首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The path that our hand takes when moving from one position to another is often slightly curved. Part of this curvature is caused by perceptual errors. We examine here whether this is so for the influence that a surface's orientation has on the approaching hand's path. When moving our hand towards a point on a surface we tend to follow a path that makes the final approach more orthogonal to the surface at that point. Doing so makes us less sensitive to imperfections in controlling our movements. Here we show that this tendency is also present when moving towards a point along an edge of a drawing of an oriented bar. The influence of the bar's orientation is no smaller when people are explicitly asked to move as straight as possible, than when they are instructed to move as fast as possible. The bar's orientation also influences perceptual judgements of a straight path, but this influence is only as large as it is on the curvature of the hand's path for judgements of the direction from the hand's initial position to the target. We conclude that the influence of the bar's orientation on the curvature of the hand's path is caused by a misperception of the initial direction in which the hand has to move to reach the target.  相似文献   

2.
Agency plays an important role in self-recognition from motion. Here, we investigated whether our own movements benefit from preferential processing even when the task is unrelated to self-recognition, and does not involve agency judgments. Participants searched for a moving target defined by its known shape among moving distractors, while continuously moving the computer mouse with one hand. They thereby controlled the motion of one item, which was randomly either the target or any of the distractors, while the other items followed pre-recorded motion pathways. Performance was more accurate and less prone to degradation as set size increased when the target was the self-controlled item. An additional experiment confirmed that participant-controlled motion was not physically more salient than motion recorded offline. We found no evidence that self-controlled items captured attention. Taken together, these results suggest that visual events are perceived more accurately when they are the consequences of our actions, even when self-motion is task irrelevant.  相似文献   

3.
In one of our previous Editor’s pages, we announced that our Netherlands Heart Journal (NHJ) received a 2009 impact factor of 1.4, which is a crucial step for our journal. This achievement was a consequence of another important step for our journal, being the recognition by PubMed as of January 2007. From that moment on, the Chief Editorial Board and our Publisher observed a considerable increase in submitted articles. In 2007 we received a total of 62 submissions.  相似文献   

4.
It is proposed that muscular contraction is the result of electrostatic attraction between oppositely charged areas on actin and myosin filaments. On the latter charged areas are assumed to be moving, always a step ahead of stationary charged areas on actin filaments, the moving charges pulling the stationary charges, hence the actin filaments, with them. It may be noted that electric motors in human technology work on a similar moving field principle. On myosin filaments minute charged areas are assumed to spiral along the surface of the filament on 2 or 3-start helical paths, probably the latter, thus engaging with adjacent actin filaments in a screw-like fashion. The spiralling charges follow each other like peristaltic waves, engaging with an increasing number of static fields on actin filaments as interdigitation proceeds. The source of the electrostatic charges are assumed to be minute voltaic cells, one associated with every myosin head. It is suggested that they could be calcium-magnesium cells, calcium adsorbed by troponin complexes on actin filaments constituting one electrode, and magnesium complexed with ATP on myosin filaments the other. The potential difference that has to exist between actin and myosin filaments, if muscles are to be capable of developing a maximum force of 20 N per cm2, is calculated at about 50 mV.  相似文献   

5.
Processive molecular motors, such as kinesin, myosin, or dynein, convert chemical energy into mechanical energy by hydrolyzing ATP. The mechanical energy is used for moving in discrete steps along the cytoskeleton and carrying a molecular load. Single-molecule recordings of motor position along a substrate polymer appear as a stochastic staircase. Recordings of other single molecules, such as F1-ATPase, RNA polymerase, or topoisomerase, have the same appearance. We present a maximum likelihood algorithm that extracts the dwell time sequence from noisy data, and estimates state transition probabilities and the distribution of the motor step size. The algorithm can handle models with uniform or alternating step sizes, and reversible or irreversible kinetics. A periodic Markov model describes the repetitive chemistry of the motor, and a Kalman filter allows one to include models with variable step size and to correct for baseline drift. The data are optimized recursively and globally over single or multiple data sets, making the results objective over the full scale of the data. Local binary algorithms, such as the t-test, do not represent the behavior of the whole data set. Our method is model-based, and allows rapid testing of different models by comparing the likelihood scores. From data obtained with current technology, steps as small as 8 nm can be resolved and analyzed with our method. The kinetic consequences of the extracted dwell sequence can be further analyzed in detail. We show results from analyzing simulated and experimental kinesin and myosin motor data. The algorithm is implemented in the free QuB software.  相似文献   

6.
Experimental studies of human walking have shown that within an individual step, variations in the center of mass (CoM) state can predict corresponding variations in the next foot placement. This has been interpreted by some to indicate the existence of active control in which the nervous system uses the CoM state at or near mid-stance to regulate subsequent foot placement. However, the passive dynamics of the moving body and/or moving limbs also contribute (perhaps strongly) to foot placement, and thus to its variation. The extent to which correlations of CoM state to foot placement reflect the effects of within-step active control, those of passive dynamics, or some combination of both, remains an important and still open question. Here, we used an open-loop-stable 2D walking model to show that this predictive ability cannot by itself be taken as evidence of within-step active control. In our simulations, we too find high correlations between the CoM state and subsequent foot placement, but these correlations are entirely due to passive dynamics as our system has no active control, either within a step or between steps. This demonstrates that any inferences made from such correlations about within-step active control require additional supporting evidence beyond the correlations themselves. Thus, these within-step predictive correlations leave unresolved the relative importance of within-step active control as compared to passive dynamics, meaning that such methods should be used to characterize control in human walking only with caution.  相似文献   

7.
Translocation, the intentional movement of living organisms from one area to another is increasingly being used as a conservation tool to overcome barriers to dispersal. A dichotomy exists for conservation‐oriented translocations: on one hand, there are those that release plants or animals into known historic ranges and on the other hand, there are releases outside historic distributions. Misuse of or attempts to redefine established terms and a proliferation of variants of new terms such as assisted colonization, confuse and hamper communication. The aim of this opinion article is to describe and define a conservation translocation spectrum, from species reintroductions to assisted colonization, and beyond, and in so doing provide a standard framework and terminology for discussing translocation options. I suggest that we are moving along this spectrum, away from the dictates of historical species distribution records, toward the inclusion of more risky interventions that will be required to respond to habitat shifts due to anthropogenic impacts. To some extent rapid climate change changes everything, including how we should view introductions versus reintroductions. We need to seriously consider adding other approaches to our conservation toolbox. Assisted colonization will start us along this path, acknowledging as it does the accelerated rate of habitat change and the problems of attempting to preserve dynamic systems. The next step along the conservation translocation spectrum may be for reintroduction biology and restoration ecology to more comprehensively join forces on carefully selected projects to use species introductions to create novel ecosystems through active ecological community construction.  相似文献   

8.
Electromyographic studies of mammalian locomotion have concentrated on cursorial species. Since these may not be typical of mammals in general, the present study has been made on the relatively non-cursorial rat.
Electromyography has been performed on 20 muscles or muscle groups of the hind-limb in decerebrate rats, moving at from one to eight steps per second. All muscles were active in discrete bursts, with fixed phase relations in the step cycle. They can be categorized as flexors–active just before and during swing, extensors/adductors–active just before and during stance, muscles controlling the foot, and some double joint muscles. The latter, represented by semitendinosus and rectus femoris, tend to be active twice in each step cycle. There is a distinct reciprocity in the activities of these two muscles. The duration of the extensor/adductor activity decreases with increase of stepping speed.
The pattern of muscle activity during the step cycle is very similar in both cursorial species and the rat. This suggests that central nervous mechanisms controlling the timing of single limb motor output in mammals may be very conservative.  相似文献   

9.
We investigated whether transient step reductions in divalent cations would produce detectable changes in neuronal excitability similar to those reported in the total absence of divalent cations. Using cultured chick dorsal root ganglion cells as a model system, our results indicate that a step reduction in divalent cations induces a transient inward current. This response is mediated by a tetrodotoxin-resistant, Na+-permeable, cation channel that is blocked by cadmium. This, and our observation that the response is abolished by verapamil, suggests that the current passes through calcium channels. This transient inward current was estimated to be activated by decreases in extracellular calcium ([Ca2+]o) as small as 0.5-0.8 mM and thus represents a different response from the one previously observed when steady-state [Ca2+]o levels were reduced to micromolar levels.  相似文献   

10.
We have estimated the step size of the myosin cross-bridge (d, displacement of an actin filament per one ATP hydrolysis) in an in vitro motility assay system by measuring the velocity of slowly moving actin filaments over low densities of heavy meromyosin on a nitrocellulose surface. In previous studies, only filaments greater than a minimum length were observed to undergo continuous sliding movement. These filaments moved at the maximum speed (Vo), while shorter filaments dissociated from the surface. We have now modified the assay system by including 0.8% methylcellulose in the ATP solution. Under these conditions, filaments shorter than the previous minimum length move, but significantly slower than Vo, as they are propelled by a limited number of myosin heads. These data are consistent with a model that predicts that the sliding velocity (v) of slowly moving filaments is determined by the product of vo and the fraction of time when at least one myosin head is propelling the filament, that is, v = vo [1-(1-ts/tc)N], where ts is the time the head is strongly bound to actin, tc is the cycle time of ATP hydrolysis, and N is the average number of myosin heads that can interact with the filament. Using this equation, the optimum value of ts/tc to fit the measured relationship between v and N was calculated to be 0.050. Assuming d = vots, the step size was then calculated to be between 10nm and 28 nm per ATP hydrolyzed, the latter value representing the upper limit. This range is within that of geometric constraint for conformational change imposed by the size of the myosin head, and therefore is not inconsistent with the swinging cross-bridge model tightly coupled with ATP hydrolysis.  相似文献   

11.
Animal movements are of great importance in studying home ranges, migration routes, resource selection, and social interactions. The Global Positioning System provides relatively continuous animal tracking over time and long distances. Nevertheless, the continuous trajectory of an animal’s movement is usually only observed at discrete time points. Brownian bridge models have been used to model movement of an animal between two observed locations within a reasonably short time interval. Assuming that animals are in perpetual motion, these models ignore inactivity such as resting or sleeping. Using the latest developments in applied probability, we propose a moving–resting process model where an animal is assumed to alternate between a moving state, during which it moves in a Brownian motion, and a resting state, during which it does not move. Theoretical properties of the process are studied as a first step towards more realistic models for animal movements. Analytic expressions are derived for the distribution of one increment and two consecutive increments, and are validated with simulations. The induced bridge model conditioning on the starting and end points is used to compute an animal’s probability of occurrence in an observation area during the time of observation, which has wide applications in wildlife behavior research.  相似文献   

12.
Osz J  Bagyinka C 《Biophysical journal》2005,89(3):1984-1989
A moving front has been observed as a special pattern during the hydrogenase-catalyzed reaction of hydrogen uptake with benzyl viologen as electron acceptor in a thin-layer reaction chamber. Such fronts start spontaneously and at random times at different points of the reaction chamber; blue spheres are seen expanding at constant speed and amplitude. The number of observable starting points depends on the hydrogenase concentration. Fronts can be initiated by injecting either a small amount of completed reaction mixture or activated hydrogenase, but not by injecting a low concentration of reduced benzyl viologen. These characteristics are consistent with an autocatalytic reaction step in the enzyme reaction. The special characteristics of the hydrogen-uptake reaction in the bulk reaction (a long lag phase, and the enzyme concentration dependence of the lag phase) support the autocatalytic nature. We conclude that there is at least one autocatalytic reaction step in the hydrogenase-catalyzed reaction. The two possible autocatalytic schemes for hydrogenase are prion-type autocatalysis, in which two enzyme forms interact, and product-activation autocatalysis, where a reduced electron acceptor and an inactive enzyme form interact. The experimental results strongly support the occurrence of prion-type autocatalysis.  相似文献   

13.
This study focuses on predicting breathing pattern, which is crucial to deal with system latency in the treatments of moving lung tumors. Predicting respiratory motion in real-time is challenging, due to the inherent chaotic nature of breathing patterns, i.e. sensitive dependence on initial conditions. In this work, nonlinear prediction methods are used to predict the short-term evolution of the respiratory system for 62 patients, whose breathing time series was acquired using respiratory position management (RPM) system. Single step and N-point multi step prediction are performed for sampling rates of 5 Hz and 10 Hz. We compare the employed non-linear prediction methods with respect to prediction accuracy to Adaptive Infinite Impulse Response (IIR) prediction filters. A Local Average Model (LAM) and local linear models (LLMs) combined with a set of linear regularization techniques to solve ill-posed regression problems are implemented. For all sampling frequencies both single step and N-point multi step prediction results obtained using LAM and LLM with regularization methods perform better than IIR prediction filters for the selected sample patients. Moreover, since the simple LAM model performs as well as the more complicated LLM models in our patient sample, its use for non-linear prediction is recommended.  相似文献   

14.
Topographical control of cell behaviour. I. Simple step cues   总被引:5,自引:0,他引:5  
The photolithographic techniques of the microelectronics industry have allowed us to fabricate patterned plastic substrata to investigate contact guidance of animal tissue cells. The reactions of cells to single steps on a substratum were examined using time-lapse videorecording and scanning electron microscopy. BHK cells and chick embryonic neural cell processes exhibited gradual inhibition of crossing steps with a concomitant increase in alignment at steps dependent on increasing step height. Comparison of these cells' reactions, with those of chick heart fibroblasts and rabbit neutrophils, at a 5 micron step revealed that the influence of topography is also dependent on cell type, the neutrophils being relatively unaffected. The presence of an adhesive difference at a series of steps altered BHK cells' reactions such that the frequency of crossing was dependent on the direction of approach to a step. Although our data are consistent with Dunn & Heath's proposal (1976) that the inflexibility of the cytoskeleton of a moving cell's protrusion is the cellular property determining such reactions to topography, we have found that, on encountering a topographical feature, the response of a cell may be predictable on a probabilistic basis, i.e. the topographical feature reduces the probability of a cell making a successful protrusion and contact in a given direction, that even the largest features tested did not act as absolute barriers to cell locomotion since a small proportion of a population of cells were able to overcome them, and that other guidance cues could significantly alter a cell's response. Even in situations where it is not the primary cue in directing cell locomotion, topographical control may be an important factor during morphogenesis since it must, at the very least, influence the efficiency of other cues.  相似文献   

15.
Myosin V is a homodimeric motor protein involved in trafficking of vesicles in the cell. It walks bipedally along actin filaments, moving cargo approximately 37 nm per step. We have measured the step size of individual myosin heads by fusing an enhanced green fluorescent protein (eGFP) to the N-terminus of one head of the myosin dimer and following the motion with nanometer precision and subsecond resolution. We find the average step size to be 74.1 nm with 9.4 nm (SD) and 0.3 nm (SE). Our measurements demonstrate nanometer localization of single eGFPs, confirm the hand-over-hand model of myosin V procession, and when combined with previous data, suggest that there is a kink in the leading lever arm in the waiting state of myosin V. This kink, or "telemark skier" configuration, may cause strain, which, when released, leads to the powerstroke of myosin, throwing the rear head forward and leading to unidirectional motion.  相似文献   

16.
Cell communication affects all aspects of cell structure and behavior, such as cell proliferation, differentiation, division, and coordination of various physiological functions. The moving RNA in plants and mammalian cells indicates that nucleic acid could be one of the various types of messengers for cell communication. The microvesicle is a critical pathway that mediates RNA moving and keeps moving RNA stable in body fluids. When moving miRNA enters the target cell, it functions by altering the gene expression profile and significantly inhibiting mRNA translation in recipient cells. Thus, moving RNA may act as a long-range modulator during development, organogenesis, and tumor metastasis.  相似文献   

17.
Chondromodulin-I (ChM-I) is a cartilage-derived angiogenesis inhibitor that has been identified as inhibitory to the growth activity of vascular endothelial cells. In our present study, we demonstrate the anti-angiogenic activity of recombinant human ChM-I (rhChM-I) in mouse corneal angiogenesis and examine its action. We focus on the VEGF-A-induced migration of vascular endothelial cells, a critical regulatory step in angiogenesis. In a modified Boyden chamber assay, nanomolar concentrations of rhChM-I inhibited the chemotactic migration of human umbilical vein endothelial cells (HUVECs) induced by VEGF-A as well as by FGF-2 and IGF-I. The ChM-I action was found to be endothelial cell-specific and independent of cell adhesions. Time-lapse analysis further revealed that rhChM-I markedly reduces VEGF-A-stimulated motility of HUVECs and causes frequent alterations of the moving front due to the appearance of multiple transient protrusions. This action involved the inhibition of cell spreading and the disrupted reorganization of the actin cytoskeleton upon VEGF-A stimulation. Consistent with these observations, rhChM-I was found to significantly reduce the activity of Rac1/Cdc42 during cell spreading, and the VEGF-A-induced Rac1 activity but not its basal activity in quiescent cells. Taken together, our present data suggest that ChM-I impairs the VEGF-A-stimulated motility of endothelial cells by destabilizing lamellipodial extensions.  相似文献   

18.
Translocation of tRNA and mRNA through the ribosome is one of the most dynamic events during protein synthesis. In the cell, translocation is catalysed by EF-G (elongation factor G) and driven by GTP hydrolysis. Major unresolved questions are: how the movement is induced and what the moving parts of the ribosome are. Recent progress in time-resolved cryoelectron microscopy revealed trajectories of tRNA movement through the ribosome. Driven by thermal fluctuations, the ribosome spontaneously samples a large number of conformational states. The spontaneous movement of tRNAs through the ribosome is loosely coupled to the motions within the ribosome. EF-G stabilizes conformational states prone to translocation and promotes a conformational rearrangement of the ribosome (unlocking) that accelerates the rate-limiting step of translocation: the movement of the tRNA anticodons on the small ribosomal subunit. EF-G acts as a Brownian ratchet providing directional bias for movement at the cost of GTP hydrolysis.  相似文献   

19.
Abstract In a previous paper, we described wavelike distributions of bacterial populations along roots of wheat, and hypothesized that one mechanism underlying these distributions might be growth and death cycles of microorganisms in response to a moving nutrient source, the root tip. Similar wavelike distributions in microbial biomass were obtained using a simulation model for growth and death of bacteria in relation to their substrate (BACWAVE). The model was parameterized with data from one experiment on rhizosphere bacterial populations along wheat roots, and compared against a similar but independent experiment. In experiments described in this paper, similar wavelike distributions in bacterial populations were observed in response to a single artificial exudate moving linearly through a soil that had been air-dry for almost 2 years. The period of the spatial waves was longer when the tip of the artificial exudate moved at a speed of 4.2 cm/day compared to a tip moving at 1.1 cm/day, but after transformation into the temporal domain, the periods of the waves were similar for both moving speeds. The observed distributions were simulated using the BACWAVE model with similar parameter values as derived from the experiment with wheat roots mentioned above. The results presented in this paper confirm our hypothesis that wavelike distributions of bacterial population along plant roots can arise from ``exudates' released primarily from the root tip, without the need for additional exudation points. Received: 12 October 1999; Accepted: 9 March 2000; Online Publication: 28 August 2000  相似文献   

20.
Reviews on the visual system generally praise its amazing performance. Here we deal with its biggest weakness: sluggishness. Inherent delays lead to mislocalization when things move or, more generally, when things change. Errors in time translate into spatial errors when we pursue a moving object, when we try to localize a target that appears just before a gaze shift, or when we compare the position of a flashed target with the instantaneous position of a continuously moving one (or one that appears to be moving even though no change occurs in the retinal image). Studying such diverse errors might rekindle our thinking about how the brain copes with real-time changes in the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号