首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In neuroendocrine cells, regulated exocytosis is a multistep process that comprises the recruitment and priming of secretory granules, their docking to the exocytotic sites, and the subsequent fusion of granules with the plasma membrane leading to the release of secretory products into the extracellular space. Using bacterial toxins which specially inactivate subsets of G proteins, we were able to demonstrate that both trimeric and monomeric G proteins directly control the late stages of exocytosis in chromaffin cells. Indeed, in secretagogue-stimulated chromaffin cells, the subplasmalemmal actin cytoskeleton undergoes a specific reorganization that is a prerequisite for exocytosis. Our results suggest that a granule-bound trimeric Go protein controls the actin network surrounding secretory granules through a pathway involving the GTPase RhoA and a downstream phosphatidylinositol 4-kinase. Furthermore, the GTPase Cdc42 plays a active role in exocytosis, most likely by providing specific actin structures to the late docking and/or fusion steps. We propose that G proteins tightly control secretion in neuroendocrine cells by coupling the actin cytoskeleton to the sequential steps underlying membrane trafficking at the site of exocytosis. Our data highlight the use of bacterial toxins, which proved to be powerful tools to dissect the exocytotic machinery at the molecular level.  相似文献   

2.
Exocytosis in neuroendocrine cells: new tasks for actin   总被引:1,自引:0,他引:1  
Most secretory cells undergoing calcium-regulated exocytosis in response to cell surface receptor stimulation display a dense subplasmalemmal actin network, which is remodeled during the exocytotic process. This review summarizes new insights into the role of the cortical actin cytoskeleton in exocytosis. Many earlier findings support the actin-physical-barrier model whereby transient depolymerization of cortical actin filaments permits vesicles to gain access to their appropriate docking and fusion sites at the plasma membrane. On the other hand, data from our laboratory and others now indicate that actin polymerization also plays a positive role in the exocytotic process. Here, we discuss the potential functions attributed to the actin cytoskeleton at each major step of the exocytotic process, including recruitment, docking and fusion of secretory granules with the plasma membrane. Moreover, we present actin-binding proteins, which are likely to link actin organization to calcium signals along the exocytotic pathway. The results cited in this review are derived primarily from investigations of the adrenal medullary chromaffin cell, a cell model that is since many years a source of information concerning the molecular machinery underlying exocytosis.  相似文献   

3.
Neurons and neuroendocrine cells release transmitters and hormones by exocytosis, a highly regulated process in which secretory vesicles or granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Several stages have been recognized in exocytosis. After recruitment and docking at the plasma membrane, vesicles/granules enter a priming step, which is then followed by the fusion process. Cortical actin remodelling accompanies the exocytotic reaction, but the links between actin dynamics and trafficking events remain poorly understood. Here, we review the action of Rho and ADP-ribosylation factor (ARF) GTPases within the exocytotic pathway in adrenal chromaffin cells. Rho proteins are well known for their pivotal role in regulating the actin cytoskeleton. ARFs were originally identified as regulators of vesicle transport within cells. The possible interplay between these two families of GTPases and their downstream effectors provides novel insights into the mechanisms that govern exocytosis.  相似文献   

4.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

5.
Many of the proteins that function in regulated exocytosis have now been identified. Several proteins form part of a conserved core machinery that acts in many intracellular vesicular fusion steps and their essential roles confirmed by molecular genetic analysis. In addition, studies with adrenal chromaffin and PC12 cells have demonstrated the function of various proteins in regulated exocytosis and have permitted dissection of the stages of exocytosis in which they act. N-Ethylmaleimide-sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAPs) are key proteins in exocytosis. Examination of their function has indicated that they have a predocking role most likely as molecular chaperones to prepare the docking/fusion machinery. The exact site and time of action in exocytosis of many of the other identified proteins are unknown. A major emphasis for the future will be analysis of the molecular physiology of regulated exocytosis to permit the assignment of functions to identified proteins in particular stages of the regulated exocytotic pathway. BioEssays 20 :328-335, 1998.© 1998 John Wiley & Sons, Inc.  相似文献   

6.
The studies reported here will summarize the major events taking place during the synthesis, intracellular transport and discharge of secretory proteins from the pancreatic acinar cell. We will summarize the work that led to the definition of the regulated secretory pathway in the acinar cell followed by an update of the major steps in the pathway to incorporate new information on vesicular transport that has been gathered over the past 10 years from a number of laboratories. These studies arise from an amazing convergence of information derived from studies on the simpler eukaryote, S. cerevisiae, from biochemical analysis of neurotransmitter release, and from in vitro membrane fusion systems that have allowed for the dissection of the proteins involved in membrane recognition and fusion. Taken together, these studies have shown that the major proteins involved in membrane targeting and fusion, and the accessory proteins that control these events, are highly conserved over vast periods of evolutionary time. Thus, information derived from each of these systems and approaches can be transferred directly to regulated exocytosis in the pancreatic acinar cell — a system that has superimposed on it the complexities of organization into a polarized epithelium and control from the extracellular milieu via neurohormones. The ensuing hypothesis that integrates this body of information is termed the SNARE hypothesis. According to this hypothesis, the core complex of NSF (N-ethylmaleimide sensitive fusion protein) and SNAPs (soluble NSF attachment proteins) pair with their cognate receptors, SNAREs, present on the vesicles (v-SNARE) and the target membrane (t-SNARE) to form a complex that can lead to specific docking and fusion of the vesicles with their target membranes. This process is believed to be controlled by a variety of accessory proteins including synaptotagmin, a Ca2+ binding clamp for exocytosis and members of the rab family of low molecular weight GTP-binding proteins. Several of these proteins have been found by us to be present in the pancreatic acinar cell and are likely involved in similar processes that have been worked out in simpler systems. For example, we have shown that rab3D is uniquely associated with the cytosolic side of zymogen granule membranes as an integral membrane protein and that peptides from the effector domain of the rab proteins are able to induce secretion from permeabilized acinar cells, suggesting a role for this process in regulated exocytosis. These types of approaches are being used to define the localizaiton and function of members of the SNARE family of proteins and of proteins that control formation of the SNARE complex with a particular emphasis on their role in hormonally-elicited secretion. In our presentations, we will also discuss the acquisition of stimulus secretion coupling during the perinatal period in the developing rat pancreas since this system provides the possibility of defining, in a system that does not require exogenous transfection, the sequential expression of factors involved in membrane targeting and fusion. For example, during secretogenesis, rab3D is initially cytosolic at a time when the machinery of exocytosis is present but not functional, and only becomes associated with zymogen granule membranes after birth when stimulus-secretion coupling is acquired.  相似文献   

7.
Kesavan J  Borisovska M  Bruns D 《Cell》2007,131(2):351-363
Assembly of SNARE proteins between opposing membranes mediates fusion of synthetic liposomes, but it is unknown whether SNAREs act during exocytosis at the moment of Ca(2+) increase, providing the molecular force for fusion of secretory vesicles. Here, we show that execution of pre- and postfusional steps during chromaffin granule exocytosis depends crucially on a short molecular distance between the complex-forming SNARE motif and the transmembrane anchor of the vesicular SNARE protein synaptobrevin II. Extending the juxtamembrane region of synaptobrevin by insertion of flexible "linkers" reduces priming of granules, delays initiation of exocytosis upon stepwise elevation of intracellular calcium, attenuates fluctuations of early fusion pores, and slows rapid expansion of the pore in a linker-length dependent fashion. These observations provide evidence that v-SNARE proteins drive Ca(2+)-triggered membrane fusion at millisecond time scale and support a model wherein continuous molecular pulling by SNAREs guides the vesicle throughout the consecutive stages of exocytosis.  相似文献   

8.
Yoo SH  You SH  Huh YH 《FEBS letters》2005,579(1):222-228
Syntaxin 1A and synaptotagmin I are key participants of fusion complex formation during exocytotic processes, and syntaxin 1A is known to be present in the plasma membrane. Here, we show the presence of not only synaptotagmin I but also syntaxin 1A in secretory granules of bovine adrenal chromaffin cells by immunogold electron microscopy, and further demonstrate the interaction of these proteins with chromogranins A and B (CGA and CGB), two major proteins of secretory granules. Interaction between chromogranins and the components of fusion complex also suggests active participation of CGA and CGB in fusion complex formation and subsequent exocytosis.  相似文献   

9.
Control of membrane fusion during spermiogenesis and the acrosome reaction   总被引:5,自引:0,他引:5  
Membrane fusion is important to reproduction because it occurs in several steps during the process of fertilization. Many events of intracellular trafficking occur during both spermiogenesis and oogenesis. The acrosome reaction, a key feature during mammalian fertilization, is a secretory event involving the specific fusion of the outer acrosomal membrane and the sperm plasma membrane overlaying the principal piece of the acrosome. Once the sperm has crossed the zona pellucida, the gametes fuse, but in the case of the sperm this process takes place through a specific membrane domain in the head, the equatorial segment. The cortical reaction, a process that prevents polyspermy, involves the exocytosis of the cortical granules to the extracellular milieu. In lower vertebrates, the formation of the zygotic nucleus involves the fusion (syngamia) of the male pronucleus with the female pronucleus. Other undiscovered membrane trafficking processes may also be relevant for the formation of the zygotic centrosome or other zygotic structures. In this review, we focus on the recent discovery of molecular machinery components involved in intracellular trafficking during mammalian spermiogenesis, notably related to acrosome biogenesis. We also extend our discussion to the molecular mechanism of membrane fusion during the acrosome reaction. The data available so far suggest that proteins participating in the intracellular trafficking events leading to the formation of the acrosome during mammalian spermiogenesis are also involved in controlling the acrosome reaction during fertilization.  相似文献   

10.
The subcellular localization in anterior pituitary secretory cells of annexin II, one of the Ca2+-dependent phospholipid-binding proteins, was examined by immunohistochemistry and immunoelectron microscopy. Annexin II was associated with the plasma membrane, the membranes of secretory granules and cytoplasmic organelles, such as rough endoplasmic reticulum, mitochondria and vesicles, and with the nuclear envelope. Annexin II was frequently detected at the contact sites of secretory granules with other granules and with the plasma membrane. The anterior pituitary and adrenal medulla were treated with Clostridium perfringens enterotoxin, which induces Ca2+ influx, and examined under an electron microscope. The anterior pituitary cells showed multigranular exocytosis, i.e. multiple fusions of secretory granules with each other and with the plasma membrane, but adrenal chromaffin cells, which lack annexin II on the granule membranes, never showed granule--granule fusion and only single granule exocytosis. From these results, we conclude that, in anterior pituitary secretory cells, annexin II is involved in granule--granule fusion in addition to granule--plasma membrane fusion. © 1998 Chapman & Hall  相似文献   

11.
Granuphilin molecularly docks insulin granules to the fusion machinery   总被引:1,自引:0,他引:1  
The Rab27a effector granuphilin is specifically localized on insulin granules and is involved in their exocytosis. Here we show that the number of insulin granules morphologically docked to the plasma membrane is markedly reduced in granuphilin-deficient beta cells. Surprisingly, despite the docking defect, the exocytosis of insulin granules in response to a physiological glucose stimulus is significantly augmented, which results in increased glucose tolerance in granuphilin-null mice. The enhanced secretion in mutant beta cells is correlated with a decrease in the formation of the fusion-incompetent syntaxin-1a-Munc18-1 complex, with which granuphilin normally interacts. Furthermore, in contrast to wild-type granuphilin, its mutant that is defective in binding to syntaxin-1a fails to restore granule docking or the protein level of syntaxin-1a in granuphilin-null beta cells. Thus, granuphilin not only is essential for the docking of insulin granules but simultaneously imposes a fusion constraint on them through an interaction with the syntaxin-1a fusion machinery. These findings provide a novel paradigm for the docking machinery in regulated exocytosis.  相似文献   

12.
Regulated exocytosis and SNARE function (Review)   总被引:1,自引:0,他引:1  
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.  相似文献   

13.
Stimulation of isolated chromaffin cells with carbamylcholine led to a number of morphological changes, indicative of exocytosis, apparently resulting from translocation of secretory granules to the plasma membrane and their subsequent fusion with the plasma membrane to release their contents. However, stimulation in the presence of trifluoperazine resulted only in the accumulation of secretory granules close to the plasma membrane. Thus exocytosis could be divided into two stages: a trifluoperazine-insensitive stage involving translocation of secretory granules to the plasma membrane and a second trifluoperazine-sensitive stage resulting in granule-plasma membrane fusion.  相似文献   

14.
Neuroendocrine cells release hormones and neuropeptides by exocytosis, a highly regulated process in which secretory granules fuse with the plasma membrane to release their contents in response to a calcium trigger. Using chromaffin and PC12 cells, we have recently described that the granule-associated GTPase ARF6 plays a crucial role in exocytosis by activating phospholipase D1 at the plasma membrane and, presumably, promoting the fusion reaction between the two membrane bilayers. ARF6 is activated by the nucleotide exchange factor ARNO following docking of granules to the plasma membrane. We show here that GIT1, a GTPase-activating protein stimulating GTP hydrolysis on ARF6, is the second molecular partner that turns over the GDP/GTP cycle of ARF6 during cell stimulation. Western blot and immunofluorescence experiments indicated that GIT1 is cytosolic in resting cells but is recruited to the plasma membrane in stimulated cells, where it co-localizes with ARF6 at the granule docking sites. Over-expression of wild-type GIT1 inhibits growth hormone secretion from PC12 cells; this inhibitory effect was not observed in cells expressing a GIT1 mutant impaired in its ARF-GTPase-activating protein (GAP) activity or in cells expressing other ARF6-GAPs. Conversely reduction of GIT1 by RNA interference increased the exocytotic activity. Using a real time assay for individual chromaffin cells, we found that microinjection of GIT1 strongly reduced the number of exocytotic events. These results provide the first evidence that GIT1 plays a function in calcium-regulated exocytosis in neuroendocrine cells. We propose that GIT1 represents part of the pathway that inactivates ARF6-dependent reactions and thereby negatively regulates and/or terminates exocytotic release.  相似文献   

15.
Munc18-1 plays a crucial role in regulated exocytosis in neurons and neuroendocrine cells through modulation of vesicle docking and membrane fusion. The molecular basis for Munc18 function is still unclear, as are the links with Rabs and SNARE [SNAP (soluble N-ethylmaleimide-sensitive factor-attachment protein) receptor] proteins that are also required. Munc18-1 can bind to SNAREs through at least three modes of interaction, including binding to the closed conformation of syntaxin 1. Using a gain-of-function mutant of Munc18-1 (E466K), which is based on a mutation in the related yeast protein Sly1p, we have identified a direct interaction of Munc18-1 with Rab3A, which is increased by the mutation. Expression of Munc18-1 with the E466K mutation increased exocytosis in adrenal chromaffin cells and PC12 cells (pheochromocytoma cells) and was found to increase the density of secretory granules at the periphery of PC12 cells, suggesting a stimulatory effect on granule recruitment through docking or tethering. Both the increase in exocytosis and changes in granule distribution appear to require Munc18-1 E466K binding to the closed form of syntaxin 1, suggesting a role for this interaction in bridging Rab- and SNARE-mediated events in exocytosis.  相似文献   

16.
Mast cells upon stimulation through high affinity IgE receptors massively release inflammatory mediators by the fusion of specialized secretory granules (related to lysosomes) with the plasma membrane. Using the RBL-2H3 rat mast cell line, we investigated whether granule secretion involves components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery. Several isoforms of each family of SNARE proteins were expressed. Among those, synaptosome-associated protein of 23 kDa (SNAP23) was central in SNARE complex formation. Within the syntaxin family, syntaxin 4 interacted with SNAP23 and all vesicle-associated membrane proteins (VAMPs) examined, except tetanus neurotoxin insensitive VAMP (TI-VAMP). Overexpression of syntaxin 4, but not of syntaxin 2 nor syntaxin 3, caused inhibition of FcepsilonRI-dependent exocytosis. Four VAMP proteins, i.e., VAMP2, cellubrevin, TI-VAMP, and VAMP8, were present on intracellular membrane structures, with VAMP8 residing mainly on mediator-containing secretory granules. We suggest that syntaxin 4, SNAP23, and VAMP8 may be involved in regulation of mast cell exocytosis. Furthermore, these results are the first demonstration that the nonneuronal VAMP8 isoform, originally localized on early endosomes, is present in a regulated secretory compartment.  相似文献   

17.
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.  相似文献   

18.
Recent evidence suggests that endocytosis in neuroendocrine cells and neurons can be tightly coupled to exocytosis, allowing rapid retrieval from the plasma membrane of fused vesicles for future use. This can be a much faster mechanism for membrane recycling than classical clathrin-mediated endocytosis. During a fast exo-endocytotic cycle, the vesicle membrane does not fully collapse into the plasma membrane; nevertheless, it releases the vesicular contents through the fusion pore. Once the vesicle is depleted of transmitter, its membrane is recovered without renouncing its identity. In this report, we show that chromaffin cells contain catecholamine-free granules that retain their ability to fuse with the plasma membrane. These catecholamine-free granules represent 7% of the total population of fused vesicles, but they contributed to 47% of the fusion events when the cells were treated with reserpine for several hours. We propose that rat chromaffin granules that transiently fuse with the plasma membrane preserve their exocytotic machinery, allowing another round of exocytosis.  相似文献   

19.
N-ethylmaleimide-sensitive fusion protein (NSF) is an ATPase required for vesicular transport throughout the constitutive secretory and endocytic pathways. Recently, NSF has also been implicated in regulated exocytosis in synapses--based on SNAP-mediated binding in vitro to a complex of neurotoxin substrates (termed 'SNAREs'). This work has generated an hypothesis in which the interaction of SNAREs (SNAP receptors) on the vesicle membrane with those on the target membrane forms a docking complex to which SNAPs bind, thus allowing NSF to bind and elicit membrane fusion. However, current evidence supports an earlier, pre-fusion role for NSF. We speculate that this role may be as a molecular chaperone for the membrane docking/fusion machinery.  相似文献   

20.
To explore how the sulfonylurea receptor (SUR1) is involved in docking and fusion of insulin granules, dynamic motion of single insulin secretory granules near the plasma membrane was examined in SUR1 knock-out (Sur1KO) beta-cells by total internal reflection fluorescence microscopy. Sur1KO beta-cells exhibited a marked reduction in the number of fusion events from previously docked granules. However, the number of docked granules declined during stimulation as a consequence of the release of docked granules into the cytoplasm vs. fusion with the plasma membrane. Thus, the impaired docking and fusion results in decreased insulin exocytosis from Sur1KO beta-cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号