首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant phosphoserine aminotransferase (EC 2.6.1.52) from Bacillus circulans subsp. alkalophilus was crystallized at room temperature from 0.1 M sodium acetate buffer, pH 4.6, and 2% PEG 20000, using macroseeding techniques. The crystals diffract X-rays to at least 2.0 A nominal resolution. They belong to space group C2 with unit cell dimensions a = 93.2 A, b = 93.1 A, c = 45.6 A, alpha = 90.0 degrees, beta = 106.8 degrees, gamma = 90.0 degrees. A native data set to 2.3 A has been collected. Assuming an average packing density of the crystals, there is one monomer in the asymmetric unit, resulting in a calculated solvent content of 48.2%.  相似文献   

2.
Ifuku S  Kadla JF 《Biomacromolecules》2008,9(11):3308-3313
Regioselective copolymerization of N-isopropylacrylamide (NIPAM) onto cellulose was achieved by atom transfer radical polymerization (ATRP) using a regioselectively modified 6- O-bromoisobutyryl-2,3-di- O-methyl cellulose macroinitiator. Varying the ratio of NIPAM to macroinitiator to ligand to transition metal in a Cu(I)Br/ N, N, N', N', N'-pentamethyldiethylenetriamine (PMDETA) catalyst system affected graft yield and degree of polymerization. ATRP proceeded to completion without any trace of the macroinitiator, and a degree of polymerization (DP) of polyNIPAM up to 46.3 was obtained. Increasing the DP of the NIPAM component increased both the thermal decomposition temperature and the glass transition temperature of the copolymer. The grafting of NIPAM also affected the solubility properties of the methylcellulose. The 6- O-polyNIPAM-2,3-di- O-methyl cellulose formed a stable suspension in water at room temperature and underwent a hydrophillic-to-hydrophobic transition and copolymer precipitation when the temperature was raised above 30 degrees C.  相似文献   

3.
The A-domain of the mannitol transport protein enzyme IImtl from Escherichia coli (relative molecular mass 16,300) was crystallized, both at room temperature and 4 degrees C, from 40% polyethylene glycol 6000 (pH 8.5 to 9.0) using the hanging-drop method of vapour diffusion. The crystals have the monoclinic space group P2(1), with unit cell dimensions a = 54.0 A, b = 67.0 A, c = 80.9 A and beta = 100.8 degrees. They diffract to 2.6 A resolution. A self-rotation function and self-Patterson suggest that there are four molecules in the asymmetric unit showing mmm symmetry.  相似文献   

4.
This paper reports a facile preparation of a flexible gel material from a solution of cellulose (15% w/w) in an ionic liquid of 1-butyl-3-methylimidazolium chloride by keeping it at room temperature for 7 days. Elemental analysis data indicated that the obtained gel material was composed of cellulose, the ionic liquid, and water. Both XRD and TGA results suggested that crystalline structure of cellulose was largely disrupted in the material. However, the existence of non-crystalline aggregates was assumed by the XRD data of the material. The gel material was probably obtained by the formation of cellulose aggregates in the solution, attributed to the gradual absorption of water. When the material was heated at 120 degrees C, it became soft, and converted into a fluid at 150 degrees C. By keeping the soft material at room temperature for 2 days, a gel material was regenerated, which was more transparent compared with the original material.  相似文献   

5.
Cholera toxin binds to its ganglioside GM1 receptor via its B-subunit, a pentameric assembly of identical subunits (Mr = 11,600). Diffraction quality crystals of cholera toxin B-subunit have been obtained at room temperature by vapor diffusion with polyethylene glycol in the presence of the nonionic detergent beta-octyl glucoside. The crystals have been characterized with x-radiation as monoclinic, space group P21, with unit cell dimensions a = 39.0 A, b = 94.3 A, c = 67.5 A, beta = 96.0 degrees. There are two molecules per unit cell, with one molecule (Mr = 58,000) in each asymmetric unit. Precession photographs (micron = 13 degrees) show that crystals diffract beyond 3.3-A resolution and are stable in the x-ray beam at room temperature for at least 40 h; thus, they can be used to collect three-dimensional crystallographic data.  相似文献   

6.
7.
Two isolectins from the seeds of Lathyrus ochrus, LOL I and LOL II, which specifically bind N-acetyllactosamine, have been crystallized using the hanging-drop method and the interface diffusion method, respectively. In the case of LOL I, 2-methylpentane-2,4-diol, polyethylene-glycol 400 or ammonium sulphate have been used as precipitating agents. The best crystals of LOL I were grown at room temperature from a solution of 40% (v/v) methylpentane diol, 50 mM-Hepes at pH 7.5. LOL II crystals have been grown at room temperature from a solution of 32% (v/v) methylpentane diol, 50 mM-2-(N-morpholino)-ethanesulphonic acid at pH 5.5. X-ray examination of the LOL I and LOL II crystals shows that both are monoclinic, space group P2(1). Their cell dimensions are: LOL I, a = 56.4 A, b = 138.8 A, c = 62.9 A, beta = 91 degrees; and LOL II, a = 54.8 A, b = 71.4 A, c = 105.5 A, beta = 105 degrees. Density measurements of the crystals of LOL I indicate that there are two molecules per asymetric unit (Vm = 2.07 A3/dalton). LOL I crystals diffract strongly up to at least 1.8 resolution. Putative crystals of complexes of LOL I with various glycosides were obtained through co-crystallization under the conditions used for the native protein.  相似文献   

8.
9.
Wada M  Heux L  Sugiyama J 《Biomacromolecules》2004,5(4):1385-1391
Polymorphs of cellulose I, III(I), and IV(I) have been investigated by X-ray diffraction, FT-IR, and solid-state (13)C NMR spectroscopy. Highly crystalline cellulose III(I) samples were prepared by treating cellulose samples in supercritical ammonia at 140 degrees C for 1 h, and conventional cellulose III(I) samples were prepared by liquid ammonia treatment. The cellulose IV(I) sample of highest crystallinity was that prepared from Cladophora cellulose III(I) in supercritical ammonia, followed by the sample treated in glycerol at 260 degrees C for 0.5 h, whereas the lowest crystallinity was observed in ramie cellulose prepared by conventional liquid ammonia treatment followed by glycerol annealing. In general, the perfection of cellulose IV(I) depends on the crystallinity of the original material: either of the starting cellulose I or of the cellulose III(I) after ammonia treatment. The product thus obtained was analogous to cellulose I(beta), which is what it should be called rather than cellulose IV(I). If the existence of the polymorph cellulose IV(I) is not accepted, the observations on which it has been based may be explained by the fact that the structure termed cellulose IV(I) is cellulose I(beta) which contains lateral disorder.  相似文献   

10.
The crystal structure of beta-D-glucopyranosyl-(1-->4)-alpha-D-glucopyranose (alpha-cellobiose) in a complex with water and NaI was determined with Mo K(alpha) radiation at 150 K to R=0.027. The space group is P2(1) and unit cell dimensions are a=9.0188, b=12.2536, c=10.9016 A, beta=97.162 degrees. There are no direct hydrogen bonds among cellobiose molecules, and the usual intramolecular hydrogen bond between O-3 and O-5' is replaced by a bridge involving Na+, O-3, O-5', and O-6'. Both Na+ have sixfold coordination. One I(-) accepts six donor hydroxyl groups and three C-H***I(-) hydrogen bonds. The other accepts three hydroxyls, one Na+, and five C-H***I(-) hydrogen bonds. Linkage torsion angles phi(O-5) and psi(C-5) are -73.6 and -105.3 degrees, respectively (phi(H)=47.1 degrees and psi(H)=14.6 degrees ), probably induced by the Na+ bridge. This conformation is in a separate cluster in phi,psi space from most similar linkages. Both C-6-O-H and C-6'-O-H are gg, while the C-6'-O-H groups from molecules not in the cluster have gt conformations. Hybrid molecular mechanics/quantum mechanics calculations show <1.2 kcal/mol strain for any of the small-molecule structures. Extrapolation of the NaI cellobiose geometry to a cellulose molecule gives a left-handed helix with 2.9 residues per turn. The energy map and small-molecule crystal structures imply that cellulose helices having 2.5 and 3.0 residues per turn are left-handed.  相似文献   

11.
Four small type I collagen CNBr peptides containing complete natural sequences were purified from bovine skin and investigated by CD and 1H- and 13C-nmr spectroscopies to obtain information concerning their conformation and thermal stability. CD showed that a triple helix was formed at 10 degrees C in acidic aqueous solution by peptide alpha l(I) CB2 only, and to lesser extent, by alpha 1(I) CB4, whereas peptides alpha 1(I) CB5 and alpha 2(I) CB2 remained unstructured. Analytical gel filtration confirmed that peptides alpha 1(I) CB2 and alpha 1(I) CB4 only were able to form trimeric species at temperature between 14 and 20 degrees C, and indicated that the monomer = trimer equilibrium was influenced by the chaotropic nature of the salt present in the eluent, by its concentration, and by temperature variations. CD measurements at increasing temperatures showed that alpha 1(I) CB2 was less stable than its synthetic counterpart due to incomplete prolyl hydroxylation of the preparation from the natural source. 1H- and 13C-nmr spectra acquired in the temperature range 0-47 and 0-27 degrees C, respectively, indicated that with decreasing temperature the most abundant from of alpha 1(I) CB2 was in slow exchange with an assembled form, characterized by broad lines, as expected for the triple-helical conformation. A large number of trimer cross peaks was observed both in the proton and carbon spectra, and these were most likely due to the nonequivalence of the environments of the three chains in the triple helix. This nonequivalence may have implications for the aggregation of collagen molecules and for collagen binding to other molecules. The thermal transition from trimer to monomer was also monitored by 1H-nmr following the change in area of the signal belonging to one of the two beta protons of the C-terminal homoserine. The unfolding process was found to be fully reversible with a melting temperature of 13.4 degrees C, in agreement with CD results. The qualitative superposition of the melting curves obtained by CD for the peptide bond characteristics and by nmr for a side chain suggests that triple-helical backbone and side chains constitute a single unit.  相似文献   

12.
We showed previously that high-quality crystals of bacteriorhodopsin (bR) from Halobacterium salinarum can be obtained from bicelle-forming DMPC/CHAPSO mixtures at 37 degrees C. As many membrane proteins are not sufficiently stable for crystallization at this high temperature, we tested whether the bicelle method could be applied at a lower temperature. Here we show that bR can be crystallized at room temperature using two different bicelle-forming compositions: DMPC/CHAPSO and DTPC/CHAPSO. The DTPC/CHAPSO crystals grown at room temperature are essentially identical to the previous, twinned crystals: space group P21 with unit cell dimensions of a = 44.7 A, b = 108.7 A, c = 55.8 A, beta = 113.6 degrees . The room-temperature DMPC/CHAPSO crystals are untwinned, however, and belong to space group C222(1) with the following unit cell dimensions: a = 44.7 A, b = 102.5 A, c = 128.2 A. The bR protein packs into almost identical layers in the two crystal forms, but the layers stack differently. The new untwinned crystal form yielded clear density for a previously unresolved CHAPSO molecule inserted between protein subunits within the layers. The ability to grow crystals at room temperature significantly expands the applicability of bicelle crystallization.  相似文献   

13.
The polymorphic and metastable phase behavior of monoelaidin dry and in excess water was studied by using high-sensitivity differential scanning calorimetry and time-resolved x-ray diffraction in the temperature range of 4 degrees C to 60 degrees C. To overcome problems associated with a pronounced thermal history-dependent phase behavior, simultaneous calorimetry and time-resolved x-ray diffraction measurements were performed on individual samples. Monoelaidin/water samples were prepared at room temperature and stored at 4 degrees C for up to 1 week before measurement. The initial heating scan from 4 degrees C to 60 degrees C showed complex phase behavior with the sample in the lamellar crystalline (Lc0) and cubic (Im3m, Q229) phases at low and high temperatures, respectively. The Lc0 phase transforms to the lamellar liquid crystalline (L alpha) phase at 38 degrees C. At 45 degrees C, multiple unresolved lines appeared that coexisted with those from the L alpha phase in the low-angle region of the diffraction pattern that have been assigned previously to the so-called X phase (Caffrey, 1987, 1989). With further heating the X phase converts to the Im3m cubic phase. Regardless of previous thermal history, cooling calorimetric scans revealed a single exotherm at 22 degrees C, which was assigned to an L alpha+cubic (Im3m, Q229)-to-lamellar gel (L beta) phase transition. The response of the sample to a cooling followed by a reheating or isothermal protocol depended on the length of time the sample was incubated at 4 degrees C. A model is proposed that reconciles the complex polymorphic, mesomorphic, and metastability interrelationships observed with this lipid/water system. Dry monoelaidin exists in the lamellar crystalline (beta) phase in the 4 degrees C to 45 degrees C range. The beta phase transforms to a second lamellar crystalline polymorph identified as beta* at 45 degrees C that subsequently melts at 57 degrees C. The beta phase observed with dry monoelaidin is identical to the LcO phase formed by monoelaidin that was dispersed in excess water and that had not been previously heated.  相似文献   

14.
Effects of humidity were investigated on de- and rehydration behavior of alpha,alpha-trehalose dihydrate (T(h)) throughout simultaneous measurements of differential scanning calorimetry and X-ray diffractometry (DSC-XRD) and simultaneous thermogravimetry and differential thermal analysis (TG-DTA). When T(h) was heated from room temperature under dry nitrogen atmosphere, a metastable anhydrous crystal (T(alpha)) was formed at 105 degrees C after dehydration of T(h). The resulting T(alpha) melted at 125 degrees C and became amorphous, followed by cold crystallization from 150 degrees C giving rise to a stable anhydrous crystal T(beta). Under a highly humid atmosphere, on the other hand, T(beta) was formed at 90 degrees C directly as a result of T(h) dehydration. T(alpha) was readily rehydrated and turned back to T(h) when nitrogen gas with low water vapor pressure of 2.1kPa was admitted, whereas high water vapor pressure up to 7.4kPa was required for rehydration of T(beta) into T(h). This study provided a picture of pathways that link various solid forms of trehalose, taking into account the effects of a humid environment.  相似文献   

15.
Synthetic polycarboxamides consisting of N-methylpyrrole (Py), N-methylimidazole (Im), N-methyl-3-hydroxypyrrole (Hp) and beta-alanine (beta) show strong and sequence-specific interaction with the DNA minor groove when they form hairpin structures with side-by-side antiparallel motifs. In the present paper, new conjugates containing two ligands linked to the same terminal phosphate of DNA strand were constructed. The paper describes optimized synthesis and properties of oligonucleotide-linked polyamide strands that insert into the minor groove of a duplex in a parallel or antiparallel orientation. Strong stabilization of DNA duplexes by two attached minor groove ligands is demonstrated by the thermal denaturation method. The unmodified duplex 5'-CGTTTATTp-3'/5'-AATAAACG-3' melts at 20 degrees C. When one tetra(Py) residue was attached to the first strand of this duplex, denaturation temperature was increased to 46 degrees C; attachment of the second tetra(Py) in a parallel orientation resulted in denaturation temperature of 60 degrees C. It is even higher than in case of "classic" octapyrrole hairpin ligand (Tm = 58 degrees C). Sequence-specific character of stabilization by two conjugated ligands was demonstrated for G:C-containing oligonucleotides attached to tetracarboxamide and octacarboxamide ligands constructed from Py, Im and beta units according to established recognition rules (deltaTm = 20 degrees C). The two-strand parallel minor groove binder constructions attached to addressing oligonucleotides could be considered as site-specific ligands recognizing single- and double-stranded DNA similarly to already described hairpin MGB structures with antiparallel orientation of carboxamide units.  相似文献   

16.
The temperature dependence of the formation of a complex between an alpha-d(CCTTCC) hexanucleotide and its complementary beta-d(GGAAGG) sequence was studied and compared to the formation of the beta-d(CCTTCC):beta-d(GGAAGG) complex. Such alpha-beta complex is more stable than the regular beta:beta complex. The Tm value for the alpha:beta complex is 28 degrees C (delta G degrees = -7.3 kcal/mole) while Tm = 20, 1 degree C (delta G degrees = -6.3 kcal/mole) for the beta:beta complex. The stoechiometry of the alpha:beta complex corresponds to the formation of a 1:1 duplex. However, when the alpha- strand is made of alpha-purines: alpha-d(GGAAGG), the stability of the alpha:beta complex, alpha-d(GGAAGG):beta-d(CCTTCC) is found to be lower (Tm = 13.8 degrees C) than the stability of the regular beta-beta complex, leading to the conclusion that the nature of the alpha-sequence is important in terms of stability when considering the synthesis of such a sequence for using it as antisense oligonucleotide.  相似文献   

17.
Finger blood flow (BF) was measured by venous occlusion plethysmography using mercury-in-Silastic strain gauges during immersion of one hand in hot water (raised by steps of 2 degrees C every 10 min from 35 to 43 degrees C), the other being a control (kept immersed in water at 35 degrees C). The measurements were made in three different thermal states on separate days: 1) cool-25 degrees C, 40% rh, esophageal temperature (Tes) = 36.64 +/- 0.10 degrees C; 2) warm-35 degrees C, 40% rh, Tes = 36.71 +/- 0.11 degrees C; and 3) hot-35 degrees C, 80% rh with the legs immersed in water at 42 degrees C, Tes = 37.26 +/- 0.11 degrees C. When water temperature was raised at 42 degrees C, Tes = 37.26 +/- 0.11 When water temperature was raised to 39-41 degrees C in the warm state, finger BF in the hand heated locally (BFw) decreased. When water temperature was raised to 43 degrees C, however, BFw returned to the control value. In the hot state, Tes rose steadily, reaching 37.90 +/- 0.12 degrees C at the end of the 50-min sessions. BF in the control finger also increased gradually during the session. BFw showed a tendency to decrease when water temperature was raised to 39 degrees C, but the change was not greater than that observed in the warm state. In the cool state, no such reduction in BFw was observed when water temperature was raised to 39-41 degrees C. On the contrary, BFw increased at water temperatures of 41-43 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Seven active men were recruited to examine changes in the serum concentration of S100beta, a proposed peripheral marker of blood-brain barrier permeability, following prolonged exercise in temperate (T) and warm (W) conditions. Subjects were seated immersed to the neck in water at 35.0 (0.1) degrees C (T) or 39.0 (0.1) degrees C (W) for 30 min. Subjects then entered a room maintained at either 18.3 (1.8) degrees C (T) or 35.0 (0.3) degrees C (W) and completed 60 min of cycle exercise at 60% peak oxygen uptake. Serum S100beta concentration was elevated after exercise in the W trial (+0.12 (0.10) microg/l; P = 0.02) but not after the T trial (P = 0.238). Water immersion and exercise elevated core temperature by 2.1 (0.5) degrees C to 39.5 (0.3) degrees C at the end of exercise in the W trial compared with a 0.9 (0.2) degrees C increase during the T trial (P < 0.001). Weighted mean skin temperature was higher throughout the W trial compared with the T trial (P < 0.001). Heart rate (P < 0.001) and blood glucose (P < 0.001) and lactate (P < 0.001) concentrations were elevated to a greater extent during exercise in the W trial than in the T trial. Ratings of perceived exertion (P < 0.001) and thermal comfort (P < 0.001) were markedly higher throughout the W trial than in the T trial. The results of this study demonstrate that serum S100beta was elevated after water immersion and prolonged exercise in a warm environment, suggesting that blood-brain barrier permeability may be altered.  相似文献   

19.
Crystals of the flavin domain of corn nitrate reductase expressed in Escherichia coli have been obtained at room temperature, using sodium citrate as precipitant. The crystals diffract to at least 2.5 A resolution at a synchrotron radiation source. Precession photographs show that they belong to the rhombohedral space group R3 with unit cell dimensions a = b = 145.4 A, c = 47.5 A, alpha = beta = 90 degrees and gamma = 120 degrees. There is one subunit per asymmetric unit which gives a packing density of 3.2 A3/Da, indicating a high solvent content in these crystals.  相似文献   

20.
Human interferon beta (IFN beta ser), produced by recombinant DNA technology, was radiolabeled to approximately one atom of iodine-125/molecule of interferon without detectable loss of antiviral activity. At 37 degrees C, binding of 125I IFN beta ser occurred rapidly (t1/2max less than or equal to 15 min) followed by internalization and degradation of bound ligand. Kinetic analysis at 4 degrees C indicated diffusion-limited association kinetics independent of 125I IFN beta ser concentration. Dissociation of bound 125I IFN beta ser from Daudi cells was slow (t1/2 = 1.2 h) of bound radiolabeled ligand was observed in the presence of unlabeled IFN beta ser, naturally produced IFN beta, and IFN alpha 6, but was not observed with unlabeled IFN gamma or nonspecific proteins. Concomitantly, equilibrium analysis indicated heterogeneous binding of 125I IFN beta ser to six cell lines of lymphoid origin consistent with either negative cooperativity or two populations of receptors. Analysis of binding of 125I IFN beta ser to Daudi cell receptors in the presence of unlabeled IFN alpha 6 suggested that one receptor served both ligands. The latter conclusion was supported by results of chemical cross-linking experiments in which an 125I IFN beta ser/receptor complex (Mr 120,000-130,000) was observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This complex was absent when binding occurred in the presence of either excess unlabeled IFN beta ser or IFN alpha 6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号