首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper the purification and characterization of the Tetrahymena pyriformis enzyme phosphoenolpyruvate phosphomutase are described. PEP phosphomutase was first fractionated from T. pyriformis cellular extract by using 70% ammonium sulfate. Chromatography of the crude protein fraction on a DEAE-cellulose column followed by phenyl-Sepharose column chromatography and then Bio-Gel P-200 column chromatography afforded pure PEP phosphomutase in an approximate overall yield of 70 units/150 g of cells. The maximum turnover number observed for PEP phosphomutase catalysis of the phosphonopyruvate----PEP reaction is 38 s-1 (25 degrees C). The enzyme was shown to be a homodimer of 38,000-dalton subunits and to require a divalent metal ion for activity. Mg2+ (relative Vm = 1), Co2+ (rel Vm = 0.5), Zn2+ (rel Vm = 0.4), and Mn2+ (rel Vm = 0.3) each satisfied the cofactor requirement. Binding of the physiological cofactor, Mg2+ (Ki = 0.3 mM at pH 7.5), and phosphonopyruvate (Km = 2 microM at pH 7.5) was found to be ordered, with cofactor binding preceding substrate binding. Within the pH range of 5-9 catalysis (Vm) was found to be pH independent, while phosphonopyruvate binding dropped at acidic and basic pH.  相似文献   

2.
Phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) was purified 100-fold from the cyanobacterium Coccochloris peniocystis with a yield of 10%. A single isozyme was found at all stages of purification, and activity of other beta-carboxylase enzymes was not detected. The apparent molecular weight of the native enzyme was 560,000. Optimal activity was observed at pH 8.0 and 40 degrees C, yielding a Vmax of 8.84 mumol/mg of protein per min. The enzyme was not protected from heat inactivation by aspartate, malate, or oxalacetate. Michaelis-Menten reaction kinetics were observed for various concentrations of PEP, Mg2+, and HCO3-, yielding Km values of 0.6, 0.27, and 0.8 mM, respectively. Enzyme activity was inhibited by aspartate and tricarboxylic acid cycle intermediates and noncompetitively inhibited by oxalacetate, while activation by any compound was not observed. However, the enzyme was sensitive to metabolic control at subsaturating substrate concentrations at neutral pH. These data indicate that cyanobacterial PEP carboxylase resembles the enzyme isolated from C3 plants (plants which initially incorporate CO2 into C3 sugars) and suggest that PEP carboxylase functions anapleurotically in cyanobacteria.  相似文献   

3.
Phosphoenolpyruvate carboxylase has been purified to homogeneity from maize (Zea mays L. var. Golden Cross Bantam T51) leaves. The ratio of specific activities in crude extracts and the purified enzyme suggests that the enzyme is a major soluble protein in the tissue. The enzyme has a sedimentation coefficient (s20,w) of 12.3S and a molecular weight, determined by sedimentation equilibrium, of 400,000 daltons. Dissociation of the enzyme and electrophoresis on dodecyl sulfate polyacrylamide gels yields a single stained band which corresponds to a subunit weight of 99,000 daltons. Thus it appears that the native enzyme is composed of four identical or similar polypeptide chains.  相似文献   

4.
Phosphoenolpyruvate (PEP) carboxylase was purified over 400-fold from Plasmodium berghei. The purified enzyme was stable in 0.4 m potassium phosphate buffer (pH 7.4) containing 0.5 m glucose, 1 mm ethylenediaminetetraacetic acid (EDTA), and 1 mm MgCl(2). It had a molecular weight of 280,000 determined by sucrose density gradient centrifugation in this buffer, but it aggregated and was unstable in the presence of different salts or a more dilute solution of potassium phosphate. The K(m) for PEP was 2.6 mm and that for Mg(2+) was 1.3 mm. The K(m) for bicarbonate was 2 mm. Citrate, nucleotides, and EDTA inhibited the PEP carboxylase of P. berghei by decreasing the concentration of free magnesium ions, but acetyl-coenzyme A, fructose-1,6-diphosphate, and aspartate did not influence its activity. A chloroquine concentration of 1.8 x 10(-4)m inhibited the enzyme 50%.  相似文献   

5.
Methioninase of Pseudomonas putida was purified to homogeneity, as judged by polyacrylamide gel electrophoresis, with a specific activity 270-fold higher than that of the crude extract. 1. The purified enzyme had an S20,w of 8.37, a molecular weight of 160,000, and an isoelectric point of 5.6. 2. A break in the Arrhenius plot was observed at 40 degrees and the activation energies below and above this temperature were 15.5 and 2.97 kcal per mole, respectively. 3. In addition to L-methionine, various S-substituted derivatives of homocysteine and cysteine could serve as substrates. D-Methionine, 2-oxo-4-methylthiobutanoate, and related non sulfur-containing amino acids were inert. Equimolar formation of alpha-ketobutyrate and CH3SH was observed with methionine as a substrate. 4. In addition to the protein peak at 278 nm, two absorption maxima were observed at 345 and 430 nm at pH 7.5. Hydroxylamine removed the enzyme-bound pyridoxal phosphate, resulting in almost complete resolution with the concomitant disappearance of both peaks. Reconstruction of the treated enzyme could be achieved by addition of the cofactor; the Km value was calculated to be 0.37 muM. 5. The reported purified enzyme should be designated as L-methionine methanethiollyase (deaminating).  相似文献   

6.
The initial reactions involved in the catabolism of fructose in Pseudomonas aeruginosa include the participation of a phosphoenolpyruvate:fructose 1-phosphotransferase system (F-PTS). Fractionation of crude extracts of fructose-grown cells revealed that both membrane-associated and soluble components were essential for F-PTS activity. Further resolution of the soluble fraction by both size exclusion and ion-exchange chromatography revealed the presence of only one component, functionally analogous to enzyme I. Enzyme I exhibited a relative molecular weight of 72,000, catalyzed the pyruvate-stimulated hydrolysis of phosphoenolpyruvate to pyruvate, and mediated the phosphorylation of fructose when combined with a source of enzyme II (washed membranes). No evidence for the requirement of a phosphate carrier protein, such as HPr, could be demonstrated. Thus, the F-PTS requires a minimum of two components, a soluble enzyme I and a membrane-associated enzyme II complex, and both were shown to be inducible. Reconstituted F-PTS activity was specific for phosphoenolpyruvate as a phosphate donor (Km, approximately -0.6 mM) and fructose as the sugar substrate (Km, approximately 18 microM). Components of the Pseudomonas F-PTS did not restore activity to extracts of deletion mutants of Salmonella typhimurium deficient in individual proteins of the PTS or to fractionated membrane and soluble components of the F-PTS of Escherichia coli. Similarly, membrane and soluble components of E. coli and S. typhimurium would not cross-complement the F-PTS components from P. aeruginosa.  相似文献   

7.
Phosphoenolpyruvate carboxykinase of chicken liver cytosol was purified to homogeneity by procedures including affinity chromatography with GTP as a ligand. The purified enzyme showed a molecular weight of 68,000 on gel electrophoresis in the presence of dodecyl sulfate. Comparative studies on this enzyme and its isozyme purified from chicken liver mitochondria were performed. As regards amino acid composition, the cytosolic enzyme was quite different from the mitochondrial enzyme, but was rather similar to rat liver cytosolic phosphoenolpyruvate carboxykinase. Specific activities of the cytosolic enzyme were 30-100% higher than those of the mitochondrial enzyme for oxaloacetate-CO2 exchange, oxaloacetate decarboxylation, and phosphoenolpyruvate carboxylation reactions, though the relative rates of the activities were similar, decreasing in the order given. Apparent Michaelis constants for oxaloacetate in the oxaloacetate decarboxylation reaction were 11.6 and 17.9 microM for the cytosolic and the mitochondrial enzyme, respectively, but the values for GTP, GDP, phosphoenolpyruvate, and CO2 in the oxaloacetate decarboxylation and phosphoenolpyruvate carboxylation reactions were 1.3-2.2 times higher for the cytosolic enzyme than for the mitochondrial enzyme. Thus, the fundamental catalytic properties of the chicken liver phosphoenolpyruvate carboxykinase isozymes were rather similar, despite the marked difference in amino acid compositions.  相似文献   

8.
A phytase (EC 3.1.3.8) from Pseudomonas syringae MOK1 was purified to apparent homogeneity in two steps employing cation and an anion exchange chromatography. The molecular weight of the purified enzyme was estimated to be 45 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The optimal activity occurred at pH 5.5 and 40 degrees C. The Michaelis constant (Km) and maximum reaction rate (Vmax) for sodium phytate were 0.38 mM and 769 U/mg of protein, respectively. The enzyme was strongly inhibited by Cu2+, Cd2+, Mn2+, and ethylenediaminetetraacetic acid (EDTA). It showed a high substrate specificity for sodium phytate with little or no activity on other phosphate conjugates. The enzyme efficiently released orthophosphate from wheat bran and soybean meal.  相似文献   

9.
A butyrylcholine-hydrolyzing enzyme (EC 3.1.1.-) fo Pseudomonas polycolor IFO 3918 was purified approximately 9270-fold with a recovery of 9.9% by use of chromatographic techniques. The enzyme preparation appeared to be homogeneous when subjected to electrophoretic and ultracentrifugational analyses. The molecular weight was determined as approximately 59000 by gel filtration. Isoelectric focusing electrophoresis revealed that the enzyme had an isoelectric point around pH 5.1. The enzyme catalyzed the hydrolysis of butyrylcholine with the miximum activity among various esters tested, and split benzoylcholine, propionylcholine and some aliphatic esters, but did not attact acetylcholine. The estimated value of Km at pH 7.5 and 25 degrees C was 7-10(-4) M for butyrylcholine. The enzyme was irreversibly inhibited by organophosphorus compounds and carbamates, such as diisopropylphosphofluoridate and eserine. The enzyme was inhibited by some compounds, such as atropine and quinidine. Auaternary ammonium salts showed an inhibitory effect on the enzyme resembling co-operative inhibition.  相似文献   

10.
Phosphoglycerate mutase has been purified from methanol-grown Hyphomicrobium X and Pseudomonas AMI by acid precipitation, heat treatment, ammonium sulphate fractionation, Sephadex G-50 gel filtration and DEAE-cellulose column chromatography. The purification attained using the Hyphomicrobium X extract was 72-fold, and using the Pseudomonas AMI extract, 140-fold. The enzyme purity, as shown by analytical polyacrylamide gel electrophoresis, was 50% from Hyphomicrobium X and 40% from Pseudomonas AMI. The enzyme activity was associated with one band. The purified preparations did not contain detectable amounts of phosphoglycerate kinase, phosphopyruvate hydratase, phosphoglycerate dehydrogenase or glycerate kinase activity. The molecular weight of the enzymic preparation was 32000 +/- 3000. The enzyme from both organisms was stable at low temperatures and, in the presence of 2,3-diphosphoglyceric acid, could withstand exposure to high temperatures. The enzyme from Pseudomonas AMI has a broad pH optimum at 7-0 to 7-6 whilst the enzyme from Hyphomicrobium X has an optimal activity at pH 7-3. The cofactor 2,3-diphosphoglyceric acid was required for maximum enzyme activity and high concentrations of 2-phosphoglyceric acid were inhibitory. The Km values for the Hyphomicrobium X enzyme were: 3-phosphoglyceric acid, 6-0 X 10(-3) M: 2-phosphoglyceric acid, 6-9 X 10(-4) M; 2,3-diphosphoglyceric acid, 8-0 X 10(-6) M; and for the Pseudomonas AMI ENzyme: 3-4 X 10(-3) M, 3-7 X 10(-4) M and 10 X 10(-6) M respectively. The equilibrium constant for the reaction was 11-3 +/- 2-5 in the direction of 2-phosphoglyceric acid to 3-phosphoglyceric acid and 0-09 +/- 0-02 in the reverse direction. The standard free energy for the reaction proceeding from 2-phosphoglyceric acid to 3-phosphoglyceric acid was -5-84 kJ mol(-1) and in the reverse direction +5-81 kJ mol(-1).  相似文献   

11.
A bacteriolytic enzyme, PR1-lysozyme, has been purified from the lysate of mitomycin C-induced pyocinogenic Pseudomonas aeruginosa, by acrinol treatment, Amberlite CG-50 chromatography, ammonium sulfate fractionation, Sephadex G-100 gel filtration and two cycles of SP-Sephadex C-50 chromatography. Homogeneity of the preparation was demonstrated by three electrophoretic techniques. PR1-lysozyme is a basic protein (pI, 9.4) and consists of a single polypeptide chain having a molecular weight of 24,000. The amino acid composition of the protein was analyzed, and no cystein residue was found among more than 210 amino acid residues. The optimum pH for enzymatic activity was 6.4 and the enzyme exhibited about 50 to 70 times greater specific activity than hen egg-white lysozyme when assayed with chloroform-killed P. aeruginosa as a substrate. By analyzing the products of enzymatic action on purified peptidoglycan of P. aeruginosa, the enzyme was identified as an N-acetylmuramidase, i.e., the same classification as hen-egg-white lysozyme. PR1-lysozyme did not show any activity towards intact cells of gram-positive and gram-negative bacteria tested. However, the enzyme was able to lyse chloroform-killed gram-negative and gram-positive bacteria.  相似文献   

12.
Phosphoglycerate phosphomutase has been purified to homogeneity from vegetative cells and germinated spores of Bacillus megaterium, and the spore and cell enzymes appear identical. The enzyme is a monomer of molecular weight 61,000. The compound 2,3-diphosphoglyceric acid is not required for activity, but the enzyme has an absolute and specific requirement for Mn2+. The enzyme is inhibited by ethylenediaminetetraacetate and sulfhydryl reagents, has a pH optimum of about 8.0, and has Km values for 3-phosphoglyceric acid and Mn2+ of 5 x 10(-4) and 4 x 10(-5) M, respectively.  相似文献   

13.
14.
An alkaline protease produced by Pseudomonas aeruginosa MN1, isolated from an alkaline tannery waste water, was purified and characterized. The enzyme was purified 25-fold by gel filtration and ion exchange chromatography to a specific activity of 82350 U mg−1. The molecular weight of the enzyme was estimated to be 32000 daltons. The optimum pH and temperature for the proteolytic activity were pH 8.00 and 60°C, respectively. Enzyme activity was inhibited by EDTA suggesting that the preparation contains a metalloprotease. Enzyme activity was strongly inhibited by Zn2+, Cu2+ and Hg2+(5 mM), while Ca2+ and Mn2+ resulted in partial inhibition. The enzyme is different from other Pseudomonas aeruginosa alkaline proteases in its stability at high temperature; it retained more than 90% and 66% of the initial activity after 15 and 120 min incubation at 60°C. Journal of Industrial Microbiology & Biotechnology (2000) 24, 291–295. Received 09 June 1999/ Accepted in revised form 24 January 2000  相似文献   

15.
Two soluble aldehyde dehydrogenases isoenzymes have been purified and separated from extracts of a paraffin-assimilating bacterium, Pseudomonas aeruginosa. The first one, obtained at an estimated purity of 20% (spec. act. with butanal 0.33 kat/kg) was NAD-dependent. It was rapidly inactivated at pH 8.6 but was efficiently protected by NAD. It had a molecular weight of 225000 and presented a high affinity for aldehydes of short and middle chain lengths. The second enzyme, obtained in a nearly homogenous state (spec. act. with pentanal 0.62 kat/kg) was NADP-dependent. It was activated by ions, in particular potassium ions, and had a good affinity for aldehydes of higher chain lengths. Both enzymes were stabilized by thiols and glycerol and were inactivated by reagents of sulfhydryl groups. These enzymes are 'constitutive' and their physiological function is uncertain. When the bacteria were grown on n-paraffin a new membrane-bound NAD-dependent aldehyde dehydrogenase activity was produced.  相似文献   

16.
Procedures are described for the purification of the mitochondrial and cytosolic isozymes of phosphoenolpyruvate carboxykinase from rabbit liver. Examination of the purified isozymes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated apparent homogeneity and identical molecular weights of approximately 65,000. Gel filtration chromatography of the native isozymes, however, yielded apparent molecular weights of 68,000 and 56,000 for the cytosolic and mitochondrial isozymes, respectively. The isoelectric points as determined by chromatofocusing were 5.8 for the mitochondrial isozyme and 5.0 for the cytosolic isozyme. The purified isozymes were readily separable on ion-exchange columns, with the cytosolic isozyme showing the greater affinity. A minor amount of cross-reactivity was apparent when each isozyme was immunotitrated with polyclonal antibodies raised in goat against the opposite isozyme. Peptide maps obtained by high pressure liquid chromatography of both tryptic digests and cyanogen bromide digests of the isozymes showed that many of the peaks were not coincident, suggesting that differences in the sequences are found throughout the primary structures of the isozymes.  相似文献   

17.
In this study, the adhesive exopolysaccharides of strains of Pseudomonas putida and P. fluorescens, both isolated from freshwater epilithic communities, were examined with regard to their chemical composition, biosynthesis, and their role in adhesion. Electron microscopy showed that both strains were enrobed in fibrous glycocalyces and that these structures were involved in attachment of the cells to a solid surface and as structural matrices in the microcolony mode of growth. In batch culture experiments most of the extracellular polysaccharide of both strains was found to be soluble in the growth medium rather than being associated with bacterial cells. Exopolysaccharide was synthesized during all phases of growth, but when growth was limited by exhaustion of the carbon source, exopolysaccharide synthesis ceased whereas exopolysaccharide synthesis continued for some time after cessation of growth in nitrogen-limited cultures. Exopolysaccharide from both strains was isolated and purified. Pseudomonas putida synthesized an exopolysaccharide composed of glucose, galactose, and pyruvate in a ratio of 1:1:1; the P. fluorescens polymer contained glucose, galactose, and pyruvate in a ratio of 1:1:0.5, respectively. Polymers from both strains were acetylated to a variable degree.  相似文献   

18.
Phosphoenolpyruvate carboxykinase has been purified from homogenates of Ascaris suum muscle strips to apparent homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purification is a three-step procedure which yields pure enzyme in milligram quantities with good yield. The subunit molecular weight of the Ascaris enzyme is between 75,000 and 80,000. The native molecular weight is 83,000 as determined by gel filtration. The kinetic constants for substrates of the carboxylation reaction were determined and compared to those measured for the avian liver enzyme. From kinetic studies it appears likely that two separate roles for divalent metal ions exist in the catalytic process. Studies conducted with Mn2+ or with micromolar concentrations of Mn2+, in the presence of millimolar concentrations of Mg2+ suggest that Mn2+ but not Mg2+ binds directly to and activates the enzyme while either Mn2+ or Mg2+ may bind to the nucleotide resulting in the metal-nucleotide complex. The metal-nucleotide is the active form of the substrate for the reaction. In the presence of Mg2+, an increase in the Mn2+ concentration results in a decrease in the Km for P-enolpyruvate suggesting a direct role for Mn2+ stimulation and regulation of activity. The concentrations of Mn2+ and Mg2+ in Ascaris muscle strips were determined by atomic absorption spectroscopy and support the proposed hypothesis of a specific Mn2+ activation of the enzyme. The nucleotides ATP and ITP act as competitive inhibitors against GTP with KI values of 0.50 and 0.75 mM, respectively. ITP is a competitive inhibitor against both IDP and P-enolpyruvate, suggesting overlapping binding sites for the two substrates on the enzyme.  相似文献   

19.
Cytosol PEP carboxykinase has been purified to electrophoretic homogeneity from bullfrog liver homogenate. The enzyme is a single polypeptide chain with a molecular weight of approximately 72,000-75,000. The purified enzyme catalyzed oxaloacetate decarboxylation (nucleoside triphosphate-supported), phosphoenolpyruvate carboxylation, and an exchange reaction between oxaloacetate and [14C]HCO3-in the presence of ITP or CTP. Manganese is absolutely required for the enzyme-catalyzed phosphoenolpyruvate carboxylation, whereas it can be replaced by Mg2+ for the oxaloacetate decarboxylation and the exchange reaction. The optimal pH of each reaction is dependent on the divalent metal ion used. The dependence of the enzyme activity on Mn2+ is markedly different in the phosphoenolpyuvate carboxylation and the oxaloacetate decarboxylation reactions.  相似文献   

20.
A thermostable lipase from Pseudomonas cepacia has been purified to homogeneity as judged by SDS-PAGE and isoelectric focusing. The purification included treatment of the culture supernatant with acrinol, hydrophobic interaction chromatography, and gel filtration. The enzyme was a monomeric protein with M(r) of 36,500 and pI of 5.1. The optimal pH at 50 degrees C and optimal temperature at pH 6.5 were 5.5-6.5 and 55-60 degrees C, respectively, when olive oil was used as the substrate. Simple triglycerides of short and middle chain fatty acids (C < or = 12) were the preferred substrates over those of long chain fatty acids. The enzyme cleaved all the ester bonds of triolein, with some preference for the 1,3-ester bonds. The enzyme retained all its activity even after incubation at 75 degrees C (pH 6.5) for 30 min. Further, the activity was not impaired during 21 h storage at pH 6.5 in 40% water-miscible solvents including methanol, ethanol, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, and dioxane. The addition of dimethylsulfoxide or acetone to the assay mixture in the range of 0-35% stimulated the enzyme, whereas benzene or n-hexane had an inhibitory effect. These properties together with the N-terminal amino acid sequence confirmed that the enzyme differs from the known Pseudomonas sp. lipases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号