首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suttle JC  Kende H 《Plant physiology》1980,65(6):1067-1072
Senescence of isolated petals of Tradescantia is accompanied by a large increase in membrane permeability, and application of ethylene hastens the onset of this increase. There is a 1- to 2.5-hour lag between ethylene application and the onset of anthocyanin efflux (an indicator of increased membrane permeability). Simultaneous application of 0.1 millimolar cordycepin or cycloheximide with ethylene abolishes the response to ethylene. Analysis of phospholipid levels in these petals during senescence has shown that the increase in membrane permeability is accompanied by a massive loss of phospholipids. Factors which enhance or retard the rate of anthocyanin efflux exert a corresponding effect on the rate of phospholipid loss. The composition of the phospholipid fraction remains unchanged during senescence. The activity of phospholipase D declines during senescence whereas that of acyl hydrolase remains essentially constant.  相似文献   

2.
Role of ethylene in the senescence of isolated hibiscus petals   总被引:2,自引:1,他引:1       下载免费PDF全文
Senescence of petals isolated from flowers of Hibiscus rosa-sinensis L. (cv Pink Versicolor) was associated with increased ethylene production. Exposure to ethylene (10 microliters per liter) accelerated the onset of senescence, as indicated by petal in-rolling, and stimulated ethylene production. Senescence was also hastened by basal application of 1-aminocyclopropane-1-carboxylic acid (ACC). Aminooxyacetic acid, an inhibitor of ethylene biosynthesis, effectively inhibited ethylene production by petals and delayed petal in-rolling. In marked contrast to these results with mature petals, immature petals isolated from flowers the day before flower opening did not respond to ethylene in terms of an increase in ethylene production or petal in-rolling. Furthermore, treatment with silver thiosulfate the day before flower opening effectively prevented petal senescence, while silver thiosulfate treatment on the morning of flower opening was ineffective. Application of ACC to both immature and mature petals greatly stimulated ethylene production indicating the presence of an active ethylene-forming enzyme in both tissues. Immature petals contained less free ACC than mature, presenescent petals and appeared to possess a more active system for converting ACC into its conjugated form. Thus, while the nature of the lack of responsiveness of immature petals to ethylene is unknown, ethylene production in hibiscus petals appears to be regulated by the control over ACC availability.  相似文献   

3.
The senescence of carnation (Dianthus caryophyllus L.) flower petals is associated with increased production of ethylene which plays an important role in regulating this developmental event. Three senescence-related cDNA clones were isolated from a cDNA library prepared from mRNA isolated from senescing petals. These cDNAs are representative of two classes of mRNAs which increase in abundance in senescing petal tissue. The mRNA for one class is present at low levels during the early stages of development and begins to accumulate in mature petals prior to the increase in ethylene production. The accumulation of this mRNA is reduced, but not eliminated, in petals treated with aminooxyacetic acid, an inhibitor of ethylene biosynthesis, or silver thiosulfate, an ethylene action inhibitor. In contrast, expression of the second class of mRNAs appears to be highly regulated by ethylene. These mRNAs are not detectable prior to the rise in ethylene production and increase in abundance in parallel with the ethylene climacteric. Furthermore, expression of these mRNAs is significantly inhibited by both aminooxyacetic acid and silver thiosulfate. Expression of these mRNAs in vegetative and floral organs was limited to floral tissue, and predominantly to senescing petals.  相似文献   

4.
The lipid microviscosity of microsomal membranes from senescing cut carnation (Dianthus caryophyllus L. cv. White Sim) flowers rises with advancing senescence. The increase in membrane microviscosity is initiated within 3 to 4 days of cutting the flowers and coincides temporally with petal-inrolling denoting the climacteric-like rise in ethylene production. Treatment of young cut flowers with aminoethoxyvinylglycine prevented the appearance of petal-inrolling and delayed the rise in membrane microviscosity until day 9 after cutting. When freshly cut flowers or aminoethoxyvinylglycine-treated flowers were exposed to exogenous ethylene (1 microliter per liter), the microviscosity of microsomal membranes rose sharply within 24 hours, and inrolling of petals was clearly evident. Thus, treatment with ethylene accelerates membrane rigidification. Silver thiosulphate, a potent anti-ethylene agent, delayed the rise in microsomal membrane microviscosity even when the flowers were exposed to exogenous ethylene. Membrane rigidification in both naturally senescing and ethylene-treated flowers was accompanied by an increased sterol:phospholipid ratio reflecting the selective loss of membrane phospholipid that accompanies senescence. The results collectively indicate that the climacteric-like surge in ethylene production during senescence of carnation flowers facilitates physical changes in membrane lipids that presumably lead to loss of membrane function.  相似文献   

5.
The role of lipoxygenase (lox) in senescence of Alstroemeria peruviana flowers was investigated using a combination of in vitro assays and chemical profiling of the lipid oxidation products generated. Phospholipids and galactolipids were extensively degraded during senescence in both sepals and petals and the ratio of saturated/unsaturated fatty acids increased. Lox protein levels and enzymatic activity declined markedly after flower opening. Stereochemical analysis of lox products showed that 13-lox was the major activity present in both floral tissues and high levels of 13-keto fatty acids were also synthesized. Lipid hydroperoxides accumulated in sepals, but not in petals, and sepals also had a higher chlorophyll to carotenoid ratio that favors photooxidation of lipids. Loss of membrane semipermeability was coincident for both tissue types and was chronologically separated from lox activity that had declined by over 80% at the onset of electrolyte leakage. Thus, loss of membrane function was not related to lox activity or accumulation of lipid hydroperoxides per se and differs in these respects from other ethylene-insensitive floral tissues representing a novel pattern of flower senescence.  相似文献   

6.
The endogenous content of methionine in isolated petals of Tradescantia was found to increase during petal senescence while the levels of S-methylmethionine and protein were found to decline. The increase in free methionine was, at least in part, the result of protein degradation. Methionine and homocysteine were shown to be intermediates in ethylene biosynthesis while S-methylmethionine was not involved. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to all floral tissues resulted in large stimulations of ethylene production. ACC was shown to be an endogenous amino acid the internal levels of which correlated positively with the rate of ethylene production. Application of l-methionine-[U-14C] led to a rapid appearance of radioactivity in both ethylene and ACC. The specific radioactivity of C-2 and C-3 of ACC and that of ethylene were found to be nearly identical which indicated that ACC was the immediate precursor of ethylene in senescing petals of Tradescantia.  相似文献   

7.
A freeze-thaw cycle to −12°C induced several physical and compositional changes in the microsomal membranes isolated from crown tissue of winter wheat (Triticum aestivum L. cv Frederick). Exposing 7-day-old, nonacclimated seedlings to a single freeze-thaw cycle prevented regrowth of the crown and resulted in increased membrane semipermeability. The phospholipid and protein content of microsomal membranes isolated from the crowns decreased by 70 and 50%, respectively. Microsomal membranes isolated after the lethal freeze-thaw stress, and liposomes prepared from total membrane lipids, exhibited greater microviscosity, measured by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene. The number of free thiol groups per milligram membrane protein, measured using the specific fluorescent probe, N-dansylaziridine, decreased after freezing. In contrast, acclimated wheat seedlings which showed increased freezing tolerance, as indicated by survival and ion leakage, suffered almost no effects from the freeze thaw treatment as determined by measurements of membrane microviscosity, phospholipid content, protein content, or danzylaziridine fluorescence. An examination of membranes isolated from frozen tissue showed that most of the changes occurred during the freezing and not during the thawing phase.  相似文献   

8.
Cells rapidly frozen and thawed both in the presence and absence of extracellular cryoprotectants lose potassium in exchange for extracellular solute without hemolysis and with subsequent in vivo survival. There is some loss of 2,3-diphosphoglycerate from cells frozen with polyvinylpyrrolidine and hydroxyethyl starch as cryoprotectants. At least a portion of the cation exchange occurs following thawing, suggesting a transient loss of normal membrane semipermeability. The cryoprotectants reduce the freezing rate necessary for optimum recovery and may enhance the transient membrane permeability. They may also serve to stabilize membrane components against irreversible postthaw changes.  相似文献   

9.
Mayak  Shimon  Legge  Raymond L.  Thompson  John E. 《Planta》1981,153(1):49-55
Isolated membranes from the petals of senescing carnation flowers (Dianthus caryophyllus L. cv. White-Sim) catalyze the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene. A microsomal membrane fraction obtained by centrifugation at 131,000 g for 1 h proved to be more active than the membrane pellet isolated by centrifugation at 10,000 g for 20 min. The ethylene-producing activity of the microsomal membranes is oxygen-dependent, heat-denaturable, sensitive to n-propyl gallate, and saturable with ACC. Corresponding cytosol fractions from the petals are incapable of converting ACC to ethylene. Moreover, the addition of soluble fraction back to the membrane fraction strongly inhibits the ACC to ethylene conversion activity of the membranes. The efficiency with which isolated membranes convert ACC to ethylene is lower than that exhibited by intact flowers based on the relative yield of membranes per flower. This may be due to the presence of the endogenous soluble inhibitor of the reaction, for residual soluble fraction inevitably remains trapped in membrane vesicles isolated from a homogenate.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminoxyacetic acid - AVG aminoethoxyvinylglycine - EPPS N-2-hydroxyethylpiperazine propane sulfonic acid  相似文献   

10.
Possible involvement of abscisic acid in senescence of daylily petals   总被引:7,自引:2,他引:5  
Daylily flowers (Hemerocallis hybrid, cv. Stella d'Oro) senesce and die autonomously over a 24 h period after opening. Investigations were performed to determine some of the mechanisms that lead to death of the petals. The flowers are insensitive to ethylene, but exogenous ABA prematurely upregulates events that occur during natural senescence, such as loss or differential membrane permeability, increases in lipid peroxidation and the induction of proteinase and RNase activities. Furthermore, the same patterns of proteinase and RNase activities appearing on activity gels during natural senescence are induced prematurely by ABA. The mRNA profile from ABA-treated, prematurely senescing petals visualized by differential display shows a high degree of similarity to the mRNA profile of naturally senescing petals 18 h later. In addition, endogenous ABA increases before flower opening and continues to increase during petal senescence. An osmotic stress by sorbitol increases endogenous levels of ABA and upregulates the same parameters of senescence as those occurring during natural senescence and after application of ABA. The mRNA profile from sorbitol-treated, prematurely senescing petals, but somewhat less similarity to mRNA from ABA-treated petals. The possibility is discussed that ABA is a constituent of the signal transduction chain leading to programmed cell death of daylily petals.  相似文献   

11.
Indoleacetic acid induces senescence in isolated carnation (Dianthus caryophyllus, cv. White Sim) petals, increasing the duration and amount of ethylene production. This effect is inhibited by Actinomycin D, an inhibitor of RNA synthesis, and cycloheximide, a translational inhibitor of protein synthesis. The ability of petals to respond to indoleacetic acid appears to be a function of physiological age. Indoleacetic acid is capable of enhancing ethylene evolution and senescence only in specific portions of the petal.  相似文献   

12.
Desiccation tolerance of protoplasts isolated from germinating pea (Pisum sativum L. cv. 'Alaska') embryonic axes depends, in part, on the osmotic strength and composition of the suspending medium. To determine the reason for this dependence and whether treatment with different solutions results in different types of damage, protoplast recovery and survival were assessed after dehydration to a range of water contents. Protoplasts were derived from germinating axes that had intermediate desiccation tolerance. Protoplasts were isolated and resuspended in buffers containing sucrose/raffinose (85:15, w/w) or sorbitol, which were isotonic or hypertonic to the cells of the embryonic axis, then were flash-dried to a range of water contents. Protoplasts were rehydrated and stained with fluorescein diacetate (FDA) to assess survival and to estimate two types of membrane injury: lysis and the loss of semipermeability. In all treatments, protoplast survival dropped sharply during the initial phase of dehydration due to lysis. Protoplast survival was greater in hypertonic sucrose/raffinose buffer than in isotonic sucrose/raffinose buffer, or in the latter made hypertonic by the addition of sorbitol. When sorbitol was substituted for sucrose/raffinose in either the isolation or desiccation buffer, or both, protoplast survival at intermediate and low hydrations decreased due to a loss of membrane semipermeability. The results indicate that additional sucrose/raffinose is beneficial for the desiccation tolerance of protoplasts, the benefit is not due to a simple osmotic effect, and the benefit is greatest at water contents less than 0.5 g g(-1) DW, where the presence of the sugars appears to protect membrane semipermeability.  相似文献   

13.
The major components of the scent of cut sweet pea flowers ( Lathyrus odoratus L. cv Royal Wedding) are (E) and (Z)-ocimene, linalool, nerol, geraniol and phenylacetaldehyde. The aroma is almost exclusively produced by the standard and wing petals, with very little emanating from the keel petals and other floral structures. Only traces of these volatiles were detected in the liquid excreted by glandular trichomes on the surface of the scented petals. Once flowers are cut for display they produce increasing amounts of ethylene which induces wilting after 48 h and petal abscission 24 h later. The rate of linalool and ocimene emission declines over the first 48 h to approximately 10% of that directly after harvest. Ethylene production is not saturating during the first 24 h of vase life and exogenous ethylene further accelerates the senescence processes and loss of fragrance. Addition of the ethylene antagonists 1-methylcyclopropene (1-MCP) and silver thiosulphate (STS) delayed wilting and abscission for several days and similarly inhibits the decline in terpenoid emission.  相似文献   

14.
Gladiolus flowers are ethylene insensitive and the signals that start catabolic changes during senescence of gladiolus flower are largely not known. Therefore, experiments were performed to understand the role of abscisic acid (ABA) in ethylene insensitive floral senescence in gladiolus (Gladiolus grandiflora Hort.). It was observed that ABA accumulation increased in attached petals of gladiolus flowers as they senesced. Exogenous application of ABA in vase solution accelerated senescence process in the flowers due to change in various senescence indicators such as enhanced membrane leakage, reduced water uptake, reduced fresh weight and ultimately vase life. Enhancement of in vivo ABA level in petals by creating osmotic stress also upregulates the same parameters of flower senescence as those occurring during natural senescence and also akin to exogenous application of ABA. Attempts to increase vase life of flowers by application of putative ABA biosynthesis inhibitor fluridone in vase solution to counteract ABA effect were unsuccessful. In contrast, ABA action was mitigated by application of GA3 in holding solution along with ABA which is basically an antagonist of ABA action. The present study provides valuable insights into the role of ABA as a hormonal trigger in ethylene insensitive senescence process and therefore would be helpful for dissecting the complex mechanism underlying ABA-regulated senescence process in gladiolus.  相似文献   

15.
Changes in the physical state of microsomal membrane lipids during senescence of rose flower petals (Rosa hyb. L. cv Mercedes) were measured by x-ray diffraction analysis. During senescence of cut flowers held at 22°C, lipid in the ordered, gel phase appeared in the otherwise disordered, liquid-crystalline phase lipids of the membranes. This was due to an increase in the phase transition temperature of the lipids. The proportion of gel phase in the membrane lipids of 2-day-old flowers was estimated as about 20% at 22°C. Ethylene may be responsible, at least in part, for the increase in lipid transition temperature during senescence since aminooxyacetic acid and silver thiosulfate inhibited the rise in transition temperature. When flowers were stored at 3°C for 10 to 17 days and then transferrd to 22°C, gel phase lipid appeared in membranes earlier than in freshly cut flowers. This advanced senescence was the result of aging at 3°C, indicated by increases in membrane lipid transition temperature and ethylene production rate during the time at 3°C. It is concluded that changes in the physical state of membrane lipids are an integral part of senescence of rose petals, that they are caused, at least in part, by ethylene action and that they are responsible, at least in part, for the increase in membrane permeability which precedes flower death.  相似文献   

16.
Adam Z  Mayak S 《Plant physiology》1986,80(4):1045-1047
The ability of carnation petals (Dianthus caryophyllus L. cv White Sim) of different ages to convert the cis and trans isomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC) to 1-butene was studied. Young petals, which produce ethylene at a low rate, convert both cis- and trans-AEC to 1-butene with low efficiency and at equal rates. In senescing petals, the rate of conversion of cis-AEC remains low, but there is a marked increase in the rate of trans-AEC conversion. Thus there is a clear evidence of stereodiscrimination between the isomers. Stimulating the rate of senescence by treatment with either 1-aminocyclopropane-1-carboxylic acid or ethylene further increases the rate of trans-AEC conversion. Delaying of petal senescence by silver thiosulphate or aminooxyacetic acid inhibits the rise in trans-AEC conversion.  相似文献   

17.
18.
The effects of ethylene and ultraviolet (UV) irradiation on parameters of senescence in carnation (Dianthus caryophyllus L. cv White Sim) flowers were characterized and compared.

UV irradiation (λmax = 254 nanometers), at fluences above 18 kilojoules per square meter, induced petal in-rolling, similar to that which occurred during natural senescence or after ethylene treatment. Increase in the UV dose from 36 to 54 kilojoules per square meter increased the rate of in-rolling to a maximum. Petal in-rolling was accompanied by increased electrolyte leakage, whether it occurred during natural senescence or was induced by UV irradiation or ethylene.

Sucrose uptake by cells, membrane ATPase activity, and membrane lipid fluidity all decreased after UV treatment. These parameters were shown earlier to decline during natural or ethylene-induced senescence.

UV irradiation induced ethylene production by the petals only during the period of irradiation. However, silver thiosulfate treatment, which blocks ethylene action, showed that the irradiation effects were not due to the ethylene evolved.

On the basis of the above results, we concluded that both ethylene and UV irradiation promote a sequence of reactions in the tissue similar to those of natural senescence. However, UV irradiation initiates a reaction which is independent of that which ethylene initiates.

  相似文献   

19.
A gene encoding an ethylene receptor protein was isolated from pear (Pyrus pyrifolia). This gene, designated PpERS (GenBank accession No. KC517482), was 1,918 bp in length with an open reading frame encoding a protein of 638 amino acids that shared high similarity with another pear ethylene receptor protein PpERS1, and two apple ethylene receptor proteins MdERS and MdERS1. The PpERS was grouped into the ETR1 subfamily of ethylene receptor based on its conserved domain and phylogenetic status. The PpERS gene contained five exons interrupted by four introns. Quantitative RT-PCR indicated that PpERS was differentially expressed in pear tissues and predominantly expressed in petals, shoots, anthers, and 160 days after full bloom fruit. The PpERS expression was regulated during fruit development. In addition, the PpERS gene expression was regulated by salicylic acid (SA) and ethylene in fruit. The results indicated that PpERS might participate in ethylene and SA signaling transduction during pear fruit development.  相似文献   

20.
Phalaenopsis frequently exhibits bud drop during production and in response to adverse postharvest conditions. The effect of exogenous ethylene on bud drop of mini Phalaenopsis was studied and ethylene sensitivity of four cultivars was compared. Water content, membrane permeability and ABA (abscisic acid) content in floral buds and flowers were determined after ethylene treatment. Exogenous ethylene induced flower bud drop in all tested Phalaenopsis cultivars and the different cultivars showed distinct differences in ethylene sensitivity. The cultivar Sogo ‘Vivien’ exhibited the highest bud drop, water loss and change in membrane permeability in floral petals, while Sogo ‘Berry’ showed the lowest sensitivity. The ethylene inhibitor 1-MCP (1-methylcyclopropene) reduced ethylene-induced floral bud drop in the cultivar Sogo ‘Yenlin’. ABA content in floral buds was increased in response to ethylene and 1-MCP pretreatment inhibited the ethylene-induced increase in ABA levels efficiently. This finding suggests that the observed increase in ABA content during bud drop was mediated by ethylene. The interaction between ABA and ethylene is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号