首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purification and regulation of mevalonate kinase from rat liver   总被引:2,自引:0,他引:2  
Mevalonate kinase may play a key role in regulating cholesterol biosynthesis because its activity may be regulated via feedback inhibition by intermediates in the cholesterol biosynthetic pathway. To study the regulation of mevalonate kinase, the enzyme was purified to homogeneity from rat liver, and monospecific antibody against mevalonate kinase was prepared. The purified mevalonate kinase had a dimeric structure composed of identical subunits, and the Mr of the enzyme determined by gel chromatography was 86,000. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the subunit Mr was 39,900. The pI for mevalonate kinate was 6.2. The levels of mevalonate kinase protein and enzyme activity were determined in the livers of rats treated with either cholesterol-lowering agents (cholestyramine, pravastatin, and lovastatin) or with dietary modifications. Diets containing cholestyramine alone or cholestyramine and either pravastatin or lovastatin increased mevalonate kinase activity 3-6-fold. Mevalonate kinase activity decreased approximately 50% in rats treated with diets containing either 5% cholesterol or 5% cholesterol and 0.5% cholic acid. Fasting did not significantly change mevalonate kinase activity. The amount of mevalonate kinase protein in the liver was quantitated using immunoblots, and the changes in the levels of kinase activity induced by either drug treatment or by cholesterol feeding were correlated with similar changes in the levels of mevalonate kinase protein. Therefore, under these experimental conditions, mevalonate kinase activity in the liver was regulated principally by changes in the rates of enzyme synthesis and degradation.  相似文献   

2.
ML-236B (“Compactin”), a competitive inhibitor of 3-hydroxy-3-methylglutaryl(HMG)-CoA reductase, increased the cholesterol synthesis and the HMG-CoA reductase activity in isolated rat hepatocytes. These increases were prevented by 0.2 mM puromycin, but not by 10 μg/ml actinomycin D and 40 μg/ml α-amanitin. These results indicated that the increases in cholesterol synthesis and HMG-CoA reductase activity by ML-236B required the enzyme synthesis but not newly synthesized mRNA. The regulatory site of feed-back inhibition by cholesterol for the HMG-CoA reductase synthesis in liver may be at the translational level.  相似文献   

3.
CR39 is a cholesterol-repressible rat liver cDNA previously isolated by differential hybridization (Clarke, C.F., Tanaka, R.D., Svenson, K., Wamsley, M., Fogelman, A.M., and Edwards, P.A. (1987) Mol. Cell. Biol. 7, 3138-3146). To precisely identify the function of CR39 a fusion protein was constructed that contained the amino-terminal region of the bacterial protein anthranilate synthetase fused to the full length CR39 polypeptide. Affinity purified antisera directed against the fusion protein inactivated rat liver cytosolic prenyltransferase activity in vitro. In addition, affinity purified antisera made to purified chicken prenyltransferase cross-reacted with the fusion protein containing CR39. Rat hepatic prenyltransferase activity and enzyme mass were quantitated in animals fed diets or drugs known to alter endogenous cholesterol biosynthesis. Rats fed a diet supplemented with cholestyramine and mevinolin showed a 3.5-fold increase in activity and a 5.0-fold increase in mass of cytosolic prenyltransferase. A diet supplemented with cholesterol resulted in approximately a 4.0-fold decrease in hepatic enzyme activity and a 10-fold decrease in enzyme mass. Under these same dietary regimens the mass of prenyltransferase in the testes remained unchanged. We conclude that CR39 encodes the prenyltransferase of cholesterol biosynthesis, farnesyl pyrophosphate synthetase. Furthermore, in the liver this enzyme shows coordinate regulation with two other enzymes, 3-hydroxy-3-methylglutaryl-CoA reductase and 3-hydroxy-3-methylglutaryl-CoA synthase, in response to cholesterol feeding and hypocholesterolemic drugs.  相似文献   

4.
Monospecific antibody against purified rat liver cholesterol 7 alpha-hydroxylase cytochrome P-450 was used to screen a lambda gt11 cDNA library constructed from immuno-enriched polysomal RNA of cholestyramine-treated female rat liver. Two types of cDNA clones differing in the length of the 3'-untranslated region were identified, and DNA sequences were determined. The full length clone contains 3561 base pairs plus a long poly(A) tail. The amino acid sequence deduced from the open reading frame revealed a unique P-450 protein containing 503 amino acid residues which belonged to a new gene family designated family VII or CYP7. Southern blot hybridization experiments indicated that the minimal size of P-450 VII gene was 11 kilobase pairs (kb), and there was probably only one gene in this new family. Northern blot hybridization using specific cDNA probes revealed at least two major mRNA species of about 4.0 kb and 2.1 kb, respectively. These two mRNA species may be derived from the use of different polyadenylation signals and reverse-transcribed to two types of cDNA clones. Cholesterol 7 alpha-hydroxylase mRNAs were induced 2- to 3-fold in rat liver by cholestyramine treatment. The mRNA level was rapidly reduced upon the removal of the inducer. Similarly, cholesterol feeding induced enzyme activity, protein, and mRNA levels in the rat by 2-fold, suggesting that cholesterol is an important regulator of cholesterol 7 alpha-hydroxylase in the liver. On the other hand, dexamethasone and pregnenolone-16 alpha-carbonitrile drastically reduced the activity, protein, and mRNA levels. These experiments suggest that the induction of cholesterol 7 alpha-hydroxylase activity by cholestyramine or cholesterol and inhibition of cholesterol 7 alpha-hydroxylase activity by bile acid feedback are results of the rapid turnover of cholesterol 7 alpha-hydroxylase enzyme and mRNA levels.  相似文献   

5.
Cholestyramine, chitosan, and oat gum are lipid-lowering compounds. Cholestyramine use in humans may contribute to colonic adenocarcinoma; chitosan and oat gum are being studied in the rat to determine their potential for human use. To compare these compounds, we fed three groups of 10 male Sprague-Dawley rats one of the substances at 5% of diet with 1% cholesterol and 0.2% cholic acid; two other groups were fed cellulose with and without 1% cholesterol and 0.2% cholic acid. All groups had similar food intake and weight gains. Cholesterol feeding increased total liver lipids almost 3-fold and liver cholesterol concentration almost 10-fold. Cholestyramine, oat gum, and chitosan all significantly lowered liver cholesterol with cholestyramine feeding yielding levels identical to the noncholesterol-fed basal group. Chitosan and oat gum lowered liver cholesterol moderately. Cholestyramine and chitosan both significantly lowered serum cholesterol compared to the cellulose group. Oat gum was less effective. Hemoglobin and serum iron were similar in all groups except the oat gum group, which had decreased serum iron. Histological examination of small and large bowel with morphometry revealed statistically significant increases in both proximal and distal small bowel and distal large bowel mucosal thickness in the cholestyramine-fed group. No changes were noted in the proximal large bowel. Neither chitosan nor oat gum produced mucosal change other than an increase in the distal small bowel with the oat gum diet. Chitosan may have lipid-lowering effects similar to those of cholestyramine without the deleterious changes in intestinal mucosa.  相似文献   

6.
7.
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase was purified to homogeneity from rat liver cytoplasm. The active enzyme is a dimer composed of identical subunits of Mr = 53,000. The amino acid composition and the NH2-terminal sequence are presented. Partial cDNA clones for the enzyme were isolated by screening of a rat liver lambda gt11 expression library with antibodies raised against the purified protein. The identity of the clones was confirmed by hybrid selection and translation. When rats were fed diets supplemented with cholesterol, cholestyramine, or cholestyramine plus mevinolin, the hepatic protein mass of cytoplasmic synthase, as determined by immunoblotting, was 25, 160, and 1100%, respectively, of the mass observed in rats fed normal chow. Comparable changes in enzyme activity were observed. Approximately 9-fold increases in both HMG-CoA synthase mRNA mass and synthase mRNA activity were observed when control diets were supplemented with cholestyramine and mevinolin. When rats were fed these two drugs and then given mevalonolactone by stomach intubation, there was a 5-fold decrease of synthase mRNA within 3 h. These results indicate that cytoplasmic synthase regulation occurs primarily at the level of mRNA. This regulation is rapid and coordinate with that observed for HMG-CoA reductase. The chromosomal localization of human HMG-CoA synthase was determined by examining a panel of human-mouse somatic cell hybrids with the rat cDNA probe. Interestingly, the synthase gene resides on human chromosome 5, which has previously been shown to contain the gene for HMG-CoA reductase. Regional mapping, performed by examination of a series of chromosome 5 deletion mutants and by in situ hybridization to human chromosomes indicates that the two genes are not tightly clustered.  相似文献   

8.
Multiple aflatoxin B1 binding proteins exist in rat liver cytosol   总被引:1,自引:0,他引:1  
The in vitro binding of aflatoxin B1 to rat liver cytosolic proteins was investigated. Aflatoxin B1 binding activity was assayed with protein purified by gel permeation chromatography, ammonium sulfate fractionation, and DEAE-cellulose chromatography. Twenty-five percent of the total binding activity was associated with proteins eluted by 0 and 0.1 M NaCl. Over 50% of the total binding activity was associated with protein present in the 0.2 M NaCl fraction. Glutathione S-transferase activity was also monitored and found only in the low salt (less than 0.2 M NaCl) fractions. The proteins eluted by 0.2 M NaCl were further purified by hydroxylapatite column chromatography and binding was found predominantly in a single fraction. The protein purification steps resulted in a 20-fold increase in the specific binding activity over that initially observed in the cytosol. These results indicate that multiple proteins are capable of binding aflatoxin B1 in rat liver cytosol.  相似文献   

9.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

10.
Two forms of CTP:phosphocholine cytidylyltransferase were identified in rat liver cytosol by gel filtration chromatography. The low molecular weight form (L form) is the major form in fresh cytosol. The enzyme associates into a high molecular weight form (H form) upon storage of the cytosol at 4 degrees C. Aggregation of the purified L form of cytidylyltransferase is caused by total rat liver lipids, neutral lipids, diacylglycerol, or phosphatidylglycerol. Diacylglycerol was the only lipid isolated from the rat liver that caused aggregation of the purified enzyme. Although the addition of diacylglycerol to the cytosol did not change the amount of aggregation of the enzyme, a 2.5-fold increase in H form was observed in cytosol pretreated with phospholipase C, or in cytosol from rats fed a high cholesterol diet. In both of these cytosolic preparations, the concentration of diacylglycerol was elevated twofold. Phosphatidylglycerol did not seem to affect the association of the enzyme in cytosol since it is present in very low concentrations in the rat liver cytosol, and its degradation in cytosol by a specific phospholipase did not affect the rate of aggregation. The results suggest that diacylglycerol in an appropriate form is required for association of cytidylyltransferase in rat liver cytosol.  相似文献   

11.
We have purified CTP:phosphorylcholine cytidylyltransferase from rat liver cytosol 2180-fold to a specific activity of 12,250 nmol/min/mg of protein. The purified enzyme was stable at -70 degrees C in the presence of Triton X-100 and 0.2 M phosphate. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide electrophoresis. Separation by sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the purified enzyme contained subunits with Mr of 39,000 and 48,000. Gel filtration analysis indicated that the native enzyme was a tetramer containing two 39,000 and two 48,000 subunits. The purified enzyme appeared to bind to Triton X-100 micelles, one molecule of tetramer/micelle. Maximal activity was obtained with 100 microM phosphatidylcholine-oleic acid vesicles (8-10-fold stimulation). Phosphatidylglycerol produced a 4-5-fold increase in activity at 10 microM. The pH optimum and true Km values for CTP and phosphorylcholine were similar to those reported previously for crude preparations of cytidylyltransferase. The overall behavior of cytidylyltransferase during purification and subsequent analysis suggested that it has hydrophobic properties similar to those exhibited by membrane proteins.  相似文献   

12.
A model system consisting of donor membrane (egg lecithin liposomes) and acceptor membrane (human erythrocyte ghosts or rat liver mitochondria) were used to investigate the alpha-tocopherol binding protein (alpha TBP) mediated transfer of alpha-tocopherol. Liposomes containing RRR-[alpha-3H]tocopherol ([alpha-3H]T) were incubated with acceptor membrane at 37 degrees C for 0-45 min in the presence or absence of rat liver cytosol or a dialyzed 30-60% saturated ammonium sulfate precipitated fraction of rat liver cytosol (Fraction B). Erythrocyte ghosts and liver mitochondria were compared and found to behave similarly in the presence of Fraction B. alpha-Tocopherol transfer activity (alpha TTA) typically varied 0- to 27-fold greater than buffer blanks, depending upon type and concentration of protein preparation. Gel filtration of Fraction B yielded one alpha TTA peak (liver mitochondria as acceptor) with an estimated Mr of 39,000. [alpha-3H]T recovered from erythrocyte ghosts pellets by HPLC suggest that the [alpha-3H]T was transferred intact. alpha TTA of Fraction B in the presence of varying concentrations of erythrocyte ghosts and liposomal [alpha-3H]T followed saturation kinetics. Optimal concentrations gave alpha TTA responses directly proportional to rat liver cytosol concentration. alpha TTA was inhibited only 5% in the presence of a 32-fold excess of cold liposomal alpha-tocopheryl acetate suggesting that the free hydroxyl group on the chromanol ring of alpha-tocopherol is needed for transfer. Coefficient of variation of repeated measures of alpha TTA in rat liver cytosol was 2.9%. Thus, the intermembrane transfer phenomenon of alpha-tocopherol can be studied quantitatively and can be used to compare liver protein preparations exhibiting transfer activity.  相似文献   

13.
The activity of the soluble form of phosphatidic acid phosphatase in rat liver was stimulated about 2.5-fold by inclusion of mevinolin, a competitive hydroxymethylglutaryl-CoA reductase inhibitor, in the diet (0.1%). The stimulatory effect of mevinolin was present also after dietary addition of cholestyramine (5%) or intraperitoneal administration of ethanol. Addition of cholesterol (2%) to the diet totally abolished the stimulation by mevinolin on phosphatidic acid phosphatase. The results support a correlation between the synthesis of the rate-limiting enzyme in cholesterol biosynthesis and the activity of the apparent rate-limiting enzyme in triacylglycerol biosynthesis.  相似文献   

14.
Supernatant protein factor is a 46-kDa cytosolic protein that stimulates squalene monooxygenase, a downstream enzyme in the cholesterol biosynthetic pathway. The mechanism of stimulation is poorly understood, although supernatant protein factor belongs to a family of lipid-binding proteins that includes Sec14p and alpha-tocopherol transfer protein. Because recombinant human supernatant protein factor purified from Escherichia coli exhibited a relatively weak ability to activate microsomal squalene monooxygenase, we investigated the possibility that cofactors or post-translational modifications were necessary for full activity. Addition of ATP to rat liver cytosol increased supernatant protein factor activity by more than 2-fold and could be prevented by the addition of inhibitors of protein kinases A and C. Incubation of purified recombinant supernatant protein factor with ATP and protein kinases A or C delta similarly increased activity by more than 2-fold. Addition of protein phosphatase 1 gamma, a serine/threonine phosphatase, to rat liver cytosol reduced activity by 50%, suggesting that supernatant protein factor is partially phosphorylated in vivo. To determine whether dietary cholesterol influenced the phosphorylation state, cytosols were prepared from livers of rats fed a high fat diet. Although supernatant protein factor activity was reduced by more than one-half, it could not be restored by the addition of ATP or protein kinase C delta with ATP, suggesting that dietary cholesterol reduced the expression of this protein. Supernatant protein factor thus appears to be regulated both post-translationally through phosphorylation and at the level of expression. Phosphorylation may provide a means for the rapid short term modulation of cholesterol synthesis.  相似文献   

15.
C1-tetrahydrofolate synthase (C1-THF synthase), a eukaryotic trifunctional enzyme, catalyzes three sequential folate-mediated one-carbon interconversions. These three reactions supply the activated one-carbon units required in the metabolism of purines, thymidylate, and several amino acids. In order to study the regulation of C1-THF synthase expression in mammals, we have purified the enzyme to homogeneity from rat liver, raised polyclonal antisera to it in rabbits, and developed a sensitive solid-phase immunoassay for the enzyme. The enzyme was purified approximately 600-fold to a specific activity of 24.6 U/mg protein based on 10-formyl-THF synthetase activity. Western blot analysis indicated that the antisera is specific for one protein in crude liver extracts which comigrates with purified C1-THF synthase. Using the solid-phase immunoassay, as little as 200 pg of immunoreacting protein can be detected in tissue homogenates. Several rat tissues were examined for the three C1-THF synthase enzymatic activities and immunoreactive protein. The results indicated that the level of C1-THF synthase is regulated in a tissue-specific manner. Enzyme assays revealed that certain tissues differ by more than 100-fold in enzyme activity, with liver and kidney containing the highest levels, and lung and muscle the lowest. However, immunoassay of these same tissues indicated only a 10-fold difference in C1-THF synthase concentration. This apparent masking of enzyme activity was observed in all tissues, but to varying degrees. These results emphasize the advantages of an immunoassay in studying the regulation of C1-THF synthase.  相似文献   

16.
Possible mechanisms for the cholesterol-lowering effects of plant stanol esters were addressed by feeding hamsters diets containing stanol esters, cholesterol, or cholestyramine/lovastatin. ABCA1, ATP binding cassette G1 (ABCG1), ABCG5, ABCG8, and Niemann-Pick C1-like 1 (NPC1L1) mRNA levels were then estimated in duodenum, jejunum, and ileum. Plasma cholesterol was decreased by 36% and 94% in animals fed stanol esters and cholestyramine/lovastatin, respectively. Cholesterol feeding increased plasma cholesterol by 2.5-fold. Plasma plant sterols were unchanged by stanol ester feeding but became undetectable by feeding cholestyramine/lovastatin. Cholesterol and stanols accumulated in enterocytes of animals fed cholesterol and stanol esters, respectively. ABCG5 and ABCG8 mRNA levels were decreased by stanol esters and cholestyramine/lovastatin. Cholesterol feeding markedly increased ABCA1 and ABCG1 expression and modestly increased ABCG5/ABCG8. NPC1L1 mRNA was not significantly altered by any of the diets. ABCG1, ABCG5, ABCG8, and NPC1L1 mRNAs were highest in cells of the upper villus, whereas ABCA1 mRNA was highest in cells of the lower villus. The results suggest that cholesterol lowering effect of stanol esters is unrelated to changes in mRNA levels of intestinal ABC sterol transporters or NPC1L1. Cholesterol flux regulates ABC expression but not NPC1L1. The different localization of ABCA1 suggests a different function for this protein than for ABCG1, ABCG5, ABCG8, and NPC1L1.  相似文献   

17.
Mouse mammary carcinoma FM3A cells, which are able to grow in a serum-free medium, have novel characteristics that could be valuable in biochemical and somatic cell genetic studies. In FM3A cells grown in the presence of serum, both sterol synthesis and the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the major rate-limiting enzyme in the cholesterol biosynthetic pathway, were strongly suppressed by human low density lipoprotein (LDL). The addition of LDL (50 micrograms protein/ml) resulted in a 50% decrease in the reductase activity within 3 h and a 95% reduction after 24 h. Similarly, over 90% suppression of the reductase activity was obtained by the addition of LDL or mevalonolactone when the cells were grown on a serum-free medium. ML-236B (compactin), a specific inhibitor of HMG-CoA reductase, inhibited sterol synthesis from [14C]acetate by 80% at 1 microM. Reductase activity in FM3A cells was increased by 2.5- to 5-fold when the cells were treated with ML-236B (at 0.26-2.6 microM for 24 h). Thus, in FM3A cells, HMG-CoA reductase activity responded well to LDL, as is observed in human skin fibroblasts. Along with other novel features of this cell line, the present observations indicate that FM3A cells should be useful in biochemical and somatic cell genetic analysis of cholesterol metabolism, especially as regards the regulation of HMG-CoA reductase activity.  相似文献   

18.
Recent data suggest that rat liver peroxisomes play a critical role in cholesterol synthesis. Specifically, peroxisomes contain a number of enzymes required for cholesterol synthesis as well as sterol carrier protein-2. Furthermore, peroxisomes are involved in the in vitro synthesis of cholesterol from mevalonate and contain significant levels of apolipoprotein E, a major constituent of several classes of plasma lipoproteins. In this study we have investigated the subcellular localization of mevalonate kinase (EC 2.7.1.36; ATP:mevalonate-5-phosphotransferase). Mevalonate kinase is believed to be a cytosolic enzyme and catalyzes the phosphorylation of mevalonate to form mevalonate 5-phosphate. Mevalonate kinase has been purified from rat liver cytosol and a cDNA clone coding for rat mevalonate kinase has also been isolated and characterized. In this study, utilizing monoclonal antibodies made against the purified rat mevalonate kinase, we demonstrate the presence of mevalonate kinase in rat liver peroxisomes and in the cytosol. Each of these compartments contained a different form of the protein. The pI and the Mr of the peroxisomal protein is 6.2 and 42,000, respectively. The pI and Mr of the cytosolic protein is 6.9 and 40,000, respectively. The peroxisomal protein was also significantly induced by a number of different hypolipidemic drugs. In addition, we present evidence for the unexpected finding that the purified mevalonate kinase (isolated from the cytosol and assumed to be a cytosolic protein) is actually a peroxisomal protein.  相似文献   

19.
Cholesterol 7 alpha-hydroxylase (P-450 Ch7 alpha) catalyzes the first and rate-limiting step in the hepatic conversion of cholesterol to bile acids. P-450 Ch7 alpha activity in rat liver is regulated at three independent levels: (a) feedback inhibition by bile acids (long term regulation); (b) midterm regulation through the diurnal cycle; (c) short term modulation by hormones and dietary factors. P-450 Ch7 alpha was purified to apparent homogeneity and in active form (turnover number = 10-15 min-1 P-450(-1)) from cholestyramine-fed female rats, and rabbit anti-P-450 Ch7 alpha polyclonal antibodies were then prepared. Liver microsomes were isolated from rats fed normal diet or diet containing the bile acid sequestrant cholestyramine and were then killed at either the apex (midnight) or nadir (noon) of the diurnal rhythm of P-450 Ch7 alpha activity. Direct comparison of microsomal P-450 Ch7 alpha enzyme activity levels with P-450 Ch7 alpha protein (Western blotting) and mRNA levels (Northern and slot blots) revealed that the 2.5-3-fold induction of P-450 Ch7 alpha activity with cholestyramine feeding can be fully accounted for by an increase in P-450 Ch7 alpha protein and mRNA. Turnover numbers of 7-9 nmol of 7 alpha-hydroxycholesterol/min/nmol of microsomal P-450 Ch7 alpha were observed for both induced and uninduced animals. Similarly, the postmidnight decrease in enzyme activity could be generally accounted for by a decrease in P-450 Ch7 alpha protein and mRNA, suggesting that these species have relatively short half-lives. The short term regulation of P-450 Ch7 alpha was examined following treatment with the cholesterol precursor mevalonic acid. A 2.5-fold increase in hepatic microsomal P-450 Ch7 alpha activity occurred within 150 min and was accompanied by a significant elevation of P-450 Ch7 alpha mRNA (up to 3-6-fold increase). These findings establish that hepatic cholesterol 7 alpha-hydroxylase activity is regulated in response to long term, midterm, and short term control factors primarily at a pretranslational level and that this regulation is of greater importance than proposed mechanisms based on allosteric effects of bile acids on P-450 Ch7 alpha protein, changes in cholesterol availability, or reversible phosphorylation of a putative P-450 Ch7 alpha phosphoprotein.  相似文献   

20.
Hepatic and serum levels of cholesterol precursors were analyzed in rats under basal (control) conditions and when cholesterol synthesis was activated by feeding 1% squalene or 5% cholestyramine. Exogenous squalene stimulated the activity of acyl-coenzyme A:cholesterol acyltransferase (ACAT) but strongly inhibited the activity of hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase; cholestyramine did not affect ACAT but increased HMG-CoA reductase several-fold, indicating enhanced production of endogenous squalene. Activation of cholesterol synthesis by the two methods markedly increased the hepatic and serum contents of cholesterol precursor sterols. However, the sterol profiles were clearly different. Thus, exogenous squalene raised most significantly (up to 109-fold) free and esterified methyl sterols, and less so (up to 2-fold) demethylated C27 sterols (desmosterol and cholestenols) and also esterified cholesterol. Activation of endogenous squalene production by cholestyramine was associated with a depletion of esterified cholesterol and by a marked, up to 8-fold, increase of the free demethylated sterol precursor levels, whereas the increase of methyl sterols, up to 5-fold, was less conspicuous than during the squalene feeding. The changes were mostly insignificant for esterified sterols. The altered serum sterol profiles were quite similar to those in liver. Serum cholestenols and especially their portion of total serum precursor sterols were closely correlated with the hepatic activity of HMG-CoA reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号