首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frank A  Onila I  Möller HM  Exner TE 《Proteins》2011,79(7):2189-2202
Despite the many protein structures solved successfully by nuclear magnetic resonance (NMR) spectroscopy, quality control of NMR structures is still by far not as well established and standardized as in crystallography. Therefore, there is still the need for new, independent, and unbiased evaluation tools to identify problematic parts and in the best case also to give guidelines that how to fix them. We present here, quantum chemical calculations of NMR chemical shifts for many proteins based on our fragment-based quantum chemical method: the adjustable density matrix assembler (ADMA). These results show that (13)C chemical shifts of reasonable accuracy can be obtained that can already provide a powerful measure for the structure validation. (1)H and even more (15)N chemical shifts deviate more strongly from experiment due to the insufficient treatment of solvent effects and conformational averaging.  相似文献   

2.
An analysis of the 1H nuclear magnetic resonance chemical shift assignments and secondary structure designations for over 70 proteins has revealed some very strong and unexpected relationships. Similar studies, performed on smaller databases, for 13C and 15N chemical shifts reveal equally strong correlations to protein secondary structure. Among the more interesting results to emerge from this work is the finding that all 20 naturally occurring amino acids experience a mean alpha-1H upfield shift of 0.39 parts per million (from the random coil value) when placed in a helical configuration. In a like manner, the alpha-1H chemical shift is found to move downfield by an average of 0.37 parts per million when the residue is placed in a beta-strand or extended configuration. Similar changes are also found for amide 1H, carbonyl 13C, alpha-13C and amide 15N chemical shifts. Other relationships between chemical shift and protein conformation are also uncovered; in particular, a correlation between helix dipole effects and amide proton chemical shifts as well as a relationship between alpha-proton chemical shifts and main-chain flexibility. Additionally, useful relationships between alpha-proton chemical shifts and backbone dihedral angles as well as correlations between amide proton chemical shifts and hydrogen bond effects are demonstrated.  相似文献   

3.
Summary The contribution of peptide groups to H and H proton chemical shifts can be modeled with empirical equations that represent magnetic anisotropy and electrostatic interactions [Ösapay, K. and Case, D.A. (1991) J. Am. Chem. Soc., 113, 9436–9444]. Using these, a model for the random coil reference state can be generated by averaging a dipeptide over energetically allowed regions of torsion-angle space. Such calculations support the notion that the empirical constant used in earlier studies arises from neighboring peptide contributions in the reference state, and suggest that special values be used for glycine and proline residues, which differ significantly from other residues in their allowed ,-ranges. New constants for these residues are reported that provide significant improvements in predicted backbone shifts. To illustrate how secondary structure affects backbone chemical shifts we report calculations on oligopeptide models for helices, sheets and turns. In addition to suggesting a physical mechanism for the widely recognized average difference between and secondary structures, these models suggest several additional regularities that should be expected: (a) H protons at the edges of -sheets will have a two-residue periodicity; (b) the H2 and H3 protons of glycine residues will exhibit different shifts, particularly in sheets; (c) H protons will also be sensitive to local secondary structure, but in different directions and to a smaller extent than H protons; (d) H protons in turns will generally be shifted upfield, except those in position 3 of type I turns. Examples of observed shift patterns in several proteins illustrate the application of these ideas.  相似文献   

4.
The solution conformation of interleukin-8 (IL-8), a small protein of 72 residues with a wide range of proinflammatory activities, has been investigated by two-dimensional NMR spectroscopy. The 1H-NMR spectrum of IL-8 is assigned in a sequential manner and regular elements of secondary structure are identified on the basis of a qualitative interpretation of the nuclear Overhauser, coupling constant and amide exchange data. The IL-8 monomer contains a triple stranded anti-parallel beta-sheet arranged in a Greek key and a long C-terminal helix (residues 57-72). It is shown that IL-8 is a dimer in solution in which the interface is principally formed by six backbone hydrogen bonds between residues 25, 27, and 29 of one monomer and residues 29, 27, and 25, respectively, of the other. As a result, the two units of the dimer form a contiguous six-stranded anti-parallel beta-sheet. The secondary structure of IL-8 is similar to that found in the crystal structure of the sequence related protein platelet factor 4.  相似文献   

5.
Amyloid fibrils are the pathological hallmark of a large variety of neurodegenerative disorders. The structural characterization of amyloid fibrils, however, is challenging due to their non‐crystalline, heterogeneous, and often dynamic nature. Thus, the structure of amyloid fibrils of many proteins is still unknown. We here show that the structure calculation program CS‐Rosetta can be used to obtain insight into the core structure of amyloid fibrils. Driven by experimental solid‐state NMR chemical shifts and taking into account the polymeric nature of fibrils CS‐Rosetta allows modeling of the core of amyloid fibrils. Application to the Y145X stop mutant of the human prion protein reveals a left‐handed β‐helix  相似文献   

6.
Wang CC  Chen JH  Yin SH  Chuang WJ 《Proteins》2006,64(1):219-226
Different programs and methods were employed to superimpose protein structures, using members of four very different protein families as test subjects, and the results of these efforts were compared. Algorithms based on human identification of key amino acid residues on which to base the superpositions were nearly always more successful than programs that used automated techniques to identify key residues. Among those programs automatically identifying key residues, MASS could not superimpose all members of some families, but was very efficient with other families. MODELLER, MultiProt, and STAMP had varying levels of success. A genetic algorithm program written for this project did not improve superpositions when results from neighbor-joining and pseudostar algorithms were used as its starting cases, but it always improved superpositions obained by MODELLER and STAMP. A program entitled PyMSS is presented that includes three superposition algorithms featuring human interaction.  相似文献   

7.
Y Feng  H Roder  S W Englander 《Biochemistry》1990,29(14):3494-3504
Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences (delta delta) for structure change, we removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor parameters were determined from the delta delta values of a large set (64) of C alpha H protons at well-defined spatial positions in the oxidized horse protein. The g-tensor calculation, when repeated using only 12 available C alpha H proton resonances for cytochrome c from tuna, proved to be remarkably stable. The largest principal value of the g tensor (gz) falls precisely along the ligand bond between the heme iron and methionine-80 sulfur, while gx and gy closely match the natural heme axes defined by the pyrrole nitrogens. The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution (delta pc) to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, delta delta-delta pc, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, which are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. Smaller chemical shift discrepancies point to a concerted change, involving residues 39-43 and 50-60 (bottom of the protein), and to other changes in the immediate vicinity of the heme ligands. Also, the three internal water molecules are implicated in redox sensitivity. The residues found to change are in good but not perfect agreement with prior X-ray diffraction observations of subangstrom redox-related displacements in the tuna protein. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impression is one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.  相似文献   

8.
Summary The parameters for HN chemical shift calculations of proteins have been determined using data from high-resolution crystal structures of 15 proteins. Employing these chemical shift calculations for HN protons, the observed secondary structure chemical shift trends of HN protons, i.e., upfield shifts on helix formation and downfield shifts on -sheet formation, are discussed. Our calculations suggest that the main reason for the difference in NH chemical shifts in helices and sheets is not an effect from the directly hydrogen-bonded carbonyl, which gives rise to downfield shifts in both cases, but arises from an additional upfield shift predicted in helices and originating in residues i-2 and i-3. The calculations also explain the well-known relationship between amide proton shifts and hydrogen-bond lengths. In addition, the HN chemical shifts of the distorted amphipathic helices of the GCN4 leucine zipper are calculated and used to characterise the solution structure of the helices. By comparing the calculated and experimental shifts, it is shown that in general the agreement is good between residues 15 and 28. The most interesting observation is that in the N-terminal half of the zipper, although both calculated and experimental shifts show clear periodicity, they are no longer in phase. This suggests that for the N-terminal half, in the true average solution structure the period of the helix coil is longer by roughly one residue compared to the NMR structures.  相似文献   

9.
Summary An empirical correlation between the peptide 15N chemical shift, 15Ni, and the backbone torsion angles i, i–1 is reported. By using two-dimensional shielding surfaces (i1–1), it is possible in many cases to make reasonably accurate predictions of 15N chemical shifts for a given structure. On average, the rms error between experiment and prediction is about 3.5 ppm. Results for threonine, valine and isoleucine are worse (4.8 ppm), due presumably to 1-distribution/-gauche effects. The rms errors for the other amino acids are 3 ppm, for a typical maximal chemical shift range of 15–20 ppm. Thus, there is a significant correlation between 15N chemical shift and secondary structure.  相似文献   

10.
The solution conformation of the ribonuclease barnase has been determined by using 1H nuclear magnetic resonance (NMR) spectroscopy. The 20 structures were calculated by using 853 interproton distance restraints obtained from analyses of two-dimensional nuclear Overhauser spectra, 72 phi and 53 chi 1 torsion angle restraints, and 17 hydrogen-bond distance restraints. The calculated structures contain two alpha-helices (residues 6-18 and 26-34) and a five-stranded antiparallel beta-sheet (residues 50-55, 70-75, 85-91, 94-101, and 105-108). The core of the protein is formed by the packing of one of the alpha-helices (residues 6-18) onto the beta-sheet. The average RMS deviation between the calculated structures and the mean structure is 1.11 A for the backbone atoms and 1.75 A for all atoms. The protein is least well-defined in the N-terminal region and in three large loops. When these regions are excluded, the average RMS deviation between the calculated structures and the mean structure for residues 5-34, 50-56, 71-76, 85-109 is 0.62 A for the backbone atoms and 1.0 A for all atoms. The NMR-derived structure has been compared with the crystal structure of barnase [Mauguen et al. (1982) Nature (London) 297, 162-164].  相似文献   

11.
12.
Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique for the study of the structure, dynamics, and folding of proteins in solution. It is particularly powerful when applied to dynamic or flexible systems, such as partially folded molten globule states of proteins, which are not usually amenable to X-ray crystallography. In this article, NMR methods suitable for the detailed characterisation of molten globule states are described. The specific method used to study the molten globule is determined by the quality of the NMR spectrum obtained. Molten globules are characterised by significant levels of secondary structure. Site-specific hydrogen-deuterium exchange experiments can be used to identify residues located in regions of secondary structure in the molten globule. If spectra characterised by sharp peaks are observed for the molten globule then information about secondary structure can be obtained by analysis of (1)H(alpha), (13)C(alpha), (13)C(beta), and (13)CO chemical shifts; this can be supplemented by (15)N relaxation studies. For molten globules characterised by extremely broad peaks (15)N-edited NMR experiments carried out in increasing concentrations of denaturants can be used to study the relative stabilities of different regions of structure. Examples of the application of these methods to the study of the low pH molten globule states of alpha-lactalbumin and apomyoglobin are presented.  相似文献   

13.
The algorithm PLATON is able to assign sets of chemical shifts derived from a single residue to amino acid types with its secondary structure (amino acid species). A subsequent ranking procedure using optionally two different penalty functions yields predictions for possible amino acid species for the given set of chemical shifts. This was demonstrated in the case of the -spectrin SH3 domain and applied to 9 further protein data sets taken from the BioMagRes database. A database consisting of reference chemical shift patterns (reference CSPs) was generated from assigned chemical shifts of proteins with known 3D-structure. This reference CSP database is used in our approach for extracting distributions of amino acid types with their most likely secondary structure elements (namely -helix, -sheet, and coil) for single amino acids by comparison with query CSPs. Results obtained for the 10 investigated proteins indicates that the percentage of correct amino acid species in the first three positions in the ranking list, ranges from 71.4% to 93.2% for the more favorable penalty function. Where only the top result of the ranking list for these 10 proteins is considered, 36.5% to 83.1% of the amino acid species are correctly predicted. The main advantage of our approach, over other methods that rely on average chemical shift values is the ability to increase database content by incorporating newly derived CSPs, and therefore to improve PLATON's performance over time.  相似文献   

14.
Summary Computation of the 13C chemical shifts (or shieldings) of glycine, alanine and valine residues in bovine and Drosophila calmodulins and Staphylococcal nuclease, and comparison with experimental values, is reported using a gauge-including atomic orbital quantum-chemical approach. The full 24 ppm shielding range is reproduced (overall r.m.s.d.=1.4 ppm) using optimized protein structures, corrected for bond-length/bond-angle errors, and rovibrational effects.To whom correspondence should be addressed.  相似文献   

15.
Random coil chemical shifts are commonly used to detect protein secondary structural elements in chemical shift index (CSI) calculations. Though this technique is widely used and seems reliable for folded proteins, the choice of reference random coil chemical shift values can significantly alter the outcome of secondary structure estimation. In order to evaluate these effects, we present a comparison of secondary structure content calculated using CSI, based on five different reference random coil chemical shift value sets, to that derived from three-dimensional structures.Our results show that none of the reference random coil data sets chosen for evaluation fully reproduces the actual secondary structures. Among the reference values generally available to date, most tend to be good estimators only of helices. Based on our evaluation, we recommend the experimental values measured by Schwarzinger et al.(2000), and statistical values obtained by Lukin et al. (1997), as good estimators of both helical and sheet content.  相似文献   

16.
17.
Brazzein is a sweet-tasting protein isolated from the fruit of the West African plant Pentadiplandra brazzeana Baillon. It is the smallest and the most water-soluble sweet protein discovered so far, it is also highly thermostable. The proton NMR study of brazzein at 600 MHz (pH 3.5, 300K) is presented. Complete sequence specific assignment of the individual backbone and sidechain proton resonances were achieved using through-bond and through-space connectivities obtained from standard two-dimensional NMR techniques. The secondary structure of brazzein contains one -helix (residues 21–29), one short 310-helix (residues 14–17), two strands of antiparallel β-sheet (residues 34–39, 44–50) and probably a third strand (residues 5–7) near the N-terminus.  相似文献   

18.
The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.  相似文献   

19.
Saito K  Ishikita H 《Biochemistry》2012,51(6):1171-1177
Recent neutron diffraction studies on photoactive yellow protein (PYP) proposed that the H bond between protonated Glu46 and the chromophore-ionized p-coumaric acid (pCA) is a low-barrier H bond (LBHB) mainly because the H atom position was assigned at the midpoint of the O(Glu46)-O(pCA) bond. However, the (1)H nuclear magnetic resonance (NMR) chemical shift (δ(H)) was 15.2 ppm, which is lower than the values of 17-19 ppm for typical LBHBs. We evaluated the dependence of δ(H) on an H atom position in the O(Glu46)-O(pCA) bond in the PYP ground state by using a quantum mechanical/molecular mechanical (QM/MM) approach. The calculated chemical shift unambiguously suggested that a δ(H) of 15.2 ppm for the O(Glu46)-O(pCA) bond in NMR studies should correspond to the QM/MM geometry (δ(H) = 14.5 ppm), where the H atom belongs to the Glu moiety, rather than the neutron diffraction geometry (δ(H) = 19.7 ppm), where the H atom is near the midpoint of the donor and acceptor atoms.  相似文献   

20.
We present experimental evidence which confirms recently proposed ring current prediction methods for assigning hydrogen-bond proton nuclear magnetic resonance (NMR) spectra from tRNA (Robillard, G. T., Tarr, C. E., Vosman, F., & Berendsen, H. J. C. (1976) Nature (London) 262, 363-369; Robillard, G. T., Tarr, C. E., Vosman, F., & Sussman, J. L. (1977) Biophys. Chem. 6, 291-298). The evidence is a series of temperature-dependent studies on yeast tRNAPhe monitoring both the high- and low-field NMR spectral regions, which are correlated with independent optical and temperature-jump (temp-jump) studies performed under identical ionic strength conditions. Using assignments derived from the new prediction methods, the melting patterns of the hydrogen-bonded resonances agree with those expected on the basis of optical, temp-jump, and NMR studies on the high-field spectral region. The implication of these results is that previous assignment procedures are at least partially incorrect and, therefore, studies based on those procedures must be reexamined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号