expression of the LDL receptor and HDL binding protein (HB2) in hypercholesterolemic Rico rats. The plasma level of HDL1 (density range 1.040–1.063), which is particularly high in this rat strain, decreased (−25 %) 28 d after STZ administration (50 mg/kg). In contrast, the treatment increased (+54 %) the plasma concentration of HDL2 (density range 1.063–1.210). These variations in the lipoprotein concentrations were associated with inverse changes in the hepatic protein levels of the LDL receptor (+118 %) and HB2 (−46 %). These results suggest that the hepatic expression of HB2, a putative HDL receptor, can influence the plasma level of apo Al-rich HDL as has already been shown for the LDL receptor for apo B/E containing lipoproteins.  相似文献   

14.
1. Concentration and composition of the "very low density lipoproteins" (VLDL), "low density lipoproteins" (LDL) and "high density lipoproteins" (HDL) and of non-floatable lipids of fetal rat serum (day 22 of pregnancy) were determined by ultracentrifugation, thin-layer chromatographic separation of the floated lipids and quantitation of the lipid and protein moiety. 2. The concentration of VLDL is in the fetal rat by one order of magnitude lower, and that of LDL, 5fold higher than in the adult animal; the concentration of HDL in fetal serum amounts to 60% of the value of adult animals. 3. The composition of LDL and HDL of fetal serum does not differ from that in the serum of adult animals; in contrast, the fetal VLDL have a higher proportion of protein and cholesterol and a lower proportion of triglycerides than the VLDL of adult serum. The electrophoretic mobility of the fetal VLDL is lower than that of adult VLDL.  相似文献   

15.
1. The serum lipoprotein pattern of water buffalo was studied by means of electrophoresis and the lipoproteins were isolated by ultracentrifugation on the basis of their hydrated density. 2. High density lipoproteins (HDL) showed a higher level of cholesterol than did the other lipoproteins. Moreover, the level of phospholipids was higher in HDL than in very low density lipoproteins (VLDL). 3. The buffalo B100 apoprotein was similar to that of man and rat. Three apoproteins similar to human apo E, apo AI and AII were found in buffalo HDL, buffalo VLDL contained essentially apo B protein.  相似文献   

16.
The intravascular metabolism of the cholesteryl ester moiety of rat plasma LDL, HDL1, and HDL2 was determined in intact male rats. Biosynthetically labeled lipoproteins were prepared by zonal ultracentrifugation from the plasma of rats injected with [3H]cholesterol. The lipoproteins were concentrated by vacuum ultrafiltration as other procedures were found to alter the biological properties of the lipoproteins. After injection of labeled LDL, [3H]cholesteryl esters remained with the injected lipoprotein and decayed from plasma with a t1/2 of 7-8 hours. [3H]Cholesteryl esters in HDL1 behaved similarly and decayed with a t1/2 of 10.5 hours. With HDL2, however, a different metabolic pattern was observed with intraplasma conversion of some [3H]cholesteryl ester HDL2 particles to HDL1. Since such conversion of HDL2 to HDL1 was not observed after in vitro incubations of rat plasma, this process seems to depend on metabolic events that occur in vivo. [3H]Cholesteryl esters disappeared from HDL2 with a t1/2 of 6-7 hours, while the esters that were transferred to HDL1 decayed with a t1/2 of 10-11 hours, similar to labeled cholesteryl esters injected with HDL1. The study demonstrated that the high apoE content of rat plasma HDL1 is not associated with rapid catabolism of the lipoprotein and that a major source of HDL1 in the rat is the intraplasma conversion of HDL2 particles to HDL1.  相似文献   

17.
A study was undertaken to determine the relative association of lipid and apolipoproteins among lipoproteins produced during lipolysis of very low density lipoproteins (VLDL) in perfused rat heart. Human VLDL was perfused through beating rat hearts along with various combinations of albumin (0.5%), HDL2, the infranatant of d greater than 1.08 g/ml of serum, and labeled sucrose. The products were resolved by gel filtration, ultracentrifugation, and hydroxylapatite chromatography. The composition of the lipoprotein products was assessed by analysis of total lipid profiles by gas-liquid chromatography and immunoassay of apolipoproteins. A vesicle particle, which trapped and retained 1-2% of medium sucrose, co-isolated with VLDL and VLDL remnants by gel filtration chromatography but primarily with the low density lipoprotein (LDL) fraction when isolated by ultracentrifugation. The vesicle was resolved from apoB-containing LDL lipolysis products by hydroxylapatite chromatography of the lipoproteins. The vesicle lipoprotein contained unesterified cholesterol (34%), phosphatidylcholine and sphingomyelin (50%), cholesteryl ester (6%), triacylglycerol (5%), and apolipoprotein (5%). The apolipoprotein consisted of apoC-II (7%), apoC-III (93%), and trace amounts of apoE (1%). When viewed by electron microscopy the vesicles appeared as rouleaux structures with a diameter of 453 A, and a periodicity of 51.7 A. The mass represented by the vesicle particle in terms of the initial amount in VLDL was: cholesterol (5%), phosphatidylcholine and sphingomyelin (3%), apoC-II (0.5%), apoC-III (2.2%). The majority of the apoC and E released from apoB-containing lipoproteins was associated with neutral-lipid core lipoproteins proteins which possessed size characteristics of HDL. The vesicles were also formed in the presence of HDL and serum and were not disrupted by serum HDL. It is concluded that lipolysis of VLDL in vitro results in the production of VLDL remnants and LDL apoB-containing lipoproteins, as well as HDL-like lipoproteins. A vesicular lipoprotein which has many characteristics of lipoprotein X found in cholestasis, lecithin: cholesterol acyltransferase deficiency, and during Intralipid infusion is also formed. The majority of apolipoprotein C and E released from apoB-containing lipoproteins is associated with the HDL-like lipoprotein. It is suggested that the formation and stability of the vesicle lipoprotein may be related to the high ratio of cholesterol/phospholipid in this particle.  相似文献   

18.
Cholesterol esters accumulating in human plasma high density lipoproteins (HDL) are important in conversion of HDL3 to larger HDL2. We studied whether mechanisms of removal of cholesterol esters from HDL might be important in a reverse direction, i.e. conversion of HDL2 to HDL3. Native HDL2 or HDL3 is incubated with very low density lipoproteins (VLDL) and lipoprotein-poor plasma (d greater than 1.21 g/ml) at 37 degrees C. After incubation, "modified" (M) VLDL, and HDL2 or HDL3 are reisolated by ultracentrifugation. In modified M-HDL2 or M-HDL3, triglyceride becomes the major core lipid as the triglyceride/cholesterol ester weight ratio increases 8-10-fold relative to native HDL. With only small changes in protein/phospholipid ratios in M-HDLs, the large decrease in cholesterol ester/protein ratios suggest net cholesterol ester loss from HDL. Quantitative recovery analyses prove that the cholesterol esters lost from HDL are transferred to M-VLDL, which is now richer in cholesterol ester and poorer in triglyceride. These substantial exchanges of HDL lipids are not associated by significant transfer of HDL apoproteins but are dependent on neutral lipid transfer factors present in human lipoprotein-poor plasma (d greater than 1.21 g/ml). Similar results are obtained when purified core lipid transfer protein replaces d greater than 1.21 g/ml plasma in these incubations. After depletion of cholesterol ester from HDL, most but not all, exchanged triglyceride can be removed by lipolysis with either hepatic or lipoprotein lipase, resulting in a post-lipolysis HDL2 with an increased triglyceride content relative to normal HDL. With successive incubations with VLDL, and core lipid transfer factors, HDL2 loses more than two-thirds of its cholesterol esters. After lipolysis of acquired triglyceride, HDL2 is remodeled, in both composition and flotation parameters, toward HDL3.  相似文献   

19.
We have previously shown that plasma high density lipoproteins (HDL) stimulate release of prostacyclin, measured as its stable metabolite, 6-keto-PGF1 alpha, by cultured porcine aortic endothelial cells. The present experiments were designed to elucidate the contribution of HDL lipids to endothelial cellular phospholipid pools and to prostacyclin synthesis. In experiments with reconstituted HDL, both the lipid and protein moieties were required to stimulate prostacyclin release in amounts equivalent to the native HDL particle. Endothelial cells incorporated label from reconstituted HDL containing cholesteryl [1-14C]arachidonate into the cellular neutral and phospholipid pools as well as into 6-keto-PGF1 alpha and PGE2. Labeled arachidonate incorporated into endothelial cell lipids from reconstituted HDL containing cholesteryl [1-14C]arachidonate was also metabolized to prostaglandins after the cells were exposed to the calcium ionophore, A-23187. Both rat and human HDL which stimulated 6-keto-PGF1 alpha release (rat greater than human) increased the weight percentage of arachidonate in endothelial cell phospholipids; phospholipid arachidonate in the enriched cells fell after exposure to the phospholipase activator, A-23187, with release of 6-keto-PGF1 alpha which was greater than in control cells. Rat HDL that was depleted of cholesteryl arachidonate (achieved by incubation with human low density lipoproteins (LDL) in the presence of cholesteryl ester transfer protein) stimulated 6-keto-PGF1 alpha release less than native rat HDL. LDL enriched in cholesteryl arachidonate stimulated 6-keto-PGF1 alpha release more than native LDL. ApoE-depleted HDL also stimulated 6-keto-PGF1 alpha release more than apoE-rich HDL suggesting the apoE receptor was not involved in the response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号