首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compatibility of osmotica in cyanobacteria   总被引:3,自引:1,他引:2  
Abstract. The solutes accumulated by cyanobacteria in response to hyper-osmotic stress include Na+, K+, sucrose, trehalose, glucosyl-glycerol, glyeine betaine and glutamate betaine. The compatibility of several of these solutes with glutamine synthetase activity has been examined using cell-free extracts from a range of freshwater, marine and halotolerant cyanobacteria. All of the solutes tested were compatible with (i.e. non-inhibitory to) enzymic activity at physiological concentrations and the results demonstrate a rank order of compatibility which correlates with the concentrations at which the organic solutes occur in cyanobacteria, i.e. glycine betaine > polyol-derivatives > disaccharides and with the upper salinity limit for growth. The protection against inhibition by NaCl (halo-protection) afforded by these solutes to enzymic activity was also examined. Only glycine betaine was found to exert a significant halo-protective effect and this may be explained by differences in the mechanism of compatible solute function between small charged molecules and sugars/polyols.  相似文献   

2.
Compatible solutes such as glycine betaine and proline betaine are accumulated to exceedingly high intracellular levels by many organisms in response to high osmolarity to offset the loss of cell water. They are excluded from the immediate hydration shell of proteins and thereby stabilize their native structure. Despite their exclusion from protein surfaces, the periplasmic ligand-binding protein ProX from the Escherichia coli ATP-binding cassette transport system ProU binds the compatible solutes glycine betaine and proline betaine with high affinity and specificity. To understand the mechanism of compatible solute binding, we determined the high resolution structure of ProX in complex with its ligands glycine betaine and proline betaine. This crystallographic study revealed that cation-pi interactions between the positive charge of the quaternary amine of the ligands and three tryptophan residues forming a rectangular aromatic box are the key determinants of the high affinity binding of compatible solutes by ProX. The structural analysis was combined with site-directed mutagenesis of the ligand binding pocket to estimate the contributions of the tryptophan residues involved in binding.  相似文献   

3.
A convenient procedure for determination of seven betaine analogs and dimethylsulfoniopropionate (DMSP) in extracts of coral tissues using LC–MS stable isotope dilution is described. Extraction procedures were optimized for selective extraction of polar metabolites from coral tissues. The LC–MS protocol employed a pentafluorophenylpropyl (PFPP) column for HPLC separation, with chromatographic resolution of isobaric and isomeric zwitterionic metabolites optimized by adjusting the acidity of the mobile phase. A ternary gradient was used to exploit the unusual retention characteristics of cationic metabolites on the PFPP column, with incorporation of ammonium acetate in a later gradient stage promoting elution of more hydrophobic betaines which are retained at high organic content in the absence of ammonium acetate. We demonstrate that the new LC–MS based method provides accurate measurements from nanomolar to high micromolar concentrations, and can be applied for profiling of betaine metabolites and DMSP in corals or other aquatic organisms.  相似文献   

4.
Accumulation of compatible solutes, by uptake or de novo synthesis, enables bacteria to reduce the difference between osmotic potentials of the cell cytoplasm and the extracellular environment. To examine this process in the halophilic and halotolerant methanogenic archaebacteria, 14 strains were tested for the accumulation of compatible solutes in response to growth in various extracellular concentrations of NaCl. In external NaCl concentrations of 0.7 to 3.4 M, the halophilic methanogens accumulated K+ ion and low-molecular-weight organic compounds. beta-Glutamate was detected in two halotolerant strains that grew below 1.5 M NaCl. Two unusual beta-amino acids, N epsilon-acetyl-beta-lysine and beta-glutamine (3-aminoglutaramic acid), as well as L-alpha-glutamate were compatible solutes among all of these strains. De novo synthesis of glycine betaine was also detected in several strains of moderately and extremely halophilic methanogens. The zwitterionic compounds (beta-glutamine, N epsilon-acetyl-beta-lysine, and glycine betaine) and potassium were the predominant compatible solutes among the moderately and extremely halophilic methanogens. This is the first report of beta-glutamine as a compatible solute and de novo biosynthesis of glycine betaine in the methanogenic archaebacteria.  相似文献   

5.
Methanohalophilus strain Z7302 was previously isolated from a hypersaline environment and grows over a range of NaCl concentrations from 1.7 to 4.4 M. We examined the relationships between cell growth rate, cell volume, and intracellular solute concentrations with increasing salinity. This extremely halophilic methanogen synthesized three zwitterionic compounds, beta-glutamine, N epsilon-acetyl-beta-lysine, and glycine betaine, and also accumulated potassium ion as compatible solutes to balance the external and internal osmotic pressures. Potassium and glycine betaine were the predominant compatible solutes when Methanohalophilus strain Z7302 was grown at high external NaCl concentrations and approached intracellular levels of 3 and 4 M, respectively.  相似文献   

6.
Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.  相似文献   

7.
Vibrio cholerae is a halophilic facultative human pathogen found in marine and estuarine environments. Accumulation of compatible solutes is important for growth of V. cholerae at NaCl concentrations greater than 250 mM. We have identified and characterized two compatible solute transporters, OpuD and PutP, that are involved in uptake of glycine betaine and proline by V. cholerae. V. cholerae does not, however, possess the bet genes, suggesting that it is unable to synthesize glycine betaine. In contrast, many Vibrio species are able to synthesize glycine betaine from choline. It has been shown that many bacteria not only synthesize but also secrete glycine betaine. We hypothesized that sharing of compatible solutes might be a mechanism for cooperativity in microbial communities. In fact, we have demonstrated that, in high-osmolarity medium, V. cholerae growth and biofilm development are enhanced by supplementation with either glycine betaine or spent media from other bacterial species. Thus, we propose that compatible solutes provided by other microorganisms may contribute to survival of V. cholerae in the marine environment through facilitation of osmoadaptation and biofilm development.  相似文献   

8.
Methanohalophilus strain FDF1, a member of the halophilic genus of methanogens, can grow over a range of external NaCl concentrations from 1.2 to 2.9 M and utilize methanol, trimethylamine, and dimethyl sulfide as substrates for methanogenesis. It produces the osmolytes glycine betaine, beta-glutamine, and N-acetyl-beta-lysine with increasing external NaCl, but the relative ratio of these zwitterions depends primarily on the methanogenic substrate and less on the external osmolarity. When the cells are grown on methanol in defined medium, accumulation of glycine betaine predominates over the other zwitterionic solutes. The cells also synthesized a carbohydrate which was not detected in cells grown on trimethylamine. This negatively charged compound, identified as alpha-glucosylglycerate from the C and H chemical shifts, does not act as an osmoregulatory solute in the salt range 1.4 to 2.7 M in this methanogen as evidenced by its invariant intracellular concentration. CH(3)OH-pulse/CH(3)OH-chase experiments were used to determine half-lifes for these organic solute pools in the cells. l-alpha-Glutamate showed a rapid loss of heavy isotope, indicating that l-alpha-glutamate functions as a biosynthetic intermediate in these cells. Measurable turnover rates for both beta-glutamine, which acts as an osmolyte, and alpha-glucosylglycerate suggest that they function as metabolic intermediates as well. Molecules which function solely as osmolytes (glycine betaine and N-acetyl-beta-lysine) showed a slower turnover consistent with their roles as osmotic solutes in Methanohalophilus strain FDF1.  相似文献   

9.
The quaternary ammonium compounds accumulated in saline conditions by five salt-tolerant species of Limonium (Plumbaginaceae) were analyzed by fast atom bombardment mass spectrometry. Three species accumulated β-alanine betaine and choline-O-sulfate; the others accumulated glycine betaine and choline-O-sulfate. Three lines of evidence indicated that β-alanine betaine and choline-O-sulfate replace glycine betaine as osmo-regulatory solutes. First, tests with bacteria showed that β-alanine betaine and choline-O-sulfate have osmoprotective properties comparable to glycine betaine. Second, when β-alanine betaine and glycine betaine accumulators were salinized, the levels of their respective betaines, plus that of choline-O-sulfate, were closely correlated with leaf solute potential. Third, substitution of sulfate for chloride salinity caused an increase in the level of choline-O-sulfate and a matching decrease in glycine betaine level. Experiments with 14C-labeled precursors established that β-alanine betaine accumulators did not synthesize glycine betaine and vice versa. These experiments also showed that β-alanine betaine synthesis occurs in roots as well as leaves of β-alanine betaine accumulators and that choline-O-sulfate and glycine betaine share choline as a precursor. Unlike glycine betaine, β-alanine betaine synthesis cannot interfere with conjugation of sulfate to choline by competing for choline and does not require oxygen. These features of β-alanine betaine may be advantageous in sulfate-rich salt marsh environments.  相似文献   

10.
The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected.  相似文献   

11.
The protective effect of the synthetic compensatory solutes, dimethylthetin (CAS 4727-41-7) and homodeanol betaine (N,?N-dimethyl-N-(2-hydroxyethyl)-N-(2 carboxyethyl) ammonium inner salt, CAS 6249-53-2), on two enzymes: lactate dehydrogenase (LDH from rabbit muscle) and a microbial lipase, was compared with that of glycine betaine, trehalose and sorbitol. When the enzyme plus 1?M solute were heated for 10?min at temperatures between 35–75°C, the temperature at which 50% of enzyme activity was lost increased most in the presence of trehalose (7.9° for LDH, 11.6° for lipase) and homodeanol betaine (10.7° for LDH, 11.0° for lipase). With both enzymes, more activity was retained at extreme temperatures in the presence of homodeanol betaine than with trehalose. Glycine betaine, dimethylthetin and sorbitol were less effective. Enzyme plus 1?M stabilizer solutions were frozen at ?30°C and freeze-dried for 24?h. Trehalose was the most effective stabilizer of lactate dehydrogenase, and homodeanol betaine of lipase, during freeze-drying.  相似文献   

12.
The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize de novo and accumulate β-glutamine, N-acetyl-β-lysine, and glycine betaine (betaine) as compatible solutes (osmolytes) when grown at elevated salt concentrations. Both in vivo and in vitro betaine formation assays in this study confirmed previous nuclear magnetic resonance 13C-labelling studies showing that the de novo synthesis of betaine proceeded from glycine, sarcosine, and dimethylglycine to form betaine through threefold methylation. Exogenous sarcosine (1 mM) effectively suppressed the intracellular accumulation of betaine, and a higher level of sarcosine accumulation was accompanied by a lower level of betaine synthesis. Exogenous dimethylglycine has an effect similar to that of betaine addition, which increased the intracellular pool of betaine and suppressed the levels of N-acetyl-β-lysine and β-glutamine. Both in vivo and in vitro betaine formation assays with glycine as the substrate showed only sarcosine and betaine, but no dimethylglycine. Dimethylglycine was detected only when it was added as a substrate in in vitro assays. A high level of potassium (400 mM and above) was necessary for betaine formation in vitro. Interestingly, no methylamines were detected without the addition of KCl. Also, high levels of NaCl and LiCl (800 mM) favored sarcosine accumulation, while a lower level (400 mM) favored betaine synthesis. The above observations indicate that a high sarcosine level suppressed multiple methylation while dimethylglycine was rapidly converted to betaine. Also, high levels of potassium led to greater amounts of betaine, while lower levels of potassium led to greater amounts of sarcosine. This finding suggests that the intracellular levels of both sarcosine and potassium are associated with the regulation of betaine synthesis in M. portucalensis.  相似文献   

13.
The trimethylammonium compound glycine betaine (N,N,N-trimethylglycine) can be accumulated to high intracellular concentrations, conferring enhanced osmo- and cryotolerance upon Listeria monocytogenes. We report the identification of betL, a gene encoding a glycine betaine uptake system in L. monocytogenes, isolated by functional complementation of the betaine uptake mutant Escherichia coli MKH13. The betL gene is preceded by a consensus ςB-dependent promoter and is predicted to encode a 55-kDa protein (507 amino acid residues) with 12 transmembrane regions. BetL exhibits significant sequence homologies to other glycine betaine transporters, including OpuD from Bacillus subtilis (57% identity) and BetP from Corynebacterium glutamicum (41% identity). These high-affinity secondary transporters form a subset of the trimethylammonium transporter family specific for glycine betaine, whose substrates possess a fully methylated quaternary ammonium group. The observed Km value of 7.9 μM for glycine betaine uptake after heterologous expression of betL in E. coli MKH13 is consistent with values obtained for L. monocytogenes in other studies. In addition, a betL knockout mutant which is significantly affected in its ability to accumulate glycine betaine in the presence or absence of NaCl has been constructed in L. monocytogenes. This mutant is also unable to withstand concentrations of salt as high as can the BetL+ parent, signifying the role of the transporter in Listeria osmotolerance.  相似文献   

14.
Raman vibrational spectroscopy, at 298 K, has been used to study the hydration of betaine hydrochloride and betaine in the concentration range 0.5–2 M. The observed changes in the internal vibrations of the solutes, namely, in the CO, COO and C–H stretchings, and in the components of the O–H stretching band are consonant with anionic water–betaine and betaine hydrochloride dimeric species involving simultaneously hydrogen-bonding between two solute and water molecules. In both cases, betaine hydrochloride and ‘zwitterionic’ betaine behave like structure-makers promoting a larger association in the ‘bulk’ liquid water.  相似文献   

15.
A liquid chromatographic stationary phase was prepared by covalently binding to the surface of microparticulate silica gel functionality (benzylsilane), which mimics the side chain of the amino acid phenylalanine. The chromatographic retentions of the N-acetyl C-(N'-methyl) amides of various hydrophobic and amphiphilic amino acids on this stationary phase were measured using an aqueous mobile phase. A retention order of Gly < Ala < Cys < Val < Met < Pro < Ile < Leu < Tyr < Phe < Trp is seen at room temperature. Chromatographic retentions were used to derive free energies of adsorption of the amino acid derivatives on the chromatographic support relative to that of the glycine derivative. The temperature dependencies of the retention of aromatic and aliphatic amino acid derivatives differ in curvature, indicating a qualitative difference in the absorption mechanism. An adsorption model for retention is proposed, and arguments are made as to the suitability of an adsorption model for describing the contacts between amino acid side chains during the initial steps of protein folding.  相似文献   

16.
《Experimental mycology》1990,14(2):136-144
Osmotic adjustment in the ascomyceteNeocosmospora vasinfecta was investigated by determining intramycelial water, mycelial solutes, and total mycelial osmolality. Major organic and inorganic solutes as well as proline and glycine betaine were determined under conditions of osmotic stress and shock, imposed by 0.5M KCl. Comparison to glucose as a nonelectrolytic osmoticum was also made. Results quantitatively implicated the polyhydric alcohols as the osmotic adjusters. Changes in amino acids were due to growth and were not osmoregulatory in nature. The osmoticum was not utilized for osmotic adjustment. The growth ofN. vasinfecta in the presence of KCl indicated that this organism is moderately sensitive to osmotic stress.  相似文献   

17.
Betaine aldehyde dehydrogenase in sorghum.   总被引:25,自引:0,他引:25       下载免费PDF全文
The ability to synthesize and accumulate glycine betaine is wide-spread among angiosperms and is thought to contribute to salt and drought tolerance. In plants glycine betaine is synthesized by the two-step oxidation of choline via the intermediate betaine aldehyde, catalyzed by choline monooxygenase and betaine aldehyde dehydrogenase (BADH). Two sorghum (Sorghum bicolor) cDNA clones, BADH1 and BADH15, putatively encoding betaine aldehyde dehydrogenase were isolated and characterized. BADH1 is a truncated cDNA of 1391 bp. BADH15 is a full-length cDNA clone, 1812 bp in length, predicted to encode a protein of 53.6 kD. The predicted amino acid sequences of BADH1 and BADH15 share significant homology with other plant BADHs. The effects of water deficit on BADH mRNA expression, leaf water relations, and glycine betaine accumulation were investigated in leaves of preflowering sorghum plants. BADH1 and BADH15 mRNA were both induced by water deficit and their expression coincided with the observed glycine betaine accumulation. During the course of 17 d, the leaf water potential in stressed sorghum plants reached -2.3 MPa. In response to water deficit, glycine betaine levels increased 26-fold and proline levels increased 108-fold. In severely stressed plants, proline accounted for > 60% of the total free amino acid pool. Accumulation of these compatible solutes significantly contributed to osmotic potential and allowed a maximal osmotic adjustment of 0.405 MPa.  相似文献   

18.
The stress metabolites proline, glycine betaine and sorbitol were accumulated in the leaves of some angiosperms from sand dunes and shingle. Chloride, where it was measured, was not accumulated to high concentrations in leaves suggesting that these soils are not saline. Sand dunes and shingle soils have low water-holding capacity, so it is possible that solute accumulation was a response to drought which could be of adaptive significance. In sand dunes low water availability could be associated with increased leaf temperatures because of reduced transpiration rates and high soil temperatures. The role of stress metabolites in heat tolerance was considered. Proline, betaine, sorbitol and mannitol increased the heat stability of glutamine synthetase (GS) and glutamate: oxaloacetate aminotransferase from Ammophila arenaria. For GS the effect increased with solute concentration. The polyols were more effective at high temperatures. The heat stability of GS from the moss Tortula ruraliformis and the brown alga Fucus vesiculosus was increased by mannitol. The effect of the solutes was independent of plant species and type of enzyme. It is suggested that the accumulation of solutes may have ecological importance in protecting sand-dune plants from heat damage during periods of drought.  相似文献   

19.
Accumulation of compatible solutes is a strategy widely employed by bacteria to achieve cellular protection against high osmolarity. These compounds are also used in some microorganisms as thermostress protectants. We found that Bacillus subtilis uses the compatible solute glycine betaine as an effective cold stress protectant. Glycine betaine strongly stimulated growth at 15°C and permitted cell proliferation at the growth-inhibiting temperature of 13°C. Initial uptake of glycine betaine at 15°C was low but led eventually to the buildup of an intracellular pool whose size was double that found in cells grown at 35°C. Each of the three glycine betaine transporters (OpuA, OpuC, and OpuD) contributed to glycine betaine accumulation in the cold. Protection against cold stress was also accomplished when glycine betaine was synthesized from its precursor choline. Growth of a mutant defective in the osmoadaptive biosynthesis for the compatible solute proline was not impaired at low temperature (15°C). In addition to glycine betaine, the compatible solutes and osmoprotectants l-carnitine, crotonobetaine, butyrobetaine, homobetaine, dimethylsulfonioactetate, and proline betaine all served as cold stress protectants as well and were accumulated via known Opu transport systems. In contrast, the compatible solutes and osmoprotectants choline-O-sulfate, ectoine, proline, and glutamate were not cold protective. Our data highlight an underappreciated facet of the acclimatization of B. subtilis to cold environments and allow a comparison of the characteristics of compatible solutes with respect to their osmotic, heat, and cold stress-protective properties for B. subtilis cells.  相似文献   

20.
Staphylococcus aureus accumulates proline and glycine betaine when cells are grown at low water activity. In the present study, we have identified a high-affinity glycine betaine transport system in this bacterium. Optimal activity for this transport system was measured in the presence of high NaCl concentrations, but transport activity was not stimulated by high concentrations of other solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号