首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ transport across mammary-gland Golgi membranes was measured after centrifugation of the membrane vesicles through silicone oil. In the presence of 2.3 microM free Ca2+ the vesicles accumulated 5.8 nmol of Ca2+/mg of protein without added ATP, and this uptake was complete within 0.5 min. In the presence of 1 mM-ATP, Ca2+ was accumulated at a linear rate for 10 min after the precipitation of intravesicular Ca2+ with 10 mM-potassium oxalate. ATP-dependent Ca2+ uptake exhibited a Km of 0.14 microM for Ca2+ and a Vmax. of 3.1 nmol of Ca2+/min per mg of protein. Ca2+-dependent ATP hydrolysis exhibited a Km of 0.16 microM for Ca2+ and a Vmax. of 10.1 nmol of Pi/min per mg of protein. The stoichiometry between ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase varied between 0.3 and 0.7 over the range 0.03-8.6 microM-Ca2+. Both Ca2+ uptake and Ca2+-stimulated ATPase were strongly inhibited by orthovanadate, which suggests that the major mechanism by which Golgi vesicles accumulate Ca2+ is through the action of the Ca2+-stimulated ATPase. However, Ca2+ uptake was also decreased by the protonophore CCCP (carbonyl cyanide m-chlorophenylhydrazone), indicating that it may occur by other mechanisms too. The effect of CCCP may be related to the existence of transmembrane pH gradients (delta pH) in these vesicles: the addition of 30 microM-CCCP reduced delta pH from a control value of 1.06 to 0.73 pH unit. Golgi vesicles also possess a Ca2+-efflux pathway which operated at an initial rate of 0.5-0.57 nmol/min per mg of protein.  相似文献   

2.
Transport of Ca2+ in microsomal membrane vesicles of the Tetrahymena has been investigated using arsenazo III as a Ca2+ indicator. The microsomes previously shown to carry a Mg2+-dependent, Ca2+-stimulated ATPase (Muto, Y. and Nozawa, Y. (1984) Biochim. Biophys. Acta 777, 67-74) accumulated calcium upon addition of ATP and Ca2+ sequestered into microsomal vesicles was rapidly discharged by the Ca2+ ionophore A23187. Kinetic studies indicated that the apparent Km for free Ca2+ and ATP are 0.4 and 59 microM, respectively. The Vmax was about 40 nmol/mg protein per min at 37 degrees C. The calcium accumulated during ATP-dependent uptake was released after depletion of ATP in the incubation medium. Furthermore, addition of trifluoperazine which inhibited both (Ca2+ + Mg2+)-ATPase and ATP-dependent Ca2+ uptake rapidly released the calcium accumulated in the microsomal vesicles. These observations suggest that Tetrahymena microsome contains both abilities to take up and to release calcium and may act as a Ca2+-regulating site in this organism.  相似文献   

3.
Purified plasma membrane vesicles from the optic nerve of the squid Sepiotheutis sepioidea accumulate calcium in the presence of Mg2+ and ATP. Addition of the Ca2+ ionophore A23187 to vesicles which have reached a steady state of calcium-active uptake induces complete discharge of the accumulated cation. Kinetic analysis of the data indicates that the apparent Km for free Ca2+ and ATP are 0.2 muM and 21 muM, respectively. The average Vmax is 1 nmol Ca2+/min per mg protein at 25 degrees C. This active transport is inhibited by orthovanadate in the micromolar range. An Na+-Ca2+ exchange mechanism is also present in the squid optic nerve membrane. When an outwardly directed Na+ gradient is imposed on the vesicles, they accumulate calcium in the absence of Mg2+ and/or ATP. This ability to accumulate Ca2+ is absolutely dependent on the Na+ gradient: replacement of Na+ by K+, or passive dissipation of the Na+ gradient, abolishes transport activity. The apparent Km for Ca2+ of the Na+-Ca2+ exchange is more than 10-fold higher than that of the ATP-driven pump (app. Km=7.5 muM). While the apparent Km for Na+ is 74 mM, the Vmax of the exchanger is 27 nmol Ca2+/min per mg protein at 25 degrees C. These characteristics are comparable to those displayed by the uncoupled Ca pump and Na+-Ca2+ exchange previously described in dialyzed squid axons.  相似文献   

4.
Inside-out plasma-membrane vesicles isolated from rat liver [Prpic, Green, Blackmore & Exton (1984) J. Biol. Chem. 259, 1382-1385] accumulated a substantial amount of 45Ca2+ when they were incubated in a medium whose ionic composition and pH mimicked those of cytosol and which contained MgATP. The Vmax of the initial 45Ca2+ uptake rate was 2.9 +/- 0.6 nmol/min per mg and the Km for Ca2+ was 0.50 +/- 0.08 microM. The ATP-dependent 45Ca2+ uptake by inside-out plasma-membrane vesicles was about 20 times more sensitive to saponin than was the ATP-dependent uptake by a microsomal preparation. The 45Ca2+ efflux from the inside-out vesicles, which is equivalent to the Ca2+ influx in intact cells, was increased when the free Ca2+ concentration in the medium was decreased. The Ca2+ antagonists La3+ and Co2+ inhibited the 45Ca2+ efflux from the vesicles. Neomycin stimulated the Ca2+ efflux in the presence of either a high or a low free Ca2+ concentration. These results confirm that polyvalent cations regulate Ca2+ fluxes through the plasma membrane.  相似文献   

5.
Purified perigranular and plasma membranes isolated from rat peritoneal mast cells were examined for Ca2+- and Mg2+-dependent ATPase activity. Isolated perigranular membranes contained only a low-affinity Ca2+- or Mg2+-dependent ATPase (Km greater than 0.5 mM). The plasma membranes contained both a low-affinity Ca2+- or Mg2+-dependent ATPase (Km = 0.4 mM, Vmax. = 20 nmol of Pi/min per mg), as well as a high-affinity Ca2+- and Mg2+-dependent ATPase (Km = 0.2 microM, Vmax. = 6 nmol of Pi/min per mg).  相似文献   

6.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

7.
Membrane vesicles were prepared from Artemia nauplii (San Francisco Bay variety) 45 h after hydration of the dry cysts. Na+-loaded vesicles accumulated up to 10 nmol Ca2+/mg protein when diluted 50-fold into 160 mM KCl containing 15 microM CaCl2. Practically no accumulation of Ca2+ was observed if the vesicles were diluted into 160 mM NaCl instead of KCl, or if they were treated with monensin, a Na+ ionophore, for 30 s prior to addition of CaCl2 to the KCl medium. These observations indicate that the Artemia vesicles exhibit Na-Ca exchange activity. The velocity of Ca2+ accumulation by the vesicles in KCl was stimulated 2.6-fold by the K+ ionophore valinomycin, suggesting that the exchange system is electrogenic, with a stoichiometry greater than 2Na+ per Ca2+. Km,Ca and Vmax values were 15 microM and 7.5 nmol/mg protein.s, respectively. Exchange activity in the Artemia vesicles was inhibited by benzamil (IC50 approximately equal to 100 microM) and by quinacrine (IC50 approximately equal to 250 microM), agents that also inhibit exchange activity in cardiac sarcolemmal vesicles. Unlike cardiac vesicles, however, exchange activity in Artemia was not stimulated by limited proteolysis, redox reagents, or intravesicular Ca2+. This indicates that the two exchange systems are regulated by different mechanisms. Vesicles were prepared from Artemia at various times after hydration of the dry cysts and examined for exchange activity. Activity was first observed at approximately 10 h after hydration and increased to a maximal value by 30-40 h; hatching of the free swimming nauplii occurred at 18-24 h. The results suggest that hatching Artemia nauplii might be a particularly rich source of mRNA coding for the Na+-Ca2+ exchange carrier.  相似文献   

8.
Subcellular fractionation studies were performed to delineate plasma membrane and intracellular membrane populations which might be involved in intracellular Ca2+-homeostasis of rat small intestinal epithelial cells. After a low-speed supernatant fraction had been suspended in 5% sorbitol and subjected to equilibrium centrifugation in a zonal rotor, the Golgi and endoplasmic reticulum markers, galactosyltransferase and NADPH-cytochrome -c reductase, were concentrated in a density region designated Window II. The basal-lateral membrane marker (Na+-K+)-ATPase was concentrated in a higher-density region designated Window III. ATP-dependent Ca2+ transport was equally distributed between the two windows. Several membrane populations could be resolved from each window with good recovery of Ca2+-transport activity by a second density gradient centrifugation step. Second density gradient fractions were subjected to counter-current partitioning in an aqueous polymer two-phase system. Basal-lateral membranes, characterized by an 11-fold enrichment of (Na+-K+)-ATPase, contained ATP-dependent Ca2+-transport activity with Vmax = 3.7 nmol/mg per min and Km = 0.5 microM. A major Golgi-derived population exhibited Ca2+-transport activity with Vmax and Km values similar to those of the basal-lateral membranes. One membrane population, presumed to have been derived from the endoplasmic reticulum, contained Ca2+-transport activity with Vmax = 4 nmol/mg per min and Km = 0.5 microM. In addition to demonstrating that ATP-dependent Ca2+-transport activity has a complex distribution within enterocytes, this study raises the possibility that the basolateral plasma membranes might account for a relatively minor portion of the cell's Ca2+-pumping ability.  相似文献   

9.
Lanthanides (La3+, Pr3+ and Tb3+) inhibit Na+-gradient-dependent Ca2+ influx into synaptic plasma membrane vesicles. 50% inhibition is obtained by 7 microM lanthanide concentration. The inhibition of the Na+-gradient-dependent Ca2+ uptake exhibits competitive kinetic behaviour. The apparent Km of the Ca2+ influx is increased from 50 microM in the absence of lanthanides to 118 microM in the presence of La3+, 170 microM in the presence of Pr3+ and 130 microM in the presence of Tb3+. The maximal reaction velocity is not altered (8.35 nmol Ca2+ transported per mg protein per min in the absence of lanthanides and 8.16 nmol/mg per min in the presence of lanthanides). Lanthanides also inhibited Na+-gradient-dependent Ca2+ efflux from synaptic plasma membrane vesicles that were preloaded with Ca2+ in a Na+-gradient-dependent manner. Introduction of La3+ into the interior of the synaptic plasma membrane vesicles by rapid freezing of the vesicles in liquid N2 and slow thawing had no effect on either Na+-gradient-dependent Ca2+ influx or efflux. Synaptic plasma membrane vesicles can be preloaded with Ca2+ also in an ATP-dependent manner. This form of Ca2+ uptake is also inhibited by La3+ though at higher concentrations than the Na+-gradient-dependent Ca2+ uptake. Na+-gradient-dependent efflux from synaptic plasma membrane vesicles preloaded in an ATP-dependent fashion ('inside-out' vesicles) unlike efflux from synaptic plasma membrane vesicles preloaded in a Na+-gradient-dependent manner was not inhibited by La3+. These findings suggest that the inhibition by La3+ is manifested asymmetrically on both sides of the synaptic plasma membrane. Lanthanides are probably not transported via the Na+-Ca2+ exchanger since Tb3+ entry measured by fluorescence of Tb3+-dipicolinic acid complex formation occurred at high Tb3+ concentrations only (1.5 mM or above) and was not Na+-gradient dependent.  相似文献   

10.
Na+-Ca2+ exchange activity in rabbit lymphocyte plasma membranes   总被引:2,自引:0,他引:2  
Plasma membranes of rabbit thymus lymphocytes accumulated Ca2+ when a Na+ gradient (intravesicular greater than extravesicular) was formed across the membranes. Dissipation of the Na+ gradient by the addition of Na+ to the external medium decreased Ca2+ uptake. Ca2+ preloaded into the lymphocytes was extruded when Na+ was added to the external medium. The Ca2+ uptake decreased at acidic pH but increased at alkaline pH (above 8) and the activity was saturable for Ca2+ (apparent Km for Ca2+ was 61 microM and apparent Vmax was 11.5 nmol/mg protein per min). Na+-dependent uptake of Ca2+ was inhibited by tetracaine and verapamil, and partially inhibited by La3+. The uptake was not influenced by orthovanadate.  相似文献   

11.
Calcium transport across the basolateral membranes of the enterocyte represents the active step in calcium translocation. This step occurs by two mechanisms, an ATP-dependent pump and a Ca2+/Na+ exchange process. These studies were designed to investigate these two processes in jejunal basolateral membrane vesicles (BLMV) of the spontaneously hypertensive rats (SHR) and their genetically matched controls, Wistar-Kyoto (WKY) rats. The ATP-dependent calcium uptake was stimulated several-fold compared with no ATP condition in both SHR and WKY, but no differences were noted between rate of calcium uptake in SHR and WKY. Kinetics of ATP-dependent calcium uptake at concentrations between 0.01 and 1.0 microM revealed a Vmax of 0.67 +/- 0.03 nmol/mg protein/20 sec and a Km of 0.2 +/- 0.03 microM in SHR and Vmax of 0.69 +/- 0.12 and a Km of 0.32 +/- 0.14 microM in WKY rats. Ca2+/Na+ exchange in jejunal BLMV of SHR and WKY was investigated in two ways. First, sodium was added to the incubation medium (cis-Na+). Second, Ca2+ efflux from BLMV was studied in the presence of extravesicular Na+ (trans-Na+). Both studies suggest a decreased exchange of calcium and Na+. Kinetic parameters of Na(+)-dependent Ca2+ uptake at concentrations between 0.01 and 1.0 microM exhibited Vmax of 0.05 +/- 0.01 nanmol/mg protein/5 sec and a Km of 0.21 +/- 0.13 microM in SHR and Vmax of 0.11 +/- 0.02 nanmol/mg protein/5 sec and a Km of 0.09 +/- 0.05 in WKY, respectively. These results confirm that the intestinal BLMV of SHR and WKY rats have two mechanisms for calcium extrusion, an ATP-dependent Ca2+ transport process and a Na+/Ca2+ exchange process. The ATP-dependent process appears to be functional in SHR; however, the Ca2+/Na+ exchange mechanism appears to have a marked decrease in its maximal capacity. These findings suggest that calcium extrusion via Ca2+/Na+ is impaired in the SHR, which may lead to an increase in intracellular calcium concentration. These findings may have relevance to the development of hypertension.  相似文献   

12.
Coated microvesicles isolated from bovine neurohypophyses could be loaded with Ca2+ in two different ways, either by incubation in the presence of ATP or by imposition of an outwardly directed Na+ gradient. Na+, but not K+, was able to release Ca2+ accumulated by the coated microvesicles. These results suggest the existence of an ATP-dependent Ca2+-transport system as well as of a Na+/Ca2+ carrier in the membrane of coated microvesicles similar to that present in the membranes of secretory vesicles from the neurohypophysis. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ of the ATP-dependent uptake was 0.8 microM. The average Vmax. was 2 nmol of Ca2+/5 min per mg of protein. The total capacity of microvesicles for Ca2+ uptake was 3.7 nmol/mg of protein. Both nifedipine (10 microM) and NH4Cl (50 mM) inhibited Ca2+ uptake. The ATPase activity in purified coated-microvesicles fractions from brain and neurohypophysis was characterized. Micromolar concentrations of Ca2+ in the presence of millimolar concentrations of Mg2+ did not change enzyme activity. Ionophores increasing the proton permeability across membranes activated the ATPase activity in preparations of coated microvesicles from brain as well as from the neurohypophysis. Thus the enzyme exhibits properties of a proton-transporting ATPase. This enzyme seems to be linked to the ion accumulation by coated microvesicles, although the precise coupling of the proton transport to Ca2+ and Na+ fluxes remains to be determined.  相似文献   

13.
Purified plasma membrane vesicles from GH3 rat anterior pituitary cells exhibit a Mg2+-ATP-dependent Ca2+ transport activity. Concentrative uptake of Ca2+ is abolished by exclusion of either Mg2+ or ATP or by inclusion of the Ca2+ ionophore A23187. Furthermore, addition of A23187 to vesicles which have reached a steady state of ATP-supported Ca2+ accumulation rapidly and completely discharges accumulated cation. Ca2+ uptake is unaffected by treatment of vesicles with oligomycin, the uncoupler CCCP, or valinomycin and is greatly reduced in non-plasma membrane fractions. Likewise, Ca2+ accumulation is not stimulated by oxalate, consistent with the plasma membrane origin of this transport system. (Na+, K+)-ATPase participation in the Ca2+ transport process (i.e. via coupled Na+/Ca2+ exchange) was eliminated by omitting Na+ and including ouabain in the reaction medium. Ca2+ transport activity in GH3 vesicles has a similar pH dependence as that seen in a number of other plasma membrane systems and is inhibited by orthovanadate in the micromolar range. Inhibition is enhanced if the membranes are preincubated with vanadate for a short time. A kinetic analysis of transport indicates that the apparent Km for free Ca2+ and ATP are 0.7 and 125 microM, respectively. The average Vmax is 3.6 nmol of Ca2+/min/mg of protein at 37 degrees C. Addition of exogenous calmodulin or calmodulin antagonists had no significant effect on these kinetic properties. GH3 plasma membranes also contain a Na+/Ca2+ exchange system. The apparent Km for Ca2+ is almost 10-fold higher in this system than that for ATP-driven Ca2+ uptake. When both processes are compared under similar conditions, the Vmax of the exchanger is approximately 2-3 times that of ATP-dependent Ca2+ accumulation. Similar results are obtained when purified plasma membranes from bovine anterior pituitary glands were investigated. It is suggested that both Na+/Ca2+ exchange and the (Ca2+ + Mg2+)-ATPase are important in controlling intracellular levels of Ca2+ in anterior pituitary cells.  相似文献   

14.
Plasma membrane vesicles were prepared from guinea pig peritoneal exudate neutrophils, using nitrogen cavitation to rupture the plasma membrane and differential centrifugation to separate the vesicles. The vesicles were enriched 13.2-fold in (Na+, K+)-ATPase activity and had a cholesterol:protein ratio of 0.15, characteristic of plasma membranes. Contamination of the vesicle preparation with DNA or marker enzyme activities for intracellular organelles was very low. Studies designed to determine vesicle sidedness and integrity indicated that 33% were sealed, inside-out; 41% were sealed, right side-out, and 26% were leaky. The vesicles accumulated 45Ca2+ in a linear fashion for 45 min. The uptake was dependent on the presence of oxalate and MgATP in the incubating medium. Uptake showed a Ka for free Ca2+ of 164 nM and a Vmax of 17.2 nmol/mg . min (based on total protein). GTP, ITP, CTP, UTP, ADP, or AMP supported uptake at rates less than or equal to 11% of ATP. Ca2+ uptake was maximal at pH 7-7.5. Calcium stimulated the hydrolysis of ATP by the vesicles with a Ka for free Ca2+ of 440 nM and Vmax of 17.5 nmol/mg . min (based on total protein). When the Ca2+ uptake rate was based upon those vesicles expected to transport Ca2+ (33% sealed, inside-out vesicles) and Ca2+-stimulated ATPase activity was based upon those vesicles expected to express that activity (26% leaky + 33% sealed, inside-out vesicles), the molar stoichiometry of Ca2+ transported:ATP hydrolyzed was 2.12 +/- 0.12. Calmodulin did not increase either Vmax or Ka for free Ca2+ of the uptake system in the vesicles, even when they were treated previously with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The high affinity of this system for Ca2+, specificity for ATP, physiological pH optimum, and stoichiometry of Ca2+ transported:ATP hydrolyzed suggest that it represents an important mechanism by which neutrophils maintain low levels of cytoplasmic free Ca2+.  相似文献   

15.
We have studied Ca transport and the Ca-activated Mg-ATPase in plasma membrane vesicles prepared from normal human lymphocytes. Membrane vesicles that were exposed to oxalate as a Ca-trapping agent accumulated Ca in the presence of Mg2+ and ATP. ADP, AMP, GTP, UTP, ITP, TTP, or CTP did not substitute for ATP in energizing uptake. The Vmax for Ca uptake was 2.4 pmol of Ca/micrograms of protein/min, and the Km values for Ca and ATP were 1.0 and 80 microM, respectively. One microM A23187, added initially, completely inhibited net Ca uptake and, if added later, caused the release of Ca accumulated previously. Cyanide, oligomycin, ouabain, or varying Na+ or K+ concentrations had no effect on Ca uptake. A Ca-activated ATPase was present in the same membrane vesicles, which had a Vmax of 25 pmol of Pi/micrograms of protein/min at a free Ca concentration of 4-5 microM. This Ca-ATPase had Km values for Ca and ATP of 0.6 and 90 microM, respectively. These kinetic parameters were similar to those observed for uptake of Ca by the vesicles. The Ca-ATPase activity was insensitive to azide, oligomycin, ouabain, or varying Na+ or K+ concentrations. No Ca-activated hydrolysis of GTP or UTP was observed. Both Ca transport and the Ca-ATPase activity of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid-treated lymphocyte plasma membranes were stimulated 2-fold by a cytoplasmic component (calmodulin) that was purified 500-fold from lymphocyte cytoplasm. Thus, human lymphocyte plasma membranes have both a Ca transport activity and a Ca-stimulated ATPase activity with similar substrate affinities and specificities and similar sensitivities to calmodulin.  相似文献   

16.
Ca2+ was accumulated by right-side-out membrane vesicles of Bacillus subtilis following imposition of a diffusion potential, inside-negative, owing to K+-efflux via valinomycin. Uptake was dependent on the magnitude of the membrane potential. This voltage-dependent Ca2+ uptake was inhibited by Ca2+ channel blockers such as nitrendipine, verapamil and LaCl3, and was competitively inhibited by Ba2+ and Sr2+. The system showed saturation kinetics with an apparent Km for Ca2+ of about 250 microM. Proteins responsible for the voltage-dependent Ca2+ uptake were partially purified by preparative isoelectric focusing in a Sepharose bed. A fraction at pH 5.28-5.33 contained the activity. The characteristics of Ca2+ uptake in reconstituted proteoliposomes were the same as those in membrane vesicles (sensitive to Ca2+ channel blockers; inhibited by Ba2+ and Sr2+). In addition, uptake was not influenced by a pH gradient imposed on the vesicles. The apparent Km for Ca2+ in the reconstituted system was about 260 microM. The specific activity was increased about 50-fold by purification with isoelectric focusing.  相似文献   

17.
Na+-dependent uptake of 5-HT (5-hydroxytryptamine) into plasma membrane vesicles derived from bovine blood platelets and ATP-dependent 5-HT uptake into storage vesicles in platelet lysates were measured. Na+-dependent uptake was temperature-dependent, inhibited by imipramine and exhibited Michaelis-Menten kinetics (apparent Km, 0.12 +/- 0.02 microM; Vmax. 559 +/- 54 pmol/min per mg of protein. Halothane had no effect on Na+-dependent transport of 5-HT in plasma-membrane vesicles. ATP-dependent 5-HT transport into storage granules also exhibited Michaelis-Menten kinetics (apparent Km 0.34 +/- 0.03 microM; Vmax. 34.3 +/- 1.7 pmol/min per mg of protein) and was inhibited by noradrenaline (norepinephrine), but not by imipramine. Exposure of the granules to halothane resulted in a progressive decrease in Vmax. The results demonstrate a possible site for disruption of platelet function by anaesthetics.  相似文献   

18.
A method for the isolation of gamma-aminobutyric acidergic (GABAergic) and glutamatergic terminals from crustacean muscle was developed, using differential centrifugation and sucrose density gradient centrifugation. Individual fractions were assessed using a variety of markers. One fraction was isolated which showed 40-fold purification of glutamate decarboxylase with a yield of 12%. This fraction was enriched in GABA, glutamate, glutamate dehydrogenase, and 5'-nucleotidase, but not in NADPH cytochrome c reductase. This fraction possessed an uptake system for GABA and glutamate with apparent kinetic constants of Km = 50 microM, Vmax = 250 pmol/min/mg of protein and Km = 183 microM, Vmax = 219 pmol/min/mg of protein, respectively. Electron microscopy showed nerve terminal profiles and a heterogeneous population of membrane vesicles. This fraction contained 3.4 nmol ATP/mg of protein which was stable for 30 min at 12 degrees C, and was also able to synthesise ATP from exogenous adenosine. The terminals released labelled GABA and glutamate in a Ca2+-dependent fashion on depolarisation. No release of ATP was detected. It is concluded that viable nerve terminals have been isolated which could be used as model systems for the study of GABAergic and glutamatergic neurochemistry.  相似文献   

19.
The high-purified vesicles of pig myometrium sarcolemma closed, mainly, so that the cytoplasmatic side is outside possess the Ca2+ (calmodulin)-dependent protein kinase activity. The initial rate of the endogenic phosphorylation without exogenic calmodulin is 6.3 and with its presence--10.7 pmol of 32Pi 1 min per 1 mg of protein. Km for ATP is equal to 164 microM, and Vmax--0.27 nmol of 32Pi 1 min per 1 mg of protein. Exogenic calmodulin increases the affinity to ATP (50 microM), Vmax being unchanged. Under optimal concentrations of calmodulin (10(-7)-10(-6) M) and 10(-4) M Ca2+ the protein kinase activity is 0.132 nmol of 32Pi min per 1 mg of protein. Electrophoresis in DS-PAAG has shown that membrane proteins with molecular weight of 105, 58, 25, 12 and 2 kDa are basic substrates of Ca2+ (calmodulin)-dependent phosphorylation. Trifluoperazine++ in the concentration of 40 microM inhibits phosphorylation of all five proteins. Ca2+ (calmodulin)-dependent phosphorylation is supposed to be a regulator of Ca2+-transport processes of sarcolemma.  相似文献   

20.
The mechanism of zinc (Zn) uptake by microvillous membrane vesicles prepared from human term placenta has been studied. The uptake was complex, with two processes being identified. In the first process, uptake was rapid, reaching equilibrium within 2 min, and was temperature dependent, with a Q10 of 1.5. Equilibrium Zn levels were sensitive to osmotic pressure, with Zn binding at infinite osmolarity being 69% iso-osmotic value. The uptake was saturable, with a Vmax of 58 +/- 2 nmol/mg protein/min and an apparent Kt of 128 +/- 13 microM. Uptake was inhibited by increasing extravesicular K+ concentration, dropping from 0.91 +/- 0.03 nmol/mg/min at 0 extravesicular K+ to 0.47 +/- 0.03 at an extravesicular K+ concentration of 150 mM ([Zn] = 1.0 microM). In the presence of both valinomycin, an electrogenic ionophore, and nigericin, an electroneutral exchanger, an outwardly directed K+ gradient stimulated Zn uptake. Similarly, preloading vesicles with Zn and imposing an inward gradient resulted in a temperature dependent efflux of Zn. The data suggest that there is a K+ dependent Zn transporter in vesicle membranes, and we suggest that the evidence is biased in favour of a Zn/K+ exchanger rather than Zn being dependent on the membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号