首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor clustering is a key event in the initiation of signaling by many types of receptor molecules. Here, we provide evidence for the novel concept that clustering of a ligand is a prerequisite for clustering of the cognate receptor. We show that clustering of the CD40 receptor depends on reciprocal clustering of the CD40 ligand (gp39, CD154). Clustering of the CD40 ligand is mediated by an association of the ligand with p53, a translocation of acid sphingomyelinase (ASM) to the cell membrane, an activation of the ASM, and a formation of ceramide. Ceramide appears to modify preexisting sphingolipid-rich membrane microdomains to fuse and form ceramide-enriched signaling platforms that serve to cluster CD40 ligand. Genetic deficiency of p53 or ASM or disruption of ceramide-enriched membrane domains prevents clustering of CD40 ligand. The functional significance of CD40 ligand clustering is indicated by the finding that clustering of CD40 on B lymphocytes upon co-incubation with CD40 ligand-expressing T cells depends on clustering of the CD40 ligand and is abrogated by inhibition of CD40 ligand clustering.  相似文献   

2.
Cholesterol enriched lipid rafts are considered to function as platforms involved in the regulation of membrane receptor signaling complex through the clustering of signaling molecules. In this study, we tested whether these specialized membrane microdomains affect CD40 localization in vitro and in vivo. Here, we provide evidence that upon CD40 ligand stimulation, endogenous and exogenous CD40 receptor is rapidly mobilized into lipid rafts compared with unstimulated HAECs. Efficient binding between CD40L and CD40 receptor also increases amounts of CD40 protein levels in lipid rafts. Deficiency of intracellular conserved C terminus of the CD40 cytoplasmic tail impairs CD40 partitioning in raft. Raft disorganization after methyl-beta-cyclodextrin treatment diminishes CD40 localization into rafts. In vivo studies show that elevation of circulating cholesterol in high-cholesterol fed rabbits increases the cholesterol content and CD40 receptor localization in lipid rafts. These findings identify a physiological role for membrane lipid rafts as a critical regulator of CD40-mediated signal transduction and raise the possibility that certain pathologic conditions may be treated by altering CD40 signaling with drugs affecting its raft localization.  相似文献   

3.
Ceramide-rich membrane rafts mediate CD40 clustering.   总被引:10,自引:0,他引:10  
Many receptor systems use receptor clustering for transmembrane signaling. In this study, we show that acid sphingomyelinase (ASM) is essential for the clustering of CD40. Stimulation of lymphocytes via CD40 ligation results in ASM translocation from intracellular stores, most likely vesicles, into distinct membrane domains on the extracellular surface of the plasma membrane. Surface ASM initiates a release of extracellularly oriented ceramide, which in turn mediates CD40 clustering in sphingolipid-rich membrane domains. ASM, ceramide, and CD40 colocalize in the cap-like structure of stimulated cells. Deficiency of ASM, destruction of sphingolipid-rich rafts, or neutralization of surface ceramide prevents CD40 clustering and CD40-initiated cell signaling. These findings indicate that the ASM-mediated release of ceramide and/or metabolites of ceramide regulate clustering of CD40, which seems to be a prerequisite for cellular activation via CD40.  相似文献   

4.
Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.  相似文献   

5.
6.
Ligand bound-receptors in a signalosome complex trigger signals to determine cellular functions. Upon ligand binding, the ligand–receptor complexes form clusters on cell membrane. Guided by the previous experimental reports on the cluster formation of CD40, a trans membrane receptor for CD40-ligand, we built a minimal model of the receptor cluster formation. In this model, we studied co-operative and non-co-operative clustering of a maximum of four CD40 molecules assuming a positive mediator of clustering such as cholesterol to be present in both cases. We observed that co-operative interactions between CD40 molecules resulted in more of the largest CD40 clusters than that observed with the non-co-operatively interacting CD40 molecules. We performed global sensitivity analysis on the model parameters and the analyses suggested that cholesterol influenced only the initial stage of the co-operatively clustering CD40 molecules but it affects both the initial and the final stages in case of the non-co-operatively clustering CD40 molecules. Robustness analyses revealed that in both co-operative and non-co-operative interactions, the higher order clusters beyond a critical size are more robust with respect to alterations in the environmental parameters including the cholesterol. Thus, the role of co-operative and non-co-operative interactions in environment-influenced receptor clustering is reported for the first time.  相似文献   

7.
Activation of immunoreceptor FcγRIIA by cross-linking with antibodies is accompanied by coalescence of sphingolipid/cholesterol-rich membrane rafts leading to the formation of signaling platforms of the receptor. In this report we examined whether clustering of the raft lipid sphingomyelin can reciprocally induce partition of FcγRIIA to rafts. To induce sphingomyelin clustering, cells were exposed to non-lytic concentrations of GST-lysenin which specifically recognizes sphingomyelin. The lysenin/sphingomyelin complexes formed microscale assemblies composed of GST-lysenin oligomers engaging sphingomyelin of rafts. Upon sphingomyelin clustering, non-cross-linked FcγRIIA associated with raft-derived detergent-resistant membrane fractions as revealed by density gradient centrifugation. Pretreatment of cells with GST-lysenin also increased the size of detergent-insoluble molecular complexes of activated FcγRIIA. Sphingomyelin clustering triggered tyrosine phosphorylation of the receptor and its accompanying proteins, Cbl and NTAL, in the absence of receptor ligands and enhanced phosphorylation of these proteins in the ligand presence. These data indicate that clustering of plasma membrane sphingomyelin induces coalescence of rafts and triggers signaling events analogous to those caused by FcγRIIA activation.  相似文献   

8.
T cells that lack the CD45 transmembrane tyrosine phosphatase have a variety of T-cell receptor (TCR) signaling defects that are corrected by reexpression of wild-type CD45 or its intracytoplasmic domains. In this study, a chimeric molecule containing the myristylation sequence of Src and the intracellular portion of CD45, previously shown to restore function in CD45- T cells, was mutagenized to determine if membrane-associated CD45 tyrosine phosphatase activity is required to restore TCR-mediated signaling in CD45- T cells. Abolition of enzymatic activity by substitution of a serine for a critical cysteine in the first catalytic domain resulted in failure of this molecule to restore TCR signaling. Another mutation, in which a single amino acid substitution destroyed the myristylation site, resulted in failure of the chimeric molecule to partition to the plasma membrane. Although expressed at high levels and enzymatically active, this form of intracellular CD45 also failed to restore normal signaling in CD45- T cells. These findings strongly suggest that CD45's function in TCR signaling requires its proximity to membrane-associated tyrosine phosphatase substrates.  相似文献   

9.
Tetraspanins have been hypothesized to facilitate the organization of functional multimolecular membrane complexes. In B cells the tetraspanin CD81 is a component of the CD19/CD21 complex. When coligated to the B cell Ag receptor (BCR), the CD19/CD21 complex significantly enhances BCR signaling in part by prolonging the association of the BCR with signaling-active lipid rafts. In this study CD81 is shown to associate with lipid rafts upon coligation of the BCR and the CD19/CD21 complex. Using B cells from CD81-deficient mice we demonstrate that in the absence of CD81, coligated BCR and CD19/CD21 complexes fail to partition into lipid rafts and enhance BCR signaling from rafts. Furthermore, a chimeric CD19 protein that associates only weakly if at all with CD81 fails to promote the association of coligated BCR with lipid rafts. The requirement for CD81 to promote lipid raft association may define a novel mechanism by which tetraspanins function as molecular facilitators of signaling receptors.  相似文献   

10.
It is well established that the CD154/CD40 interaction is required for T cell-dependent B cell differentiation and maturation. However, the early molecular and structural mechanisms that orchestrate CD154 and CD40 signaling at the T cell/APC contact site are not well understood. We demonstrated that CD40 engagement induces the formation of disulfide-linked (dl) CD40 homodimers that predominantly associate with detergent-resistant membrane microdomains. Mutagenesis and biochemical analyses revealed that (a) the integrity of the detergent-resistant membranes is necessary for dl-CD40 homodimer formation, (b) the cytoplasmic Cys(238) of CD40 is the target for the de novo disulfide oxidation induced by receptor oligomerization, and (c) dl-CD40 homodimer formation is required for CD40-induced interleukin-8 secretion. Stimulation of CD154-positive T cells with staphylococcal enterotoxin E superantigen that mimics nominal antigen in initiating cognate T cell/APC interaction revealed that dl-CD40 homodimer formation is required for interleukin-2 production by T cells. These findings indicate that dl-CD40 homodimer formation has a physiological role in regulating bidirectional signaling.  相似文献   

11.
Signal transduction through the CD40 receptor is initiated by binding of its trimeric ligand and propagated by interactions of tumor necrosis factor receptor-associated factor (TRAF) proteins with the multimerized CD40 cytoplasmic domain. Using defined multimeric constructs of the CD40 cytoplasmic domain expressed as either soluble or myristoylated proteins, we have addressed the extent of receptor multimerization needed to initiate signal transduction and identified components of CD40 signaling complexes. Signal transduction in human embryonic kidney 293 cells, measured by nuclear factor kappaB activation, was observed in cells expressing soluble trimeric CD40 cytoplasmic domain and to a lesser extent in cells expressing dimeric CD40 cytoplasmic domain. Nuclear factor kappaB activation was strongest in cells expressing myristoylated trimeric CD40 cytoplasmic domain. Signal transduction through trimeric CD40 cytoplasmic domains with various point mutations in the TRAF binding sites was similar to signal transduction through analogous full-length receptors. Transiently expressed soluble trimeric CD40 cytoplasmic domain was isolated as complexes that contained TRAF2, TRAF3, TRAF5, TRAF6, and the inhibitor of apoptosis protein (c-IAP1). Association of c-IAP1 with the CD40 cytoplasmic domain complex was indirect and dependent on the presence of an intact TRAF1/2/3 binding site. These results suggest that extracellular ligation of CD40 can be bypassed and that soluble trimerized CD40 complexes can be isolated and used to identify components that link CD40 with signaling pathways.  相似文献   

12.
Despite CD40's role in stimulating dendritic cells (DCs) for efficient specific T-cell stimulation, its signal transduction components in DCs are still poorly documented. We show that CD40 receptors on human monocyte-derived DCs associate with sphingolipid- and cholesterol-rich plasma membrane microdomains, termed membrane rafts. Following engagement, CD40 utilizes membrane raft-associated Lyn Src family kinase, and possibly other raft-associated Src family kinases, to initiate tyrosine phosphorylation of intracellular substrates. CD40 engagement also leads to a membrane raft-restricted recruitment of tumor necrosis factor (TNF) receptor-associated factor (TRAF) 3 and, to a lesser extent, TRAF2, to CD40's cytoplasmic tail. Thus, the membrane raft structure plays an integral role in proximal events of CD40 signaling in DCs. We demonstrate that stimulation of Src family kinase within membrane rafts initiates a pathway implicating ERK activation, which leads to interleukin (IL)-1alpha/beta and IL-1Ra mRNA production and contributes to p38-dependent IL-12 mRNA production. These results provide the first evidence that membrane rafts play a critical role in initiation of CD40 signaling in DCs, and delineate the outcome of CD40-mediated pathways on cytokine production.  相似文献   

13.
Ceramide-enriched membrane domains   总被引:1,自引:0,他引:1  
Cellular activation involves the re-organization of receptor molecules and the intracellular signalosom in the cell membrane. Recent studies indicate that specialized domains of the cell membrane, termed rafts, are central for the spatial organization of receptors and signaling molecules. Rafts are converted into larger membrane platforms by activity of the acid sphingomyelinase, which hydrolyses raft-sphingomyelin to ceramide. Ceramide molecules spontaneously associate to form ceramide-enriched microdomains, which fuse to large ceramide-enriched membrane platforms. The acid sphingomyelinase is activated by multiple stimuli including CD95, CD40, DR5/TRAIL, CD20, FcgammaRII, CD5, LFA-1, CD28, TNF, the Interleukin-1 receptor, the PAF-receptor, CD14, infection with P. aeruginosa, S. aureus, N. gonorrhoeae, Sindbis-Virus, Rhinovirus, treatment with gamma-irradiation, UV-light, doxorubicin, cisplatin, disruption of integrin-signaling and under some conditions of developmental death. Ceramide-enriched membrane platforms serve the clustering of receptors, the recruitment of intracellular signaling molecules and the exclusion of inhibitory signaling factors and, thus, facilitate signal transduction initiated by the specific stimulus.  相似文献   

14.
PURPOSE OF REVIEW: Lipid rafts on monocytes/macrophages provide a dynamic microenvironment for an integrated lipopolysaccharide receptor (CD14)-dependent clustering of a set of receptors involved in innate immunity and clearance of atherogenic lipoproteins. The purpose of this review is to summarize the recent advances in our understanding of CD14-dependent receptor clustering and its relevance in atherogenesis. RECENT FINDINGS: Upon binding of various ligands, CD14 as a multiligand pattern recognition receptor induces specific coassembly of additional receptors present on circulating monocytes. SUMMARY: The composition of the receptor cluster and thus the associated signalling pathways defines a ligand specific cellular response, linking endogenous and exogenous host defense to a common recognition platform in rafts.  相似文献   

15.
The TNF-alpha receptor, CD120a, has recently been shown to be localized to both plasma membrane lipid rafts and to the trans Golgi complex. Through a combination of both confocal microscopy and sucrose density gradient ultracentrifugation, we show that amino acid sequences located within the death domain (DD) of CD120a are both necessary and sufficient to promote the appropriate localization of the receptor to lipid rafts. Deletion of the DD (CD120a.Delta321-425) prevented the receptor from being targeted to lipid rafts and resulted in a uniform plasma membrane localization. A similar loss of raft localization was also observed following pairwise deletion of the six alpha-helices that comprise the DD. In all situations, the loss of the ability of CD120a to become localized to lipid rafts following mutagenesis was paralleled by a failure of the receptor to initiate apoptosis. Furthermore, introduction of the lpr mutation into CD120a (CD120a.L351N) also resulted in both a loss in the ability of the receptor to signal apoptosis and to be appropriately localized to rafts. In contrast to CD120a, CD120b, which lacks a DD, is mainly expressed in the bulk plasma membrane and to a lesser extent in lipid rafts, but is absent from the Golgi complex. However, a chimeric receptor in which the DD of CD120a was fused to the cytoplasmic domain of CD120b was predominantly localized to lipid rafts. Collectively, these findings suggest that in addition to its role in CD120a signaling, an appropriately folded and functionally active DD is required for the localization of the receptor to lipid rafts.  相似文献   

16.
CD40 ligand (CD40L)-deficient mice have been shown to have a defect in negative selection of self-reactive T cells during thymic development. However, the mechanism by which CD40L promotes deletion of autoreactive thymocytes has not yet been elucidated. We have studied negative selection in response to endogenous superantigens in CD40L-deficient mice and, consistent with previous reports, have found a defect in negative selection in these mice. To test the requirement for expression of CD40L on T cells undergoing negative selection, we have generated chimeric mice in which CD40L wild-type and CD40L-deficient thymocytes coexist. We find that both CD40L wild-type and CD40L-deficient thymocytes undergo equivalent and efficient negative selection when these populations coexist in chimeric mice. These results indicate that CD40L can function in a non-cell-autonomous manner during negative selection. Deletion of superantigen-reactive thymocytes was normal in B7-1/B7-2 double-knockout mice, indicating that CD40-CD40L-dependent negative selection is not solely mediated by B7 up-regulation and facilitation of B7-dependent T cell signaling. Finally, although the absence of CD40-CD40L interactions impairs negative selection of autoreactive CD4(+) and CD8(+) cells during thymic development, we find that self-reactive T cells are deleted in the mature CD4(+) population through a CD40L-independent pathway.  相似文献   

17.
The adhesion molecule CD58 is natively expressed in both a glycosylphosphatidylinositol (GPI)-anchored form and a transmembrane form. We previously demonstrated that the two isoforms of CD58 are differentially distributed in the cell membrane. The GPI-linked form resides in lipid rafts while the transmembrane form resides outside lipid rafts. Following cross-linking a fraction of transmembrane CD58 redistributes to lipid rafts. It has also been demonstrated that ligand binding to CD58 induces biological functions such as cytokine production and immunoglobulin isotype switching, indicating that cell–cell interactions result in CD58-mediated signal transduction. However, the signaling pathways involved in these activation processes are poorly defined. Here we show for the first time that cross-linking of CD58 induces protein tyrosine phosphorylation of BLNK, Syk and PLCγ, and activation of ERK and Akt/PKB. In addition, we studied how these signaling events relate to the distinct membrane localization of the two isoforms of CD58. We demonstrate that cross-linking of CD58 triggers signaling that is predominantly associated with transmembrane CD58 in nonraft microdomains. Moreover, signaling through transmembrane CD58 does not depend on coexpression of the GPI-linked isoform. Thus, despite the residence of its GPI-anchored isoform in lipid rafts and the translocation of a fraction of its transmembrane isoform to lipid rafts, CD58 signaling is triggered by the transmembrane isoform outside lipid rafts. These findings corroborate signaling outside lipid rafts, as opposed to the established notion that rafts function as essential platforms for signaling.  相似文献   

18.
Recent biochemical evidence indicates that an early event in signal transduction by the B-cell antigen receptor (BCR) is its translocation to specialized membrane subdomains known as lipid rafts. We have taken a microscopic approach to image lipid rafts and early events associated with BCR signal transduction. Lipid rafts were visualized on primary splenic B lymphocytes from wild-type or anti-hen egg lysozyme BCR transgenic mice, and on a mature mouse B-cell line Bal 17 by using fluorescent conjugates of cholera toxin B subunit or a Lyn-based chimeric protein, which targets green fluorescent protein to the lipid raft compartment. Time-lapse imaging of B cells stimulated via the BCR with the antigen hen egg lysozyme, or surrogate for antigen anti-IgM, demonstrated that lipid rafts are highly dynamic entities, which move laterally on the surface of these cells and coalesce into large regions. These regions of aggregated lipid rafts colocalized with the BCR and tyrosine-phosphorylated proteins. Microscopic imaging of live B cells also revealed an inducible colocalization of lipid rafts with the tyrosine kinase Syk and the receptor tyrosine phosphatase CD45. These two proteins play indispensable roles in BCR-mediated signaling but are not detectable in biochemically purified lipid raft fractions. Strikingly, BCR stimulation also induced the formation of long, thread-like filopodial projections, similar to previously described structures called cytonemes. These B-cell cytonemes are rich in lipid rafts and actin filaments, suggesting that they might play a role in long-range communication and/or transportation of signaling molecules during an immune response. These results provide a window into the morphological and molecular organization of the B-cell membrane during the early phase of BCR signaling.  相似文献   

19.
Lam N  Sugden B 《The EMBO journal》2003,22(12):3027-3038
Latent membrane protein 1 (LMP1) is an Epstein-Barr virus (EBV)-encoded, ligand-independent receptor that mimics CD40. We report here that LMP1 signals principally from intracellular compartments. LMP1 associates simultaneously with lipid rafts and with its signaling molecules, tumor necrosis factor-receptor (TNF-R)-associated factors (TRAFs) and TNF-R1-associated death domain protein (TRADD) intracellularly, although it can be detected at low levels at the plasma membrane, indicating that most of LMP1's signaling complex resides in intracellular compartments. LMP1's signaling is independent of its accumulation at the plasma membrane in different cells, and as demonstrated by a mutant of LMP1 which has significantly reduced localization at the plasma membrane yet signals as efficiently as does wild-type LMP1. The fusion of the transmembrane domain of LMP1 to signaling domains of CD40, TNF-R1 and Fas activates their signaling; we demonstrate that a fusion of LMP1 with CD40 recruits TRAF2 intracellularly. Our results imply that members of the TNF-R family can signal from intracellular compartments containing lipid rafts and may do so when they act in autocrine loops.  相似文献   

20.
CD95 signaling via ceramide-rich membrane rafts   总被引:27,自引:0,他引:27  
Clustering seems to be employed by many receptors for transmembrane signaling. Here, we show that acid sphingomyelinase (ASM)-released ceramide is essential for clustering of CD95. In vitro and in vivo, extracellularly orientated ceramide, released upon CD95-triggered translocation of ASM to the plasma membrane outer surface, enabled clustering of CD95 in sphingolipid-rich membrane rafts and apoptosis induction. Whereas ASM deficiency, destruction of rafts, or neutralization of surface ceramide prevented CD95 clustering and apoptosis, natural ceramide only rescued ASM-deficient cells. The data suggest CD95-mediated clustering by ceramide is prerequisite for signaling and death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号