首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
《Free radical research》2013,47(4):523-530
Abstract

In the tide of science nouveau after the completion of genome projects of various species, there appeared a movement to understand an organism as a system rather than the sum of cells directed for certain functions. With the advent and spread of microarray techniques, systematic and comprehensive genome-wide approaches have become reasonably possible and more required on the investigation of DNA damage and the subsequent repair. The immunoprecipitation-based technique combined with high-density microarrays or next-generation sequencing is one of the promising methods to provide access to such novel research strategies. Oxygen is necessary for most of the life on earth for electron transport. However, reactive oxygen species are inevitably generated, giving rise to steady-state levels of DNA damage in the genome, that may cause mutations leading to cancer, ageing and degenerative diseases. Previously, we showed that there are many factors involved in the genomic distribution of oxidatively generated DNA damage including chromosome territory, and proposed this sort of research area as oxygenomics. Recently, RNA is also recognized as a target of this kind of modification.  相似文献   

2.
Lukas J  Lukas C  Bartek J 《Nature cell biology》2011,13(10):1161-1169
Following the discovery in 1998 of γ-H2AX, the first histone modification induced by DNA damage, interest in the changes to chromatin induced by DNA damage has exploded, and a vast amount of information has been generated. However, there has been a discrepancy between our rapidly advancing knowledge of how chromatin responds to DNA damage and the understanding of why cells mobilize large segments of chromatin to protect the genome against destabilizing effects posed by tiny DNA lesions. Recent research has provided insights into these issues and suggests that chromatin responses induced by DNA damage are not simply the accumulation of 'nuclear foci' but are mechanisms required to guard genome integrity.  相似文献   

3.
A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.  相似文献   

4.
5.
Mitochondria contain their own genome, a small circular molecule of around 16.5 kbases. The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, but its integrity is essential for mitochondrial function, as all 13 proteins are regulatory subunits of the oxidative phosphorylation complexes. Nonetheless, the mtDNA is physically associated with the inner mitochondrial membrane, where the majority of the cellular reactive oxygen species are generated. In fact, the mitochondrial DNA accumulates high levels of oxidized lesions, which have been associated with several pathological and degenerative processes. The cellular responses to nuclear DNA damage have been extensively studied, but so far little is known about the functional outcome and cellular responses to mtDNA damage. In this review we will discuss the mechanisms that lead to damage accumulation and the in vitro models we are establishing to dissect the cellular responses to oxidative damage in the mtDNA and to sort out the differential cellular consequences of accumulation of damage in each cellular genome, the nuclear and the mitochondrial genome.  相似文献   

6.
The maintenance of the mitochondrial genomic integrity is a prerequisite for proper mitochondrial function. Due to the high concentration of reactive oxygen species (ROS) generated by the oxidative phosphorylation pathway, the mitochondrial genome is highly exposed to oxidative stress leading to mitochondrial DNA injury. Accordingly, mitochondrial DNA damage was shown to be associated with ageing as well as with numerous human diseases including neurodegenerative disorders and cancer. To date, several methods have been described to detect damaged mitochondrial DNA, but those techniques are semi-quantitative and often require high amounts of genomic input DNA. We developed a rapid and quantitative method to evaluate the relative levels of damage in mitochondrial DNA by using the real time-PCR amplification of mitochondrial DNA fragments of different lengths. We investigated mitochondrial DNA damage in SH-SY5Y human neuroblastoma cells exposed to hydrogen peroxide or stressed by over-expression of the tyrosinase gene. In the past, there has been speculation about a variable vulnerability to oxidative stress along the mitochondrial genome. Our results indicate the existence of at least one mitochondrial DNA hot spot, namely the D-Loop, being more prone to ROS-derived damage.  相似文献   

7.
Free radicals and other reactive species are generated in vivo and many of them can cause oxidative damage to DNA. Although there are methodological uncertainties about accurate quantitation of oxidative DNA damage, the levels of such damage that escape immediate repair and persist in DNA appear to be in the range that could contribute significantly to mutation rates in vivo. The observation that diets rich in fruits and vegetables can decrease both oxidative DNA damage and cancer incidence is consistent with this. By contrast, agents increasing oxidative DNA damage usually increase risk of cancer development. Such agents include cigarette smoke, several other carcinogens, and chronic inflammation. Rheumatoid arthritis and diabetes are accompanied by increased oxidative DNA damage but the pattern of increased cancer risk seems unusual. Other uncertainties are the location of oxidative DNA damage within the genome and the variation in rate and level of oxidative damage between different body tissues. In well-nourished human volunteers, fruits and vegetables have been shown to decrease oxidative DNA damage in several studies, but data from short-term human intervention studies suggest that the protective agents are not vitamin C, vitamin E, beta-carotene, or flavonoids.  相似文献   

8.
Recent molecular studies in the genera Aegilops and Triticum showed that allopolyploidization (interspecific or intergeneric hybridization followed by chromosome doubling) generated rapid elimination of low-copy or high-copy, non-coding and coding DNA sequences. The aims of this work were to determine the amount of nuclear DNA in allopolyploid species of the group and to see to what extent elimination of DNA sequences affected genome size. Nuclear DNA amount was determined by the flow cytometry method in 27 natural allopolyploid species (most of which were represented by several lines and each line by several plants) as well as 14 newly synthesized allopolyploids (each represented by several plants) and their parental plants. Very small intraspecific variation in DNA amount was found between lines of allopolyploid species collected from different habitats or between wild and domesticated forms of allopolyploid wheat. In contrast to the constancy in nuclear DNA amount at the intraspecific level, there are significant differences in genome size between the various allopolyploid species, at both the tetraploid and hexaploid levels. In most allopolyploids nuclear DNA amount was significantly less than the sum of DNA amounts of the parental species. Newly synthesized allopolyploids exhibited a similar decrease in nuclear DNA amount in the first generation, indicating that genome downsizing occurs during and (or) immediately after the formation of the allopolyploids and that there are no further changes in genome size during the life of the allopolyploids. Phylogenetic considerations of the origin of the B genome of allopolyploid wheat, based on nuclear DNA amount, are discussed.  相似文献   

9.
10.
Mechanisms of recent genome size variation in flowering plants   总被引:27,自引:0,他引:27  
BACKGROUND AND AIMS: Plant nuclear genomes vary tremendously in DNA content, mostly due to differences in ancestral ploidy and variation in the degree of transposon amplification. These processes can increase genome size, but little is known about mechanisms of genome shrinkage and the degree to which these can attenuate or reverse genome expansion. This research focuses on characterizing DNA removal from the rice and Arabidopsis genomes, and discusses whether loss of DNA has effectively competed with amplification in these species. METHODS: Retrotransposons were analyzed for sequence variation within several element families in rice and Arabidopsis. Nucleotide sequence changes in the two termini of individual retrotransposons were used to date their time of insertion. KEY RESULTS: An accumulation of small deletions was found in both species, caused by unequal homologous recombination and illegitimate recombination. The relative contribution of unequal homologous recombination compared to illegitimate recombination was higher in rice than in Arabidopsis. However, retrotransposons are rapidly removed in both species, as evidenced by the similar apparent ages of intact elements (most less than 3 million years old) in these two plants and all other investigated plant species. CONCLUSIONS: Differences in the activity of mechanisms for retrotransposon regulation or deletion generation between species could explain current genome size variation without any requirement for natural selection to act on this trait, although the results do not preclude selection as a contributing factor. The simplest model suggests that significant genome size variation is generated by lineage-specific differences in the molecular mechanisms of DNA amplification and removal, creating major variation in nuclear DNA content that can then serve as the substrate for fitness-based selection.  相似文献   

11.
12.
Oomycete species occupy many different environments and many ecological niches. The genera Phytophthora and Pythium for example, contain many plant pathogens which cause enormous damage to a wide range of plant species. Proper identification to the species level is a critical first step in any investigation of oomycetes, whether it is research driven or compelled by the need for rapid and accurate diagnostics during a pathogen outbreak. The use of DNA for oomycete species identification is well established, but DNA barcoding with cytochrome c oxidase subunit I (COI) is a relatively new approach that has yet to be assessed over a significant sample of oomycete genera. In this study we have sequenced COI, from 1205 isolates representing 23 genera. A comparison to internal transcribed spacer (ITS) sequences from the same isolates showed that COI identification is a practical option; complementary because it uses the mitochondrial genome instead of nuclear DNA. In some cases COI was more discriminative than ITS at the species level. This is in contrast to the large ribosomal subunit, which showed poor species resolution when sequenced from a subset of the isolates used in this study. The results described in this paper indicate that COI sequencing and the dataset generated are a valuable addition to the currently available oomycete taxonomy resources, and that both COI, the default DNA barcode supported by GenBank, and ITS, the de facto barcode accepted by the oomycete and mycology community, are acceptable and complementary DNA barcodes to be used for identification of oomycetes.  相似文献   

13.
The processes that lead to violation of genome integrity are known to increase with age. This phenomenon is caused both by increased production of reactive oxygen species and a decline in the efficiency of antioxidant defense system as well as systems maintaining genome stability. Accumulation of different unrepairable genome damage with age may be the cause of many age-related diseases and the development of phenotypic and physiological signs of aging. It is also clear that there is a close connection between the mechanisms of the maintenance of genome stability, on one hand, and the processes of spontaneous tumor formation and lifespan, on the other. In this regard, the system of protein poly(ADP-ribosyl)ation activated in response to a variety of DNA damage seems to be of particular interest. Data accumulated to date suggest it to be a kind of focal point of cellular processes, guiding the path of cell survival or death depending on the degree of DNA damage. This review summarizes and analyzes data on the involvement of poly(ADP-ribosyl)ation in various mechanisms of DNA repair, its interaction with progeria proteins, and the possible role in the development of spontaneous tumors and lifespan determination. Special attention is given to the relationship between various polymorphisms of the human poly(ADP-ribose) polymerase-1 gene and longevity.  相似文献   

14.
Reactive oxygen species (ROS), continuously generated as by-products of respiration, inflict more damage on the mitochondrial (mt) than on the nuclear genome because of the nonchromatinized nature and proximity to the ROS source of the mitochondrial genome. Such damage, particularly single-strand breaks (SSBs) with 5′-blocking deoxyribose products generated directly or as repair intermediates for oxidized bases, is repaired via the base excision/SSB repair pathway in both nuclear and mt genomes. Here, we show that EXOG, a 5′-exo/endonuclease and unique to the mitochondria unlike FEN1 or DNA2, which, like EXOG, has been implicated in the removal of the 5′-blocking residue, is required for repairing endogenous SSBs in the mt genome. EXOG depletion induces persistent SSBs in the mtDNA, enhances ROS levels, and causes apoptosis in normal cells but not in mt genome-deficient rho0 cells. Thus, these data show for the first time that persistent SSBs in the mt genome alone could provide the initial trigger for apoptotic signaling in mammalian cells.  相似文献   

15.
Comparison of genomic DNA sequences: solved and unsolved problems   总被引:5,自引:0,他引:5  
MOTIVATION: The DNA sequences of entire genomes are being determined at a rapid rate. Whereas initial genome sequencing efforts were for organisms chosen to be widely spaced in the tree of life, there is a growing emphasis on projects to sequence a species that is sufficiently similar to an already-sequenced species to allow direct comparison of those two DNA sequences. This and other changes in genome sequencing strategies have created a strong need for new methods to compare genomic sequences. RESULTS: We sketch the current state of software for comparing genomic DNA sequences and outline research directions that we believe are likely to result in important advances in practice.  相似文献   

16.
17.
Tuteja N  Ahmad P  Panda BB  Tuteja R 《Mutation research》2009,681(2-3):134-149
Plant cells are constantly exposed to environmental agents and endogenous processes that inflict damage to DNA and cause genotoxic stress, which can reduce plant genome stability, growth and productivity. Plants are most affected by solar UV-B radiation, which damage the DNA by inducing the formation of two main UV photoproducts such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). Reactive oxygen species (ROS) are also generated extra- or intra-cellularly, which constitute yet another source of genotoxic stress. As a result of this stress, the cellular DNA-damage responses (DDR) are activated, which transiently arrest the cell cycle and allow cells to repair DNA before proceeding into mitosis. DDR requires the activation of Ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) genes, which regulate the cell cycle and transmit the damage signals to downstream effectors of cell-cycle progression. Since genomic protection and stability are fundamental to ensure and sustain plant diversity and productivity, therefore, repair of DNA damages is essential. In plants the bulky DNA lesions, CPDs and 6-4PPs, are repaired by a simple and error-free mechanism: photoreactivation, which is a light-dependent mechanism and requires CPD or 6-4PP specific photolyases. In addition to this direct repair process, the plants also have sophisticated light-independent general repair mechanisms, such as the nucleotide excision repair (NER) and base excision repair (BER). The completed plant genome sequences reveal that most of the genes involved in NER and BER are present in higher plants, which suggests that the network of in-built DNA-damage repair mechanisms is conserved. This article describes the insight underlying the DNA damage and repair pathways in plants. The comet assay to measure the DNA damage and the role of DNA repair helicases such as XPD and XPB are also covered.  相似文献   

18.
The interacting pathways for prevention and repair of oxidative DNA damage   总被引:22,自引:0,他引:22  
  相似文献   

19.
家蚕浓核病毒中国株的正链DNA和负链DNA分别包裹在不同的病毒粒子中,而且两条链的大小不同,经高盐浓度的DNA抽提缓冲液提取后,在琼脂糖凝胶电泳谱中呈现出大小不同的两条带,一条6.4kb,另一条5.8kb。作者分别用高盐和低盐抽提缓冲液提取了家蚕浓核病毒中国株的基因组DNA,意外发现用低盐抽提缓冲液抽提出来的基因组DNA在琼脂糖凝胶电泳谱中仅呈现一条带。推测可能是由于大小不同且不完全互补的正负链,在低盐缓冲液中形成有效的互补,因而呈现一条6.2kb的条带。  相似文献   

20.
Understanding which factors influence offspring mortality rates is a major challenge since it influences population dynamics and may constrain the chances of recovery among endangered species. Most studies have focused on the effects of maternal and environmental factors, but little is known about paternal factors. Among most polygynous mammals, males only contribute the haploid genome to their offspring, but the possibility that sperm DNA integrity may influence offspring survival has not been explored. We examined several maternal, paternal and individual factors that may influence offspring survival in an endangered species (Gazella cuvieri). Levels of sperm DNA damage had the largest impact upon offspring mortality rates, followed by maternal parity. In addition, there was a significant interaction between these two variables, so that offspring born to primiparous mothers were more likely to die if their father had high levels of sperm DNA damage, but this was not the case among multiparous mothers. Thus, multiparous mothers seem to protect their offspring from the deleterious effects of sperm DNA damage. Since levels of sperm DNA damage seem to be higher among endangered species, more attention should be paid to the impact of this largely ignored factor among the viability of endangered species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号