首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The flocculus of the rabbit is involved in the plasticity of compensatory eye movements. It is generally assumed that the climbing fiber input to floccular Purkinje cells encodes "retinal slip," which in turn would be a measure for the oculomotor performance error. To test this, we used transparent motion stimuli, creating a retinal slip signal that broke up this relation. We recorded the ensuing oculomotor behavior and complex spike activity of floccular Purkinje cells. Complex spike modulation in response to transparent stimulation was identical to that of a single optokinetic pattern, despite considerably different retinal slip. These results suggest that the climbing fiber code may be effectively related to the eye movement performance error, rather than to retinal slip.  相似文献   

2.
The vestibular system provides an attractive model for understanding how changes in cellular and synaptic activity influence learning and memory in a quantifiable behavior, the vestibulo-ocular reflex. The vestibulo-ocular reflex produces eye movements that compensate for head motion; simple yet powerful forms of motor learning calibrate the circuit throughout life. Learning in the vestibulo-ocular reflex depends initially on the activity of Purkinje cells in the cerebellar flocculus, but consolidated memories appear to be stored downstream of Purkinje cells, probably in the vestibular nuclei. Recent studies have demonstrated that the neurons of the vestibular nucleus possess the capacity for both synaptic and intrinsic plasticity. Mechanistic analyses of a novel form of firing rate potentiation in neurons of the vestibular nucleus have revealed new rules of plasticity that could apply to spontaneously firing neurons in other parts of the brain.  相似文献   

3.
E J Hess  M C Wilson 《Neuron》1991,6(1):123-132
The mouse mutants tottering and leaner exhibit neurologic disorders associated, in part, with global noradrenergic hyperinnervation. Therefore, the expression of tyrosine hydroxylase (TH) mRNA and protein was examined in mutant and control mice. TH expression was normal in the major catecholaminergic nuclei. However, TH was expressed in vermal Purkinje cells of adult mutant but not control mice. TH expression in the Purkinje cells of both mutants was first observed on P21 and persisted throughout adulthood; in contrast, Purkinje cells of normal mice expressed TH transiently during development from P21 to P35. Thus, tottering and leaner mice are deficient in suppressing the normal transient expression of TH in developing Purkinje cells, suggesting that the protein encoded by the tg locus may play a crucial role in neuronal development.  相似文献   

4.
To optimize motor performance, both the amplitude and temporal properties of movements should be modifiable by motor learning. Here we report that the modification of movement timing is highly dependent on signaling through P/Q-type voltage-dependent calcium channels. Two lines of mutant mice heterozygous for P/Q-type voltage-dependent calcium channels exhibited impaired plasticity of eye movement timing, but relatively intact plasticity of movement amplitude during motor learning in the vestibulo-ocular reflex. The results thus demonstrate a distinction between the molecular signaling pathways regulating the timing versus amplitude of movements.  相似文献   

5.
Accepting, rejecting or modifying the many different theories of the cerebellum's role in the control of movement requires an understanding of the signals encoded in the discharge of cerebellar neurons and how those signals are transformed by the cerebellar circuitry. Particularly challenging is understanding the sensory and motor signals carried by the two types of action potentials generated by cerebellar Purkinje cells, the simple spikes and complex spikes. Advances have been made in understanding this signal processing in the context of voluntary arm movements. Recent evidence suggests that mossy fiber afferents to the cerebellar cortex are a source of kinematic signals, providing information about movement direction and speed. In turn, the simple spike discharge of Purkinje cells integrates this mossy fiber information to generate a movement velocity signal. Complex spikes may signal errors in movement velocity. It is proposed that the cerebellum uses the signals carried by the simple and complex spike discharges to control movement velocity for both step and tracking arm movements.  相似文献   

6.
The activity of cerebellar Purkinje cells is studied as affected by CyPPA, a positive modulator of small-conductance calcium-activated potassium channels type 3 and 2 (SK3/SK2), and NS309, an activator of small- and intermediate-conductance calcium-activated potassium channels (IK/SK), in male two-month-old laboratory mice. CyPPA decreases the simple spike firing frequency in the discharge of Purkinje cells by an average of 25% 1 hour after application of 1mM of the compound. An application of 100 μM of NS309 reduces the simple spike firing frequency by an average of 47% during the same period. These results confirm the hypothesis that SK channels may be involved in the downregulation of simple spike firing frequency in Purkinje cells. The frequency-regulating effect of NS309 is stronger, suggesting that IK/SK channels play a decisive role in the regulation of Purkinje cell spiking activity. Since an increase of simple spike firing frequency in these cells is symptomatic of many locomotor activity disorders, e.g., spinocerebellar ataxia, the substances studied or their functional analogues might be of medicinal interest.  相似文献   

7.
To understand the contribution of potassium (K+) channels, particularly alpha-dendrotoxin (D-type)-sensitive K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits), to the generation of neuronal spike output we must have detailed information of the functional role of these channels in the neuronal membrane. Conventional intracellular recording methods in current clamp mode were used to identify the role of alpha-dendrotoxin (alpha-DTX)-sensitive K+ channel currents in shaping the spike output and modulation of neuronal properties of cerebellar Purkinje neurons (PCs) in slices. Addition of alpha-DTX revealed that D-type K+ channels play an important role in the shaping of Purkinje neuronal firing behavior. Repetitive firing capability of PCs was increased following exposure to artificial cerebrospinal fluid (aCSF) containing alpha-DTX, so that in response to the injection of 0.6 nA depolarizing current pulse of 600 ms, the number of action potentials insignificantly increased from 15 in the presence of 4-AP to 29 action potentials per second after application of DTX following pretreatment with 4-AP. These results indicate that D-type K+ channels (Kv.1, Kv1.2 or Kv1.6 subunits) may contribute to the spike frequency adaptation in PCs. Our findings suggest that the activation of voltage-dependent K+ channels (D and A types) markedly affect the firing pattern of PCs.  相似文献   

8.
Alterations in the intrinsic properties of Purkinje cells (PCs) may contribute to the abnormal motor performance observed in ataxic rats. To investigate whether such changes in the intrinsic neuronal excitability could be attributed to the role of Ca(2+)-activated K(+) channels (K(Ca)), whole cell current clamp recordings were made from PCs in cerebellar slices of control and ataxic rats. 3-AP induced profound alterations in the intrinsic properties of PCs, as evidenced by a significant increase in both the membrane input resistance and the initial discharge frequency, along with the disruption of the firing regularity. In control PCs, the blockade of small conductance K(Ca) channels by UCL1684 resulted in a significant increase in the membrane input resistance, action potential (AP) half-width, time to peak of the AP and initial discharge frequency. SK channel blockade also significantly decreased the neuronal discharge regularity, the peak amplitude of the AP, the amplitude of the afterhyperpolarization and the spike frequency adaptation ratio. In contrast, in ataxic rats, both the firing regularity and the initial firing frequency were significantly increased by the blockade of SK channels. In conclusion, ataxia may arise from alterations in the functional contribution of SK channels, to the intrinsic properties of PCs.  相似文献   

9.
Neurons of the cerebellar nuclei convey the final output of the cerebellum to their targets in various parts of the brain. Within the cerebellum their direct upstream connections originate from inhibitory Purkinje neurons. Purkinje neurons have a complex firing pattern of regular spikes interrupted by intermittent pauses of variable length. How can the cerebellar nucleus process this complex input pattern? In this modeling study, we investigate different forms of Purkinje neuron simple spike pause synchrony and its influence on candidate coding strategies in the cerebellar nuclei. That is, we investigate how different alignments of synchronous pauses in synthetic Purkinje neuron spike trains affect either time-locking or rate-changes in the downstream nuclei. We find that Purkinje neuron synchrony is mainly represented by changes in the firing rate of cerebellar nuclei neurons. Pause beginning synchronization produced a unique effect on nuclei neuron firing, while the effect of pause ending and pause overlapping synchronization could not be distinguished from each other. Pause beginning synchronization produced better time-locking of nuclear neurons for short length pauses. We also characterize the effect of pause length and spike jitter on the nuclear neuron firing. Additionally, we find that the rate of rebound responses in nuclear neurons after a synchronous pause is controlled by the firing rate of Purkinje neurons preceding it.  相似文献   

10.
Humans and other species continually perform microscopic eye movements, even when attending to a single point. These movements, which include drifts and microsaccades, are under oculomotor control, elicit strong neural responses, and have been thought to serve important functions. The influence of these fixational eye movements on the acquisition and neural processing of visual information remains unclear. Here, we show that during viewing of natural scenes, microscopic eye movements carry out a crucial information-processing step: they remove predictable correlations in natural scenes by equalizing the spatial power of the retinal image within the frequency range of ganglion cells' peak sensitivity. This transformation, which had been attributed to center-surround receptive field organization, occurs prior to any neural processing and reveals a form of matching between the statistics of natural images and those of normal eye movements. We further show that the combined effect of microscopic eye movements and retinal receptive field organization is to convert spatial luminance discontinuities into synchronous firing events, beginning the process of edge detection. Thus, microscopic eye movements are fundamental to two goals of early visual processing: redundancy reduction and feature extraction.  相似文献   

11.
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple 'race to threshold' readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made.  相似文献   

12.
Mutations in P/Q-type calcium channels generate common phenotypes in mice and humans, which are characterized by ataxia, paroxysmal dyskinesia, and absence seizures. Subsequent functional changes of T-type calcium channels in thalamus are observed in P/Q-type calcium channel mutant mice and these changes play important roles in generation of absence seizures. However, the changes in T-type calcium channel function and/or expression in the cerebellum, which may be related to movement disorders, are still unknown. The leaner mouse exhibits severe ataxia, paroxysmal dyskinesia, and absence epilepsy due to a P/Q-type calcium channel mutation. We investigated changes in T-type calcium channel expression in the leaner mouse thalamus and cerebellum using quantitative real-time polymerase chain reaction (qRT-PCR) and quantitative in situ hybridization histochemistry (ISHH). qRT-PCR analysis showed no change in T-type calcium channel alpha 1G subunit (Cav3.1) expression in the leaner thalamus, but a significant decrease in alpha 1G expression in the whole leaner mouse cerebellum. Interestingly, quantitative ISHH revealed differential changes in alpha 1G expression in the leaner cerebellum, where the granule cell layer showed decreased alpha 1G expression while Purkinje cells showed increased alpha 1G expression. To confirm these observations, the granule cell layer and the Purkinje cell layer were laser capture microdissected separately, then analyzed with qRT-PCR. Similar to the observation obtained by ISHH, the leaner granule cell layer showed decreased alpha 1G expression and the leaner Purkinje cell layer showed increased alpha 1G expression. These results suggest that differential expression of T-type calcium channels in the leaner cerebellum may be involved in the observed movement disorders.  相似文献   

13.
14.
Electric organ discharge (EOD) frequency in the brown ghost knifefish (Apteronotus leptorhynchus) is sexually dimorphic, steroid-regulated, and determined by the discharge rates of neurons in the medullary pacemaker nucleus (Pn). We pharmacologically characterized ionic currents that regulate the firing frequency of Pn neurons to determine which currents contribute to spontaneous oscillations of these neurons and to identify putative targets of steroid action in regulating sexually dimorphic EOD frequency. Tetrodotoxin (TTX) initially reduced spike frequency, and then reduced spike amplitude and stopped pacemaker activity. The sodium channel blocker muO-conotoxin MrVIA also reduced spike frequency, but did not affect spike amplitude or production. Two potassium channel blockers, 4-aminopyridine (4AP) and kappaA-conotoxin SIVA, increased pacemaker firing rates by approximately 20% and then stopped pacemaker firing. Other potassium channel blockers (tetraethylammonium, cesium, alpha-dendrotoxin, and agitoxin-2) did not affect the pacemaker rhythm. The nonspecific calcium channel blockers nickel and cadmium reduced pacemaker firing rates by approximately 15-20%. Specific blockers of L-, N-, P-, and Q-type calcium currents, however, were ineffective. These results indicate that at least three ionic currents-a TTX- and muO-conotoxin MrVIA-sensitive sodium current; a 4AP- and kappaA-conotoxin SIVA-sensitive potassium current; and a T- or R-type calcium current-contribute to the pacemaker rhythm. The pharmacological profiles of these currents are similar to those of currents that are known to regulate firing rates in other spontaneously oscillating neural circuits.  相似文献   

15.
Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate.  相似文献   

16.
 Mean firing rates (MFRs), with analogue values, have thus far been used as information carriers of neurons in most brain theories of learning. However, the neurons transmit the signal by spikes, which are discrete events. The climbing fibers (CFs), which are known to be essential for cerebellar motor learning, fire at the ultra-low firing rates (around 1 Hz), and it is not yet understood theoretically how high-frequency information can be conveyed and how learning of smooth and fast movements can be achieved. Here we address whether cerebellar learning can be achieved by CF spikes instead of conventional MFR in an eye movement task, such as the ocular following response (OFR), and an arm movement task. There are two major afferents into cerebellar Purkinje cells: parallel fiber (PF) and CF, and the synaptic weights between PFs and Purkinje cells have been shown to be modulated by the stimulation of both types of fiber. The modulation of the synaptic weights is regulated by the cerebellar synaptic plasticity. In this study we simulated cerebellar learning using CF signals as spikes instead of conventional MFR. To generate the spikes we used the following four spike generation models: (1) a Poisson model in which the spike interval probability follows a Poisson distribution, (2) a gamma model in which the spike interval probability follows the gamma distribution, (3) a max model in which a spike is generated when a synaptic input reaches maximum, and (4) a threshold model in which a spike is generated when the input crosses a certain small threshold. We found that, in an OFR task with a constant visual velocity, learning was successful with stochastic models, such as Poisson and gamma models, but not in the deterministic models, such as max and threshold models. In an OFR with a stepwise velocity change and an arm movement task, learning could be achieved only in the Poisson model. In addition, for efficient cerebellar learning, the distribution of CF spike-occurrence time after stimulus onset must capture at least the first, second and third moments of the temporal distribution of error signals. Received: 28 January 2000 / Accepted in revised form: 2 August 2000  相似文献   

17.
The brain is considered to use a relatively small amount of energy for its efficient information processing. Under a severe restriction on the energy consumption, the maximization of mutual information (MMI), which is adequate for designing artificial processing machines, may not suit for the brain. The MMI attempts to send information as accurate as possible and this usually requires a sufficient energy supply for establishing clearly discretized communication bands. Here, we derive an alternative hypothesis for neural code from the neuronal activities recorded juxtacellularly in the sensorimotor cortex of behaving rats. Our hypothesis states that in vivo cortical neurons maximize the entropy of neuronal firing under two constraints, one limiting the energy consumption (as assumed previously) and one restricting the uncertainty in output spike sequences at given firing rate. Thus, the conditional maximization of firing-rate entropy (CMFE) solves a tradeoff between the energy cost and noise in neuronal response. In short, the CMFE sends a rich variety of information through broader communication bands (i.e., widely distributed firing rates) at the cost of accuracy. We demonstrate that the CMFE is reflected in the long-tailed, typically power law, distributions of inter-spike intervals obtained for the majority of recorded neurons. In other words, the power-law tails are more consistent with the CMFE rather than the MMI. Thus, we propose the mathematical principle by which cortical neurons may represent information about synaptic input into their output spike trains.  相似文献   

18.
Based on physiological evidence for multiple firing zones in the dendritic arborizations of cerebellar Purkinje cells, a superposition model is proposed for spike triggering in these cells. Spike trains from 10 Purkinje cells were analyzed in terms of independence of interspike intervals and the properties of their variance-time curves. The results of this analysis were found consistent with the hypothesis that the spike train of a cerebellar Purkinje cell is the pooled output of a relatively large number of independent component processes. Simplifying assumptions as to the statistical nature of these processes lead to a very rough estimate of the number of firing zones.  相似文献   

19.
The functional implication of the cerebellar flocculus in regulation of the VOR and OKR gain has mostly been studied by lesion experiments, and the hypotheses derived from these experiments are not always in line with one another. In the present study, a reversible method was used to inhibit floccular Purkinje cells. The GABA-A agonist muscimol or the GABA-B agonist baclofen were bilaterally injected into the flocculus of rabbits, and the effects of these injections on the gain of the VOR and OKR were studied. Both drugs induced a reduction by at least 50% of the gain of the VOR in light and darkness, and of the OKR. Although GABA-A and GABA-B receptors are known to have different cerebellar localizations, muscimol and baclofen injections resulted in quantitatively similar effects. It is suggested that these GABA-agonists cause either direct or indirect inhibition of floccular Purkinje cells, thus reducing modulation of the firing rate of these neurons by afferent mossy and climbing fibers. Because the flocular Purkinje cells act out of phase with the vestibular neurons which drive the oculomotor neurons, a reduced output of floccular Purkinje cells would result in a reduction of the VOR and OKR gain. These experiments provide strong evidence that the cerebellar flocculus has a positive influence on the basic VOR and OKR gain.  相似文献   

20.
Recent genetic analyses revealed an important association between P/Q-type channels and hereditary neurological disorders. The α1 subunit of P/Q-type channels is coded by a single CaV2.1 gene. Since calcium entry via neuronal calcium channels is essential for neurotransmission, P/Q-type channels may play an important role in cardiac autonomic neurotransmission. To elucidate the physiological importance of P/Q-type channels in autonomic nerve control, we used rolling Nagoya (tgrol) mice, which have a mutation in the CaV2.1 gene and decreased P/Q-type channel currents with reduced voltage sensitivity.The tgrol mice demonstrated unmodified expression of other calcium channel subunits. Electrocardiogram and echocardiographic analyses revealed decreased heart rate. Furthermore, ω-agatoxin IVA, a P/Q-type channel inhibitor, decreased heart rate and ejection fraction only in wild-type mice, thus suggesting a significant involvement of P/Q-type channels in chronotropic regulation. Atrium contraction analyses revealed a minor but significant role for P/Q-type channels in sympathetic and parasympathetic nerve regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号