首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, responses of rat Purkinje cells to intraperitoneal administration of the hallucinogenic alkaloid harmaline (0.15 mg/kg) were studied in the course of ontogenesis. The experiments were carried out on Wistar rats of three age groups: rat pups (13-18 days), adult animals (2-7 months), and aged rats (25-36 months). In Purkinje cell firings, two types of electric reactions were revealed; they were similar in all age group of the animals. In cells with the 1st type of reactions, in response to the harmaline administration there was recorded a significant increase of frequency of complex spikes, accompanied by disappearance of simple spikes. In the activity of Purkinje cells of the 2nd type, the complex spike frequency also increased; however, the firing simple spikes were preserved, although with a decrease of their frequency as compared with norm. Essential changes of activity of the cerebellar Purkinje cells were found in the rat pups and aged animals in comparison with adult rats, which agrees well with immaturity of various cerebellar structures in the first case and with involutionary changes in the second case.  相似文献   

2.
In the guinea pig cerebellar cortex, three types of Purkinje cells were identified according to the properties of complex spikes: fast, intermediate, and slow cells. Fast Purkinje cells have following properties as compared with slow Purkinje cells: (i) salient components with short intervals in complex impulses (on the average, five components with a period of about 2 ms versus two components with a period of about 4 ms); (ii) a short duration of simple spikes (in the average, 2.13 +/- 0.53 ms versus 3.9 +/- 0.65 ms) and a quick restoration of their amplitude after preceding simple spikes (in the mean, 2.83 +/- 0.75 ms versus 11.0 +/- 2.82 ms); and (iii) a more pronounced rebound in the auto-correlation histogram of simple spikes (3.09 +/- 2.12 versus 1.45 +/- 0.36) and a short-latency excitation of simple spikes after complex spikes (2.81 +/- 1.64 versus 1.26 +/- 0.52). A decrease of interspike intervals in simple spike activity of all Purkinje cells was revealed (5.25 +/- 2.71 ms versus 9.71 +/- 3.48 ms in activity fragments without complex spikes). It is supposed that the properties of complex spikes depend on the type of Purkinje cells and may be one of the basic factors determining the interactions between the inputs of climbing and parallel fibers in Purkinje cells.  相似文献   

3.
In this work, responses of rat Purkinje cells to intraperitoneal administration of the hallucinogenic alkaloid harmaline (0.15 mg/kg) were studied in the course of ontogenesis. The experiments were carried out on Wistar rats of three age groups: rat pups (13–18 days), adult animals (2–7 months), and aged rats (25–36 months). In Purkinje cell firings, two types of electric reactions were revealed; they were similar in all age group of the animals. In cells with the 1st type of reactions, in response to the harmaline administration there was recorded a significant increase of frequency of complex spikes, accompanied by disappearance of simple spikes. In the activity of Purkinje cells of the 2nd type, the complex spike frequency also increased; however, the firing simple spikes were preserved, although with a decrease of their frequency as compared with norm. Essential changes of activity of the cerebellar Purkinje cells were found in the rat pups and aged animals in comparison with adult rats, which agrees well with immaturity of various cerebellar structures in the first case and with involutionary changes in the second case.  相似文献   

4.
The relationship between complex and simple spikes of Purkinje cells from vermis cerebelli of guinea pigs has been investigated. The ratio of complex spikes innervated by the processes of one and the same liana-like fiber ("twins cells") has also been studied. Three types of complex spikes in each Purkinje cell from vermis cerebelli of guinea pigs (n = 44) have been differentiated, which differ in duration. It was found that long (10.28 +/- 0.27 ms) complex spikes in all cells lead to a more pronounced inhibition of simple spikes than complex spikes of short duration (6.08 +/- 0.25 ms). It was shown that the dynamics of duration of complex spikes coordinates with changes in the activity of some Purkinje cells and their local groups: (a) complex spikes generated before the onset of pauses of simple spikes are longer than complex spikes generated before the termination of pauses; (b) in "twins cells" innervated by one liana-like fiber, the properties of complex spikes change simultaneously; (c) The degree of synchronism of complex spikes in closely-spaced (to 150 microm) Purkinje cells receiving the inputs from different liana-like fibers increases with their duration. A possible functional role and the mechanisms of generation of complex spikes are discussed.  相似文献   

5.
The spontaneous discharge frequency of the fastigial and interpositus nuclei was evaluated in three experimental conditions in Rat: (a) in the "intact" animal; (b) in animals with total and selective destruction of the inferior olive, depriving the Purkinje cells of their afferent climbing fiber; (c) in animals having inferior olive destruction and cryocoagulation of the cerebellar cortex, destroying Purkinje cells innervating the neurones of the fastigial and interpositus nuclei. Unit activity was high in group (a) (32.9 +/- 22.9/s); it was markedly reduced in group (b) (1.1 +/- 1.3/s); it was higher in group (c) than in group (a) (43.7 +/- 25.5/s). Suppression of the inferior olive thus increases the Purkinje cell inhibitory action upon neurones of the cerebellar nuclei.  相似文献   

6.
Accepting, rejecting or modifying the many different theories of the cerebellum's role in the control of movement requires an understanding of the signals encoded in the discharge of cerebellar neurons and how those signals are transformed by the cerebellar circuitry. Particularly challenging is understanding the sensory and motor signals carried by the two types of action potentials generated by cerebellar Purkinje cells, the simple spikes and complex spikes. Advances have been made in understanding this signal processing in the context of voluntary arm movements. Recent evidence suggests that mossy fiber afferents to the cerebellar cortex are a source of kinematic signals, providing information about movement direction and speed. In turn, the simple spike discharge of Purkinje cells integrates this mossy fiber information to generate a movement velocity signal. Complex spikes may signal errors in movement velocity. It is proposed that the cerebellum uses the signals carried by the simple and complex spike discharges to control movement velocity for both step and tracking arm movements.  相似文献   

7.
Low-amplitude potentials (10-130 microV) related to the action of a distant branch of the climbing fiber, which elicits complex spikes of the reference Purkinje cell were revealed by means of potential averaging synchronously with complex spikes of Purkinje cells in 10 out of 255 paired records of cerebellar Purkinje cells activity and extracellular field potentials at interelectrode distances of 200-1500 microns. These potential waves had a stable form in independent sets of data. In 3 out of 10 cases, the low-amplitude potentials included a slow (about 100 ms in duration) component. In one case, both test and reference electrodes recorded both simple and complex spikes of different Purkinje cells so that complex spikes of both cells were practically synchronous (conditional probability of complex spikes p = 0.97, onset time difference 0.54 ms). Thus for the first time in cerebellar physiology both simple and complex spikes activity of two Purkinje cells controlled by the same climbing fiber was recorded.  相似文献   

8.
腺苷对家兔颈动脉化学感受器活动的影响   总被引:1,自引:0,他引:1  
苏欣  张万育 《生理学报》1991,43(3):291-295
The response of single carotid chemoreceptor afferent fibers upon adenosine acting on the carotid body (CB) was examined in 39 urethan-anesthetized rabbits. Totally 73 units with spontaneous discharge were recorded in our experiment. The results were as follows: (1) Of 55 units, 51 showed an increase in discharge frequency from 0.76 +/- 0.10 to 1.53 +/- 0.23 imp/s. A few new units were recruited concomitantly in response to intracarotid injection of adenosine (10 micrograms/kg). (2) Adding adenosine in the doses of 0.5, 1.5, 10, 50 and 100 micrograms/kg to the perfusate passing through the isolated carotid sinus led to dose-dependent increase in the discharge from 0.51 +/- 0.06 to 0.58 +/- 0.07, 0.78 +/- 0.13, 0.96 +/- 0.15, 1.11 +/- 0.17, 1.34 +/- 0.21 and 1.38 +/- 0.18 imp/s, respectively (P less than 0.001, n = 9 units). (3) In other 9 units with spontaneous discharge rate of 1.30 +/- 0.40 imp/s, the activity was decreased to 0.56 +/- 0.19 imp/s (P less than 0.01) by intracarotid injection of dopamine (50 micrograms/kg). Intracarotid injection of adenosine to the CB pretreated with dopamine still activated the units with an increase in firing rate to 1.07 +/- 0.28 imp/s (P less than 0.01). However, the increment was less prominent as compared with that of adenosine administration before dopamine injection (P less than 0.001). From the results obtained, it is hypothesized that the exciting effect of adenosine on the CB chemoreceptor may be attributed to its action on the presynaptic component of the chemoreceptor complex in attenuating the release of inhibitory transmitter dopamine, and its direct stimulating action on the chemosensory nerve endings.  相似文献   

9.
The mean membrane potential (MP) of old rats did not differ significantly from that in young mature rats ((58.4 +/- +/-1,4 mV and 56.6 +/- 1.26 mV, respectively). At the same time the frequency of detection of motor neurons with the MP OF 70 mV and more fell by 18.6%, and with the MP of 50-59 mV -increased by 14.2% in the old, in comparison with the young animals. The direct excitability threshold in old rats decreased (3.0 +/- 3-10(-9) in young mature and 2.0 +/- 0.2-10(-9) a in old rats; P less than 0.02). The number of discharges per 50 msec of the neuron poliarization reached 4-5, constituting 80-100 pulse/min. When determined by the first two intervals the action potential frequency reached 125 pulse/sec, and in the young mature rats--over 300 pulse/sec. The duration of antidromic spikes was increased (1.02 +/- 0.09 msec in young mature animals and 1.65 +/- 0.14 msec in the old animals; P less than 0.001). The antidromic spikes of the neurons in old mature rats, as a rule, had no delayed depolarization.  相似文献   

10.
In experiments on guinea pigs, cats, and rats of different ages, from newborns to adults, the postural and stato-kinetic reflexes were studied with subsequent recording of electrical activity of identified cerebellar Purkinje cells (PC) in the same animals. Simultaneously in same age group of the animals, a morphometrical study of the shape and size of Purkinje cells and their nuclei was carried out. The first signs of manifestation of reflexes of standing and of the support reaction were observed in mature-born guinea pigs as early as at the first day after birth. At this time the PC fire has an irregular and low-frequency character with long inhibitory pauses and a great dispersion of the frequency-time characteristics. In the course of postnatal ontogenesis the parameter of the ratio of frequencies of simple and complex spikes increased in all the studied animals, guinea pigs, rat puppies, and kittens, but to different degrees. The complete maturation of the PC activity in the mature-born guinea pigs took 3–4 weeks after birth, whereas in the immature-born rat puppies and kittens this process took, on average, 5–6 and 8–9 weeks, respectively. By this time, all the studied postural-motor reactions were formed. The comparison of the course of formation of the frequency-time characteristics of the Purkinje cell activity in mature- (guinea pigs) and immature-born (rats and cats) animals allowed establishing that the highest rate of maturation of the Purkinje cell activity in the mature-born animals is observed during the first half, whereas in immature-born animals, during the second half of postnatal ontogenesis. A similar rate of changes also took place at maturation of postural-motor reflexes. The complete functional maturity of the Purkinje cell occurred, as a rule, at the time period when the shape and size of the Purkinje cell body became close to the definitive ones, and their vertical and horizontal diameters reached the values characteristic of adult animals.  相似文献   

11.
The temporal changes of compression stimuli exerted by baby on the areola-nipple complex during the entire suckling period were investigated in 6 mother-baby pairs of the 4-6-day lactation. It was found that compression stimuli had a triangle form. The duration of the stimuli and inter-stimuli interval varied from 0.3 s to 0.8 s and from 0.1 s to 0.25 s, respectively. The compression stimuli were organized in bursts and a pause of variable duration between the bursts. The mean frequency of the compression stimuli in the bursts was within the range 0.9 imp/s-1.7 imp/s. The average frequency of the entire suckling period in babies was within the range 0.9 +/- 0.3 imp/s-1.1 +/- 0.1 imp/s. Implications of these findings in the suckling neonates are discussed.  相似文献   

12.
Patterns in the discharge of simple and complex visual cortical cells   总被引:1,自引:0,他引:1  
The activity of visual cortical neurons (area 17) was recorded in anaesthetized cats in response to sinusoidal drifting gratings. The statistical structure of the discharge of simple and complex cells has been studied as a function of the various parameters of a drifting grating: spatial frequency, orientation, drifting velocity and contrast. For simple cells it has been found that the interspike interval distributions in response to drifting gratings of various spatial frequencies differ only by a time scale factor. They can be reduced to a unique distribution by a linear time transformation. Variations in the spatial frequency of the grating induce variations in the mean firing rate of the cell but leave unchanged the statistical structure of the discharge. On the contrary, the statistical structure of the simple cell activity changes when the contrast or the velocity of the stimulus is varied. For complex cells it has been found that the invariance property described above for simple cells is not valid. Complex cells present in their activity in response to visual stimuli two different firing patterns: spikes organized in clusters and spikes that do not show this organization ('isolated spikes'). The clustered component is the only component of the complex cell discharge that is tuned for spatial frequency and orientation, while the isolated spike component is correlated with the contrast of the stimulus.  相似文献   

13.
Adrenal and nonadrenal sympathetic preganglionic neurones (SPNs) in the intermediolateral nucleus of spinal segments T8-T10 in the cat were compared according to a number of physiological properties. An SPN was classified as "adrenal" (n = 37) if it could be antidromically activated by electrical stimulation of the adrenal medulla. An SPN that could not be activated from the adrenal medulla yet could be antidromically activated by electrical stimulation of the greater splanchnic nerve was classified as "nonadrenal" (n = 123). Approximately 50% of adrenal SPNs (17 out of 37) were activated antidromically by stimulation of both the greater splanchnic nerve and adrenal medulla, suggesting that these neurones projected to the adrenal medulla via the greater splanchnic nerve, with the other adrenal SPNs taking a different route. The mean conduction velocities of adrenal (6.7 +/- 1.8 (SD) m/s) and nonadrenal (6.7 +/- 1.5 m/s) sympathetic preganglionic axons were similar. Over 80% of adrenal (31 out of 37) and nonadrenal (104 out of 116) SPNs were spontaneously active. The two types of neurone were indistinguishable in terms of the rates and patterns of discharge. Adrenal SPNs discharged with a mean rate of 1.4 +/- 1.1 spikes/s, and nonadrenal SPNs discharged with a mean rate of 1.8 +/- 1.4 spikes/s. With both types of SPN, the pattern of spontaneous activity was either irregular or phasic. With the latter pattern, periodic bursts of discharge were at the same frequency as oscillations in arterial pressure, frequency of ventilation, or phrenic nerve discharge. These data suggest that adrenal and nonadrenal sympathetic preganglionic neurones in the intermediolateral nucleus in caudal thoracic segments share a number of common physiological properties.  相似文献   

14.
The work deals with study of peculiarities of effect of ethanol upon the Purkinje cell activity, shape of the complex spike, and locomotion of rats at different stages of ontogenesis, such as the stage of the morphofunctional maturation of the cerebellar cortex, the mature stage, and in the process of aging. The experiments were carried out on three age groups of Wistar rats: rat pups (2 weeks), adult rats (3–6 months), and senile animals (22–26 months). The administration of ethanol has been established to produce an increase in frequency of simple spikes, a decrease in frequency of complex spikes, a shortening of duration of depression of simple spikes, a decrease in the total duration of the complex spike, the number and frequency of its impulses as well as reduction of the motor activity of animals of all age groups. The change of the majority of the studied parameters occurred by the common temporal scheme. The earliest responding were the rat pups, later-the adult rats, and the last-the animals of the senior group. The stronger effect of ethanol was observed in adult rats. Their differences of all studied parameters, as compared with rat pups and senile animals, were characterized on the whole by the longer period of time and by the higher percent of changes relative to the initial values. Analysis of the obtained results has shown that the most pronounced changes in parameters of the cerebellum Purkinje cell activity and of the complex spike shape corresponded to the more significant decrease in the locomotion level, i.e., were recorded in adult rats. Thus, the work has demonstrated different sensitivity to administration of ethanol in the Wistar rats at different stages of ontogenetic development.  相似文献   

15.
Functional relationship between wave form of complex spike (CS) and depression time of simple spike (SS) in discharge of cerebellar Purkinje cells was studied after their activation with afferent climbing fiber at different terms of postnatal ontogenesis in norm and after treatment with harmaline. The experiments were carried out on three age groups of Wistar rats: rat pups (2 weeks), the adult (4–6 months), and the old animals (22–26 months). It was established that the SS duration in norm was approximately equal in rat pups, adult, and old animals, whereas it markedly decreased form the young to the old animals during the SS depression in the Purkinje cell discharge. Frequency of small action potential (lAP) and their number in the Purkinje cell discharge were approximately equal in young rat pups and adult animals, while in old animals these parameters were higher, on average, by 30%. After administration of harmaline, all CS parameters in rat pups and old animals increased in parallel with the depression time elongation. In adult rats, harmaline did not produce statistically significant changes of the mean values of CS parameters, but an increase of the simple spike depression time was observed. The obtained results allow concluding that the SS wave form and the simple spike depression time in norm are functionally coupled and change with age. The effect of harmaline on the CS wave forms as well as on interrelation of the CS duration and the CS depression time in the Purkinje cell discharge was more pronounced at the early and the late stages of Wistar rat postnatal ontogenesis.  相似文献   

16.
Single unit activity was recorded from the anterior lobe of the cerebellum during ramp and hold stretches of limb muscles in chloralose anesthetized cats. The activity of 95 "phasic" units showed a transient response during dynamic stretch of at least one muscle usually lasting for less than 350 ms following the stimulus onset. The activity of 59 phasic-tonic units was modified not only during dynamic stretch but also during the 1 s of maintained muscle length. All Purkinje cells, identified by their complex spikes, that responded to muscle stretch demonstrated exclusively phasic changes in discharge. Fourteen of 25 Purkinje cells (56%) responded to stretch of both antagonist muscles and these responses were always similar rather than reciprocal. From the 129 units without complex spikes, 70 demonstrated phasic discharge patterns whereas 59 had tonic responses. Seventy-five (59%) of these unidentified units revealed convergent responses to stretch of both antagonists, compared with 54 which responded to stretch of one muscle only. Of the unidentified units receiving convergent afferents from antagonist muscles, 62 (83%) had similar responses and only 13 (17%) had reciprocal reactions. There appeared to be no evidence that muscle afferents alone can induce reciprocal discharge patterns in Purkinje neurons of the cerebellar cortex. The firing frequency of some phasic-tonic units was correlated with both the velocity and amplitude of muscle stretch. No Purkinje cells were found with activity related to either velocity or amplitude of muscle stretch. One phasic and seven phasic-tonic unidentified units were activated at fixed latencies following trains of electrical stimulation applied to the thoracic spinal cord at frequencies exceeding 200 Hz, implying they were terminal portions of mossy fibers originating from direct spinocerebellar tracts. A few recordings of compound potentials were presumed to arise from the cerebellar glomeruli. The changing form of one of these potentials suggested that the glomerulus might be a site at which somatosensory peripheral information is modified by the cerebellar cortex.  相似文献   

17.
Ćulić  M.  Šaponjić  J.  Janković  B.  Kalauzi  A.  Jovanović  A. 《Neurophysiology》2001,33(1):48-52
In anesthetized Wistar rats, we studied the effect of electrical stimulation of the locus coeruleus (LC) on the firing rates of Purkinje cells using spectral analysis. The frequency of extracellularly recorded activity of Purkinje cells was measured before and during the 1st, 5th, 6th, and 11th min after cessation of 10-sec-long LC stimulations. Spectral analysis of the Purkinje cell firing rates (imp./bin, the bin duration was 2-8 sec) for 60- to 120-sec-long intervals was performed using fast Fourier transformation after digital conversion of unitary spikes. Mean power spectra of the Purkinje cell firing rates (derived from 8-sec-long consecutive epochs at a sampling rate of 256 sec-1) showed an increase in the slow frequency range (0.1-1.0 Hz) after LC stimulation, particularly due to the slowest components (below 0.5 Hz). This effect lasted more than 1 min and usually less than 6 min after cessation of LC stimulation and could be interpreted as the development of slow oscillations in the Purkinje cell firing. Our results suggest that slow oscillations of the firing rate of cerebellar output neurons, induced by LC stimulation, reflect a specific coordination of the cerebellar neuronal activities (important for a central norepinephrine influence) in regulation of different pathological states.  相似文献   

18.
1. Activity of Renshaw cells monosynaptically excited by ventral root stimulation and disynaptically excited by electric stimulation of the group Ia afferents in the gastrocnemius-soleus (GS) nerve, was recorded in precollicular decerebrate cats. The response of these units to prolonged vibration applied longitudinally to the deefferented GS muscle was then compared with that elicited by static stretch of the homonymous muscle, for comparable frequencies of discharge of the group Ia afferents. 2. Small-amplitude vibration of the GS muscle at 200/sec for one second produced a sudden increase in the discharge rate of Renshaw cells, which gradually decreased within the first 100 msec of vibration to reach steady albeit lower level than that obtained during the first part of vibration. The response of the Renshaw cells during the first 100 msec of vibration (phasic response) and that elicited during the last 500 msec of vibration (tonic response) were evaluated for different frequencies of sinusoidal stretch. The mean increase in the firing frequency per imp./sec in the Ia afferents was also calculated using the total one-second period. 3. The response of Renshaw cells to muscle vibration increased with the frequency of vibration and, over the value of 10/sec, appeared to be linearly related to the frequency of the input, at least up to the frequency of 150/sec. Since vibration was of sufficient amplitude to produce driving of all the primary endings of muscle spindles, the responses were expressed as mean increases in the discharge rate of Renshaw cells per average impulse/sec in the Ia afferents. The discharge of the Renshaw cell increased on the average by 2.90 and 1.08 imp./sec per each imp./sec in the Ia afferents during the phasic and the tonic component of the response respectively, while the response calculated during the whole period of vibration corresponded on the average to 1.45 imp./sec per each imp./sec in the Ia afferents. 4. The Renshaw cells tested above responded also with increasing frequencies of discharge to increasing levels of static extension of the GS muscle. In particular the discharge frequency of Renshaw cells was on the average linearly related to muscle extension, at least for values ranging from 0 to 8 mm. The mean increase in discharge rate as a function of the static extension corresponded on the average to 0.89 imp./sec/mm. Since the discharge rate of the primary endings of muscle spindles recorded from the deefferented GS muscle increased by 2.62 imp./sec/mm, it appears that the mean increase in the discharge rate of Renshaw cells as a function of static extension corresponded to 0.34 imp./sec per each imp./sec in the Ia afferents.  相似文献   

19.
In experiments on 5 age groups of anesthetized guinea pigs (from newborns to 4 weeks of postnatal ontogenesis), activity of cerebellum Purkinje cells (PC) (IV-VII lobules of cerebellar vermis) was studied in the single track of microelectrode passing through cell layers. It has been shown that as early as several hours after birth, in the superficial layer of cerebellar cortex, there are recorded occasional background-active, but functionally mature PC represented by simple and complex spikes and accordingly reflecting synaptic PC activation by afferent inputs of mossy and climbing fibers. The functional manifestation of the guinea pig motor behavior at this period of ontogenesis is act of their standing. At this period of ontogenesis, in the newborn and one-day old guinea pigs, from 1 to rarely 11 active PC are recorded, on average, in the single microelectrode track. At the one-week age, the highest number active PC in the track somewhat increases, predominantly at the expense of the mean from the total number of the cells in the track. In the 2-week old guinea pigs the mean number of active PC in the track somewhat falls, while in the 4-week old and adult animals exceeds again, although slightly of the maximal number of PC in the track of newborn animals. The relatively high number of active PC at the very initial period of postnatal ontogenesis can indicate importance of motor function in the congenital food-procuring reflex.  相似文献   

20.
The activity of cerebellar Purkinje cells is studied as affected by CyPPA, a positive modulator of small-conductance calcium-activated potassium channels type 3 and 2 (SK3/SK2), and NS309, an activator of small- and intermediate-conductance calcium-activated potassium channels (IK/SK), in male two-month-old laboratory mice. CyPPA decreases the simple spike firing frequency in the discharge of Purkinje cells by an average of 25% 1 hour after application of 1mM of the compound. An application of 100 μM of NS309 reduces the simple spike firing frequency by an average of 47% during the same period. These results confirm the hypothesis that SK channels may be involved in the downregulation of simple spike firing frequency in Purkinje cells. The frequency-regulating effect of NS309 is stronger, suggesting that IK/SK channels play a decisive role in the regulation of Purkinje cell spiking activity. Since an increase of simple spike firing frequency in these cells is symptomatic of many locomotor activity disorders, e.g., spinocerebellar ataxia, the substances studied or their functional analogues might be of medicinal interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号