首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and characterized two human middle repetitive alphoid DNA fragments, L1.26 and L1.84, which localize to two different sets of chromosomes. In situ hybridization revealed both repeats to have major and minor binding sites on the pericentric regions of several chromosomes. Probe L1.26 maps predominantly to chromosomes 13 and 21. Probe L1.84 locates to chromosome 18. Minor hybridization sites for both probes include chromosomes 2, 8, 9, and 20; in addition, L1.26 revealed minor sites on chromosomes 18 and 22. The binding to these sites strongly depends on hybridization conditions. In Southern blot hybridizations to total human DNA, both L1.26 and L1.84 give the same ladder pattern, with a step size of 170 bp, indicating their presence as tandem repeats, but with different band intensities for each probe. The chromosome-specific nature of particular multimers was confirmed by Southern blot analyses of a human-rodent hybrid cell panel. We conclude that L1.26 and L1.84, with their related sequences, constitute subfamilies of alphoid DNA that are specific for subsets of chromosomes and, in some cases, possibly even for single chromosomes.  相似文献   

2.
A human alpha satellite DNA subset specific for chromosome 12.   总被引:6,自引:2,他引:4       下载免费PDF全文
We have isolated a DNA clone (pBR12, locus D12Z3) which identifies an alphoid subset specific for chromosome 12. This alphoid subset has an EcoRI periodicity of 680 bp and is characterized by a higher-order repeat of about 1.4 kb (eight basic units of about 170 bp each) as revealed by several restriction enzymes. The sequence analysis confirmed the alphoid nature of pBR12 and the dimeric organization.  相似文献   

3.
A new tandemly repetitive sequence family, having the 170 bp basic repeat characteristic of alphoid sequences, has been identified in the human genome. Its organization in the whole genome and on chromosome 21 is different from that of any of the previously described alphoid families. Members of this new family are unusually heterogeneous in sequence, and there are a number of variant sequence classes. Some of the variant classes exist in separate genomic domains, and even on a single chromosome the members of such a class are not significantly intermixed with members of another class.  相似文献   

4.
Y Ge  M J Wagner  M Siciliano  D E Wells 《Genomics》1992,13(3):585-593
We have characterized alphoid repeat clones derived from a chromosome 8 library. These clones are specific for human chromosome 8, as demonstrated by use of a somatic cell hybrid mapping panel and by in situ hybridization. Hybridization of the clones to HindIII digests of human genomic DNA reveals a complex pattern of fragments ranging in size from 1.3 to greater than 20 kb. One clone, which corresponds in size to the most prevalent genomic HindIII fragment, appears to represent a major higher order repeat in the chromosome 8 centromere. The DNA sequence of this clone reveals a dimeric organization of alphoid monomers. Restriction analysis of two other clones indicates that they are derivatives of this same repeat unit. The chromosome 8 alphoid clones hybridize to EcoRI fragments of genomic DNA ranging up to 1000 kb in length and reveal a high degree of polymorphism between chromosomes. Distribution of higher order repeat units across the centromere was examined by two-dimensional gel electrophoresis. Repeat units of the same size class tended to cluster together in restricted regions of centromeric DNA.  相似文献   

5.
A recombinant DNA plasmid library was constructed from HeLa cell extrachromosomal circular DNA and the sequence organization of one family of clones, which contain sequences enriched in HeLa small polydisperse circular (spc) DNA, was studied by restriction mapping and base sequence analysis. Restriction mapping revealed each clone to be composed solely of imperfect tandem repeats of ca. 170 bp. The entire DNA sequence of one clone was determined and found to be alphoid satellite with a variant monomeric construction.  相似文献   

6.
Repetitive DNA sequences in the rice genome comprise more than half of the nuclear DNA. The isolation and characterization of these repetitive DNA sequences should lead to a better understanding of rice chromosome structure and genome organization. We report here the characterization and chromosome localization of a chromosome 5-specific repetitive DNA sequence. This repetitive DNA sequence was estimated to have at least 900 copies. DNA sequence analysis of three genomic clones which contain the repeat unit indicated that the DNA sequences have two sub-repeat units of 37 bp and 19 bp, connected by 30-to 90-bp short sequences with high similarity. RFLP mapping and physical mapping by fluorescence in situ hybridization (FISH) indicated that almost all copies of the repetitive DNA sequence are located in the centromeric heterochromatic region of the long arm of chromosome 5. The strategy for cloning such repetitive DNA sequences and their uses in rice genome research are discussed.  相似文献   

7.
Alphoid DNA is a family of tandemly repeated simple sequences found mainly at the centromeres of the chromosomes of many primates. This paper describes the structure of the alphoid DNA at the centromere of the human Y chromosome. We have used pulsedfield gradient gel electrophoresis, cosmid cloning and DNA sequencing to determine the organization of the alphoid DNA on each of the Y chromosomes present in two somatic cell hybrids. In each case there is a single major block of alphoid DNA. This is approximately 470,000 bases (475 kb) long on one chromosome and approximately 575 kb long on the other. Apart from the size difference, the structures of the two blocks and the surrounding sequences are very similar. However, one restriction enzyme, AvaII, detects two clusters of sites within one block but does not cleave the other. The alphoid DNA within each block is organized into tandemly repeating units, most of which are about 5.7 kb long. A few variant units present on one chromosome are about 6.0 kb long. These variants, like the AvaII site variants, are clustered. The 5.7 kb and 6.0 kb units themselves consist of tandemly repeating 170 base-pair subunits. The 6.0 kb unit has two more of these subunits than the 5.7 kb unit. Our results provide a basis for further structural analysis of the human Y chromosome centromeric region, and suggest that long-range structural polymorphisms of tandemly repeated sequence families may be frequent.  相似文献   

8.
Although alphoid DNA sequences shared among acrocentric chromosomes have been identified, no human chromosome 21-specific sequence has been isolated from the centromeric region. To identify alphoid DNA restriction fragment length polymorphisms (RFLPs) specific for chromosome 21, we hybridized human genomic DNA with alphoid DNA probes [L1.26; aRI(680),21-208] shared by chromosomes 13 and 21. We detected RFLPs with restriction enzymes ECoRI, HaeIII, MboI,StuI, and TaqI. The segregation of these RFLPs was analyzed in the 40 CEPH families. Linkage analysis between these RFLPs and loci previously mapped to either chromosome 13 or 21 revealed RFLPs that appear to be specific to chromosome 21. These polymorphisms may be useful as genetic markers of the centromeric region of chromosome 21. Different alphoid loci within the centromeric region of chromosome 13 were identified.  相似文献   

9.
10.
Summary The localization of chromosome 18 in human interphase nuclei is demonstrated by use of radioactive and nonradioactive in situ hybridization techniques with a DNA clone designated L1.84. This clone represents a distinct subpopulation of the repetitive human alphoid DNA family, located in the centric region of chromosome 18. Under stringent hybridization conditions hybridization of L1.84 is restricted to chromosome 18 and reflects the number of these chromosomes present in the nuclei, namely, two in normal diploid human cells and three in nuclei from cells with trisomy 18. Under conditions of low stringency, cross-hybridization with other subpopulations of the alphoid DNA family occurs in the centromeric regions of the whole chromosome complement, and numerous hybridization sites are detected over interphase nuclei. Detection of chromosome-specific target DNAs by non-radioactive in situ hybridization with appropriate DNA probes cloned from individual chromosomal subregions presents a rapid means of identifying directly numerical or even structural chromosome aberrations in the interphase nucleus. Present limitations and future applications of interphase cytogenetics are discussed.  相似文献   

11.
Centromeric region of human chromosome 21 comprises two long alphoid DNA arrays: the well homogenized and CENP-B box-rich alpha21-I and the alpha21-II, containing a set of less homogenized and CENP-B box-poor subfamilies located closer to the short arm of the chromosome. Continuous alphoid fragment of 100 monomers bordering the non-satellite sequences in human chromosome 21 was mapped to the pericentromeric short arm region by fluorescence in situ hybridization (alpha21-II locus). The alphoid sequence contained several rearrangements including five large deletions within monomers and insertions of three truncated L1 elements. No binding sites for centromeric protein CENP-B were found. We analyzed sequences with alphoid/non-alphoid junctions selectively screened from current databases and revealed various rearrangements disrupting the regular tandem alphoid structure, namely, deletions, duplications, inversions, expansions of short oligonucleotide motifs and insertions of different dispersed elements. The detailed analysis of more than 1100 alphoid monomers from junction regions showed that the vast majority of structural alterations and joinings with non-alphoid DNAs occur in alpha satellite families lacking CENP-B boxes. Most analyzed events were found in sequences located toward the edges of the centromeric alphoid arrays. Different dispersed elements were inserted into alphoid DNA at kinkable dinucleotides (TG, CA or TA) situated between pyrimidine/purine tracks. DNA rearrangements resulting from different processes such as recombination and replication occur at kinkable DNA sites alike insertions but irrespectively of the occurrence of pyrimidine/purine tracks. It seems that kinkable dinucleotides TG, CA and TA are part of recognition signals for many proteins involved in recombination, replication, and insertional events. Alphoid DNA is a good model for studying these processes.  相似文献   

12.
A complete understanding of chromosomal disjunction during mitosis and meiosis in complex genomes such as the human genome awaits detailed characterization of both the molecular structure and genetic behavior of the centromeric regions of chromosomes. Such analyses in turn require knowledge of the organization and nature of DNA sequences associated with centromeres. The most prominent class of centromeric DNA sequences in the human genome is the alpha satellite family of tandemly repeated DNA, which is organized as distinct chromosomal subsets. Each subset is characterized by a particular multimeric higher-order repeat unit consisting of tandemly reiterated, diverged alpha satellite monomers of approximately 171 base pairs. The higher-order repeat units are themselves tandemly reiterated and represent the most recently amplified or fixed alphoid sequences. We present evidence that there are at least two independent domains of alpha satellite DNA on chromosome 7, each characterized by their own distinct higher-order repeat structure. We determined the complete nucleotide sequences of a 6-monomer higher-order repeat unit, which is present in approximately 500 copies per chromosome 7, as well as those of a less-abundant (approximately 10 copies) 16-monomer higher-order repeat unit. Sequence analysis indicated that these repeats are evolutionarily distinct. Genomic hybridization experiments established that each is maintained in relatively homogeneous tandem arrays with no detectable interspersion. We propose mechanisms by which multiple unrelated higher-order repeat domains may be formed and maintained within a single chromosomal subset.  相似文献   

13.
Alphoid and satellite III sequences are arranged as large tandem arrays in the centromeric regions of human chromosomes. Several recent studies using in situ hybridisation to investigate the relative positions of these sequences have shown that they occupy adjacent but non-overlapping domains in metaphase chromosomes. We have analysed the DNA sequence at the junction between alphoid and satellite III sequences in a cosmid previously mapped to chromosome 10. The alphoid sequence consists of tandemly arranged dimers which are distinct from the known chromosome 10-specific alphoid family. Polymerase chain reaction experiments confirm the integrity of the sequence data. These results, together with pulsed field gel electrophoresis data place the boundary between alphoid and satellite III sequences in the mapping interval 10 centromere-10q11.2. The sequence data shows that these repetitive sequences are separated by a partial L1 interspersed repeat sequence less than 500bp in length. The arrangement of the junction suggests that a recombination event has brought these sequences into close proximity.  相似文献   

14.
We have investigated the organization and complexity of alpha satellite DNA on chromosomes 10 and 12 by restriction endonuclease mapping, in situ hybridization (ISH), and DNA-sequencing methods. Alpha satellite DNA on both chromosomes displays a basic dimeric organization, revealed as a 6- and an 8-mer higher-order repeat (HOR) unit on chromosome 10 and as an 8-mer HOR on chromosome 12. While these HORs show complete chromosome specificity under high-stringency ISH conditions, they recognize an identical set of chromosomes under lower stringencies. At the nucleotide sequence level, both chromosome 10 HORs are 50% identical to the HOR on chromosome 12 and to all other alpha satellite DNA sequences from the in situ cross-hybridizing chromosomes, with the exception of chromosome 6. An 80% identity between chromosome 6- and chromosome 10-derived alphoid sequences was observed. These data suggest that the alphoid DNA on chromosomes 6 and 10 may represent a distinct subclass of the dimeric subfamily. These sequences are proposed to be present, along with the more typical dimeric alpha satellite sequences, on a number of different human chromosomes.  相似文献   

15.
The sequence organization of cloned segments of Human DNA carrying unusual domains of alphoid satellite was studied by restriction mapping, electron microscopy and base sequence analysis. In some cases restriction mapping revealed the absence of the typical 340 bp EcoR 1 dimer, although blot hybridizations showed the extensive presence of alphoid satellite. A variant monomeric construction was demonstrated by DNA sequencing. Furthermore, inverted repeats within these domains were detected by electron microscopy. In one case these were shown to be the result of interruptions in the satellite sequence by members of a family of repetitive, conserved elements.  相似文献   

16.
To understand evolutionary events in the formation of higher-order repeat units in alpha satellite DNA, we have examined gorilla sequences homologous to human X chromosome alpha satellite. In humans, alpha satellite on the X chromosome is organized as a tandemly repeated, 2.0 x 10(3) base-pairs (bp) higher-order repeat unit, operationally defined by the restriction enzyme BamHI. Each higher-order repeat unit is composed of 12 tandem approximately 171 base-pair monomer units that have been classified into five distinct sequence homology groups. BamHI-digested gorilla genomic DNA hybridized with the cloned human 2 x 10(3) bp X alpha satellite repeat reveals three bands of sizes approximately 3.2 x 10(3), 2.7 x 10(3) and 2 x 10(3) bp. Multiple copies of all three repeat lengths have been isolated and mapped to the centromeric region of the gorilla X chromosome by fluorescence in situ hybridization. Long-range restriction mapping using pulsed-field gel electrophoresis shows that the 2.7 x 10(3) and 3.2 x 10(3) bp repeat arrays exist as separate but likely neighboring arrays on the gorilla X, each ranging in size from approximately 200 x 10(3) to 500 x 10(3) bp, considerably smaller than the approximately 2000 x 10(3) to 4000 x 10(3) bp array found on human X chromosomes. Nucleotide sequence analysis has revealed that monomers within all three gorilla repeat units can be classified into the same five sequence homology groups as monomers located within the higher-order repeat unit on the human X chromosome, suggesting that the formation of the five distinct monomer types predates the divergence of the lineages of contemporary humans and gorillas. The order of 12 monomers within the 2 x 10(3) and 2.7 x 10(3) bp repeat units from the gorilla X chromosome is identical with that of the 2 x 10(3) bp repeat unit from the human X chromosome, suggesting an ancestral linear arrangement and supporting hypotheses about events largely restricted to single chromosome types in the formation of alpha satellite higher-order repeat units.  相似文献   

17.
Human centromeres remain poorly characterized regions of the human genome despite their importance for the maintenance of chromosomes. In part this is due to the difficulty of cloning of highly repetitive DNA fragments and distinguishing chromosome-specific clones in a genomic library. In this work we report the highly selective isolation of human centromeric DNA using transformation-associated recombination (TAR) cloning. A TAR vector with alphoid DNA monomers as targeting sequences was used to isolate large centromeric regions of human chromosomes 2, 5, 8, 11, 15, 19, 21 and 22 from human cells as well as monochromosomal hybrid cells. The alphoid DNA array was also isolated from the 12 Mb human mini-chromosome ΔYq74 that contained the minimum amount of alphoid DNA required for proper chromosome segregation. Preliminary results of the structural analyses of different centromeres are reported in this paper. The ability of the cloned human centromeric regions to support human artificial chromosome (HAC) formation was assessed by transfection into human HT1080 cells. Centromeric clones from ΔYq74 did not support the formation of HACs, indicating that the requirements for the existence of a functional centromere on an endogenous chromosome and those for forming a de novo centromere may be distinct. A construct with an alphoid DNA array from chromosome 22 with no detectable CENP-B motifs formed mitotically stable HACs in the absence of drug selection without detectable acquisition of host DNAs. In summary, our results demonstrated that TAR cloning is a useful tool for investigating human centromere organization and the structural requirements for formation of HAC vectors that might have a potential for therapeutic applications.  相似文献   

18.
C. C. Lin  R. Sasi  Y. S. Fan  D. Court 《Chromosoma》1993,102(5):333-339
EcoRI subclones, designated as 50E1 and 50E4, were independently obtained from a cosmid clone previously mapped to the centromeric region of human chromosome 8. Southern blot hybridization analyses suggested that both subclones contain repetitive DNA sequences different from the chromosome 8 specific alphoid DNA. DNA sequence analysis of the 704 bp insert of 50E1 and the 1, 962 bp insert of 50E4 revealed that both inserts contained tandemly repeated units of 220 bp. Fluorescence in situ hybridization studies confirmed these two subclones to be specifically located on the centromeric region of chromosome 8. A 220 bp consensus sequence, derived from nine monomeric repeats, showed no significant homology to alphoid consensus sequences or to other currently known human centromeric DNA sequence. Furthermore, no significant homology was found with any other DNA sequence deposited in the EMBL or GenBank databases, indicating that this chromosome 8 specific repetitive DNA sequence is novel. From slot blot experiments it was estimated that 0.013% of the human genome comprises 1,750 of these monomeric repeats, residing on the centromeric region of chromosome 8 in tandem array(s).  相似文献   

19.
Repetitive DNA was cloned from HindIII-digested genomic DNA of Larix leptolepis. The repetitive DNA was about 170 bp long, had an AT content of 67%, and was organized tandemly in the genome. Using fluorescence in situ hybridization and subsequent DAPI banding, the repetitive DNA was localized in DAPI bands at the proximal region of one arm of chromosomes in L. leptolepis and Larix chinensis. Southern blot hybridization to genomic DNA of seven species and five varieties probed with cloned repetitive DNA showed that the repetitive DNA family was present in a tandem organization in genomes of all Larix taxa examined. In addition to the 170-bp sequence, a 220-bp sequence belonging to the same DNA family was also present in 10 taxa. The 220-bp repeat unit was a partial duplication of the 170-bp repeat unit. The 220-bp repeat unit was more abundant in L. chinensis and Larix potaninii var. macrocarpa than in other taxa. The repetitive DNA composed 2.0-3.4% of the genome in most taxa and 0.3 and 0.5% of the genome in L. chinensis and L. potaninii var. macrocarpa, respectively. The unique distribution of the 220-bp repeat unit in Larix indicates the close relationship of these two species. In the family Pinaceae, the LPD (Larix proximal DAPI band specific repeat sequence family) family sequence is widely distributed, but their amount is very small except in the genus Larix. The abundant LPD family in Larix will occur after its speciation.  相似文献   

20.
Organization and evolution of alpha satellite DNA from human chromosome 11   总被引:9,自引:0,他引:9  
The human alpha satellite repetitive DNA family is organized as distinct chromosomal subsets located at the centromeric regions of each human chromosome. Here, we describe a subset of the alpha satellite which is localized to human chromosome 11. The principal unit of repetition of this alpha satellite subset is an 850 bp XbaI fragment composed of five tandem diverged alphoid monomers, each 171 bp in length. The pentamer repeat units are themselves tandemly reiterated, present in 500 copies per chromosome 11. In filter hybridization experiments, the Alpha 11 probes are specific for the centromeric alpha satellite sequences of human chromosome 11. The complete nucleotide sequences of two independent copies of the XbaI pentamer reveal a pentameric configuration shared with the alphoid repeats of chromosomes 17 and X, consistent with the existence of an ancestral pentameric repeat common to the centromeric arrays of at least these three human chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号