首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil–water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil–plant water relationships and soil–water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.  相似文献   

2.
The mutual-responding relationship between plants and environment is involved in all life processes, which are the essential bases for different types of sustainable development on the globe, particularly the critical basis for agricultural sustainable development. How to regulate the above relationship between plants and the corresponding environment (in particular soil environment) is the key problem to modern sustainable agriculture development under global climate change, which is one of the hot topics in the field of plant biology. Detailed dissection of this responding relationship is also important for conducting global eco-environmental restoration and construction. Although powerful methodology and dataset related to genomics, post-genomics, and metabolomics have provided some insights into this relationship, crop physiological measures are also critical for crop full performance in field. With the increase of tested plants (including model plants) and development of integrated molecular biology, a complete understanding of the relationship at different scales under biotic and abiotic stresses will be accelerated. In the current paper, we will cover some important aspects in combination with the recent work from our laboratory and related advances reflected by international academic journals, as follows: plant physiological function performance under natural condition, plant gene regulatory network system under abiotic stresses, gene regulatory network system and drought resistance improvement, summary of the related work from our laboratory, conclusions, and acknowledgement.  相似文献   

3.
4.
For many years, our insight into intercellular signalling in plants was based upon our knowledge of the so-called five classical plant hormones--auxin, cytokinin, ethylene, gibberellin and abscisic acid. However, biochemical and genetic studies have identified peptides that play crucial roles in plant growth and development, including defence mechanisms in response to wounding by pests, the control of cell division and expansion, and pollen self-incompatibility. Genome sequencing has revealed many predicted peptide-encoding genes and possible receptors, and a major challenge of the post-genomics era is to determine the function of these molecules.  相似文献   

5.
The influence of various environmental factors on biomass partitioning between shoots and roots in transgenic tobacco (Nicotiana tabacum) plants expressing the movement protein (MP) of tobacco mosaic virus (TMV) was investigated. TMV-MP-expressing transgenic plants exhibited a root-to-shoot ratio that was approximately 40% below that of transgenic vector control plants. When transgenic plants expressing the TMV-MP were subjected to water-stress conditions, the root-to-shoot ratio was increased to a value comparable to that of control plants subjected to the same water-stress treatment. Although the root-to-shoot ratio was increased by N or P deficiencies, the TMV-MP-induced alteration in biomass partitioning was not overcome. Surprisingly, under K+-deficient growth conditions, both TMV-MP-expressing and control plants exhibited reduced root-to-shoot ratios when compared with plants grown in the presence of sufficient K+. Furthermore, plant growth under K+-deficient conditions did not alleviate the influence of the TMV-MP over resource allocation to the roots. These results are discussed in terms of possible mechanisms by which stress signals could cause an alteration in biomass partitioning between shoots and roots in control and transgenic tobacco plants expressing the TMV-MP.  相似文献   

6.
General circulation models on global climate change predict increase in surface air temperature and changes in precipitation. Increases in air temperature (thus soil temperature) and altered precipitation are known to affect the species composition and function of soil microbial communities. Plant roots interact with diverse soil organisms such as bacteria, protozoa, fungi, nematodes, annelids and insects. Soil organisms show diverse interactions with plants (eg. competition, mutualism and parasitism) that may alter plant metabolism. Besides plant roots, various soil microbes such as bacteria and fungi can produce volatile organic compounds (VOCs), which can serve as infochemicals among soil organisms and plant roots. While the effects of climate change are likely to alter both soil communities and plant metabolism, it is equally probable that these changes will have cascading consequnces for grazers and subsequent food web components aboveground. Advances in plant metabolomics have made it possibile to track changes in plant metabolomes as they respond to biotic and abiotic environmental changes. Recent developments in analytical instrumentation and bioinformatics software have established metabolomics as an important research tool for studying ecological interactions between plants and other organisms. In this review, we will first summarize recent progress in plant metabolomics methodology and subsequently review recent studies of interactions between plants and soil organisms in relation to climate change issues.  相似文献   

7.
Biotechnology, including genetic modification, is a very important approach to regulate the production of particular metabolites in plants to improve their adaptation to environmental stress, to improve food quality, and to increase crop yield. Unfortunately, these approaches do not necessarily lead to the expected results due to the highly complex mechanisms underlying metabolic regulation in plants. In this context, metabolomics plays a key role in plant molecular biotechnology, where plant cells are modified by the expression of engineered genes, because we can obtain information on the metabolic status of cells via a snapshot of their metabolome. Although metabolome analysis could be used to evaluate the effect of foreign genes and understand the metabolic state of cells, there is no single analytical method for metabolomics because of the wide range of chemicals synthesized in plants. Here, we describe the basic analytical advancements in plant metabolomics and bioinformatics and the application of metabolomics to the biological study of plants.  相似文献   

8.
Environmental stresses have adverse effects on plant growth and productivity, and are predicted to become more severe and widespread in decades to come. Especially, prolonged and repeated severe stresses affecting growth and development would bring down long-lasting effects in woody plants as a result of its long-term growth period. To counteract these effects, trees have evolved specific mechanisms for acclimation and tolerance to environmental stresses. Plant growth and development are regulated by the integration of many environmental and endogenous signals including plant hormones. Acclimation of land plants to environmental stresses is controlled by molecular cascades, also involving cross-talk with other stresses and plant hormone signaling mechanisms. This review focuses on recent studies on molecular mechanisms of abiotic stress responses in woody plants, functions of plant hormones in wood formation, and the interconnection of cell wall biosynthesis and the mechanisms shown above. Understanding of these mechanisms in depth should shed light on the factors for improvement of woody plants to overcome severe environmental stress conditions.  相似文献   

9.
Climatic change is an increasing challenge for agriculture that is driving the development of suitable crops in order to ensure supply for both human nutrition and animal feed. In this context, it is increasingly important to understand the biochemical responses of cells to environmental cues at the whole system level, an aim that is being brought closer by advances in high throughput, cost-efficient plant metabolomics. To support molecular breeding activities, we have assessed the economic, technical and statistical feasibility of using direct mass spectrometry methods to evaluate the physiological state of maize (Zea mays L.) plants grown under different stress conditions.  相似文献   

10.
11.
空间分辨代谢组学即整合质谱成像和代谢组学技术,对动/植物组织和细胞中内/外源性代谢物的种类、含量和差异性空间分布进行精准测定。质谱成像技术因其具有无标记、非特异、高灵敏度、高化学覆盖、元素/分子同时检测等优势,被广泛应用于动/植物组织中各类代谢物、多肽和蛋白的时空分布研究。首先介绍了代谢组学和质谱成像技术的研究现状,然后重点综述了空间分辨代谢组学在动物组织、植物组织和单细胞水平上的前沿应用。最后展望了空间分辨代谢组学技术的现有瓶颈和未来发展方向。空间分辨代谢组学是继代谢组学之后又一门新兴的分子成像组学技术,能够无标记、可视化检测动物组织中外源性药物的吸收、分布、代谢和排泄,以及植物组织中多种代谢产物的生物合成、转运途径和积累规律。该技术将推动靶向药物发现、病理机制解析和动植物生长发育密切关联的空间代谢网络调控等前沿应用研究。  相似文献   

12.
As a post-genomics tool, metabolomics is a young and vibrant field of science in its exponential growth phase. Metabolome analysis has become very popular recently, and novel techniques for acquiring and analyzing metabolomics data continue to emerge that are useful for a variety of biological studies. The bioremediation field has a lot to gain from the advances in this emerging area. Thus, this review article focuses on the potential of various experimental and conceptual approaches developed for metabolomics to be applied in bioremediation research, such as strategies for elucidation of biodegradation pathways using isotope distribution analysis and molecular connectivity analysis, the assessment of mineralization process using metabolic footprinting analysis, and the improvement of the biodegradation process via metabolic engineering. We demonstrate how the use of metabolomics tools can significantly extend and enhance the power of existing bioremediation approaches by providing a better overview of the biodegradation process.  相似文献   

13.
Water is the most limiting resource on land for plant growth, and its uptake by plants is affected by many abiotic stresses, such as salinity, cold, heat, and drought. While much research has focused on exploring the molecular mechanisms underlying the cellular signaling events governing water-stress responses, it is also important to consider the role organismal structure plays as a context for such responses. The regulation of growth in plants occurs at two spatial scales: the cell and the organ. In this review, we focus on how the regulation of growth at these different spatial scales enables plants to acclimate to water-deficit stress. The cell wall is discussed with respect to how the physical properties of this structure affect water loss and how regulatory mechanisms that affect wall extensibility maintain growth under water deficit. At a higher spatial scale, the architecture of the root system represents a highly dynamic physical network that facilitates access of the plant to a heterogeneous distribution of water in soil. We discuss the role differential growth plays in shaping the structure of this system and the physiological implications of such changes.  相似文献   

14.
组学技术及其在食品科学中应用的研究进展   总被引:1,自引:0,他引:1  
后基因组时代的主要研究任务即是组学(转录组学、蛋白质组学及代谢组学)研究,其发展迅速,有望成为解决生命科学领域诸如食品品质与安全等科学问题的有力工具.组学研究为食品科学相关研究提供了新的思路和技术,在食品加工、贮藏、营养素检测、食品安全以及食品鉴伪等领域中已有广泛的应用.综述转录组学、蛋白质组学及代谢组学研究的核心技术,以及组学技术在食品科学研究中的研究进展,并对其应用前景进行展望.  相似文献   

15.
16.
Endophytes contribute to plant performance, especially under harsh conditions. We therefore hypothesized that wild plants have retained beneficial endophytes that are less abundant or not present in related crop plants. To test this hypothesis, we selected two endophytes that were found in Sharon goatgrass, an ancestor of wheat, and tested their effect on bread wheat. Both endophytes infected wheat and improved sustainability and performance under water-limited conditions. To determine how the endophytes modify plant development, we measured parameters of plant growth and physiological status and performed a comparative metabolomics analysis. Endophyte-treated wheat plants had reduced levels of stress damage markers and reduced accumulation of stress-adaptation metabolites. Metabolomics profiling revealed significant differences in the response to water stress of endophyte-treated plants compared with untreated plants. Our results demonstrate the potential of endophytes from wild plants for improvement of related crops and show that the beneficial effects of two endophytes are associated with alteration of physiological responses to water-limited conditions.  相似文献   

17.
Salinity in agricultural land is a major problem worldwide, placing a severe constraint on crop growth and productivity in many regions, and increased salinization of arable land is expected to have devastating global effects. Though plants vary in their sensitivity to salt stress, high salinity causes water deficit and ion toxicity in many plant species. Considerable efforts have therefore been made to investigate how genes respond to salt stress in various plants by using several approaches, including proteomics. Proteomic approaches for identifying proteins that are regulated in response to salt stress are becoming common in the post-genomics era of crop research. In this review, we describe the physiological and biological changes in the proteomes of several important food crops under salt stress. We also provide a viewpoint into how proteomics-based research is likely to develop in this field.  相似文献   

18.
Phytohormones play central roles in boosting plant tolerance to environmental stresses, which negatively affect plant productivity and threaten future food security. Strigolactones (SLs), a class of carotenoid‐derived phytohormones, were initially discovered as an “ecological signal” for parasitic seed germination and establishment of symbiotic relationship between plants and beneficial microbes. Subsequent characterizations have described their functional roles in various developmental processes, including root development, shoot branching, reproductive development, and leaf senescence. SLs have recently drawn much attention due to their essential roles in the regulation of various physiological and molecular processes during the adaptation of plants to abiotic stresses. Reports suggest that the production of SLs in plants is strictly regulated and dependent on the type of stresses that plants confront at various stages of development. Recently, evidence for crosstalk between SLs and other phytohormones, such as abscisic acid, in responses to abiotic stresses suggests that SLs actively participate within regulatory networks of plant stress adaptation that are governed by phytohormones. Moreover, the prospective roles of SLs in the management of plant growth and development under adverse environmental conditions have been suggested. In this review, we provide a comprehensive discussion pertaining to SL‐mediated plant responses and adaptation to abiotic stresses.  相似文献   

19.
A natural shift is taking place in the approaches being adopted by plant scientists in response to the accessibility of systems-based technology platforms. Metabolomics is one such field, which involves a comprehensive non-biased analysis of metabolites in a given cell at a specific time. This review briefly introduces the emerging field and a range of analytical techniques that are most useful in metabolomics when combined with computational approaches in data analyses. Using cases from Arabidopsis and other selected plant systems, this review highlights how information can be integrated from metabolomics and other functional genomics platforms to obtain a global picture of plant cellular responses. We discuss how metabolomics is enabling large-scale and parallel interrogation of cell states under different stages of development and defined environmental conditions to uncover novel interactions among various pathways. Finally, we discuss selected applications of metabolomics. This special review article is dedicated to the commemoration of the retirement of Dr. Oluf L. Gamborg after 25 years of service as Founding Managing Editor of Plant Cell Reports. RB and KN have contributed equally to this review.  相似文献   

20.
Maize (Zea mays) and sorghum (Sorghum bicolor) were inoculated with a range of VAM fungi and grown under water-stressed and unstressed conditions. There was considerable variation amongst the inocula in their effects on plant growth. Inoculation with Glomus clarum produced the biggest plants in each host, with Glomus monosporum and Acaulospora sp. giving the least growth overall. Root infection produced by the different inocula also varied, but levels were not correlated with effects on plant growth. Water-stress reduced plant growth, with the effects not being altered by mycorrhizal infection. VAM infection levels were not affected by water-stress. Spore production from most inocula was reduced by water-stress, both in total spore numbers and in terms of spores per gram plant weight. Sporulation of G. clarum, G. epigeum and G. monosporum were affected less by stress than were the other inocula. Spore production was in general greater on sorghum than on maize, but the host effect varied amongst the inocula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号