首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From the experimental results of three independent methods: (1) indirect immunofluorescence employing monospecific anti-seminalplasmin-IgGs, (2) cell-free translation of poly(A)+ RNA from seminal vesicle and testicular tissue, as well as (3) Northern analysis of poly(A)+ RNA of the latter tissues with a synthetic seminalplasmin-specific antisense DNA probe, it is concluded that the biosynthesis of seminalplasmin occurs in seminal vesicles but not in testis.  相似文献   

2.
P6 is one of the major basic proteins of bovine seminal plasma. Using cell-free translation of poly(A)+RNA from bovine seminal vesicle tissue and monospecific anti-P6-IgGs, we show that P6 is a secretory product of the seminal vesicles. Immunohistochemical experiments supported this finding. Immunoscreening of a lambda gt11 cDNA library derived from seminal vesicle poly(A)+RNA furnished a number of positive cDNA clones, from which clone pH42 was characterized by sequencing. The partial amino acid sequence of a CNBr-fragment of P6 permitted identification of the reading frame of clone pH42 encoding the precursor protein of P6. The P6 precursor contains a signal peptide of 23 amino acids followed by the mature P6 sequence of 76 amino acid residues. The cDNA sequence of pH42 was 80% homologous with that of the human monocyte-chemoattractant protein-1 (hMCP-1). The respective amino acid sequences for the precursor molecules are 72% identical. Northern analysis of seminal vesicle poly(A)+RNA using pH42 as probe probe identified a 0.9-kb P6 mRNA. Stimulation of P6 mRNA expression by phytohemagglutinin in bovine peripheral mononuclear leukocytes suggests that P6 is identical to bovine MCP-1.  相似文献   

3.
We isolated the major protein with apparent molecular weight, Mr, 15,000-16,000 from seminal plasma as well as from seminal vesicle secretion of bull and proved by amino acid analysis and tryptic peptide mapping that the two proteins were identical. An antiserum against this major protein was employed to quantitate and identify the major protein in seminal plasma as well as in seminal vesicle secretion. The antiserum did not cross-react with proteins from bovine or human plasma or follicular fluid, respectively. Cell-free translation of poly(A+)RNA isolated from seminal vesicle tissue resulted in formation of one major species with apparent Mr 18,000. Using the anti-major protein antiserum, this major species was specifically immuno absorbed. We thus provided evidence that the major protein component of bull seminal plasma is a secretory protein of seminal vesicles. Furthermore, it appeared that the isolated major protein may be closely related to the protein PDC109, purified from bull seminal plasma and sequenced by Esch et al. (Biochem. Biophys. Res. Commun. 113, 861-867 (1983).  相似文献   

4.
A ribonuclease, active on single- and double-stranded RNAs, has been isolated from human seminal plasma 3-5 micrograms of enzyme were recovered per ml of seminal plasma, equivalent to 71% of total activity and a 2500-fold purification (measured with poly(A) X poly(U) as substrate) from the initial dialyzed material. Similar amounts of RNAase were found per g (wet weight) of human prostate, where the enzyme appears to be produced. Human seminal RNAase degrades poly(U) 3-times faster than poly(A) X poly(U), and poly(C) or viral single-stranded RNA about 10-times faster than poly(U). Degradation of poly(A) X poly(U), viral double-stranded RNA, and poly(A) by human seminal RNAase is 500-, 380- and 140-times more efficient, respectively, than by bovine RNAase A. The enzyme, a basic protein with maximum absorbance at 276 nm, occurs in two almost equivalent forms, one of which is glycosylated. Mr values of the glycosylated and non-glycosylated form are 21000 and 16000, respectively. The amino-acid composition of the RNAase is very similar to that of human pancreatic RNAase. The same is true for the carbohydrate content of its glycosylated form.  相似文献   

5.
A cDNA library derived from poly(A)+RNA of bull seminal vesicle tissue was screened with synthetic DNA probes specific for seminalplasmin (SAP), the major basic protein of bull semen. From a number of positive clones, pBSV12, containing a 577-bp insert, was identified and sequenced. The derived amino acid sequence comprises the known amino acid sequence of SAP with an amino terminal representing a putative signal sequence; at the carboxyl terminus the sequence contains an additional lysine residue. Present experimental data do not distinguish between two potential SAP precursor molecules, each starting with a methionine residue and differing by 10 amino acid residues in the leader peptide. Comparative Northern analysis reveals a SAP-specific mRNA of 700 bp, which lacks RNA from bovine testis as well as from seminal vesicle tissue of a bull calf; hence, expression of the SAP gene appears to be under androgen and/or developmental control. Southern analysis indicates that one gene appears to specify SAP. SAP-like DNA sequences were detected in ovine and porcine genomic DNA.  相似文献   

6.
Polyadenylated [poly(A)+] RNA molecules have been isolated from Methanococcus vannielii by oligodeoxythymidylate-cellulose affinity chromatography at 4 degrees C. Approximately 16% of the label in RNA isolated from cultures allowed to incorporate [3H]uridine for 3 min at 37 degrees C was poly(A)+ RNA. In contrast, less than 1% of the radioactivity in RNA labeled over a period of several generations was contained in poly(A)+ RNA molecules. Electrophoretic separation of poly(A)+ RNA molecules showed a heterogeneous population with mobilities indicative of sizes ranging from 900 to 3,000 bases in length. The population of poly(A)+ RNA molecules was found to have a half-life in vivo of approximately 12 min. Polyadenylate [poly(A)] tracts were isolated by digestion with RNase A and RNase T1 after 3' end labeling of the poly(A)+ RNA with RNA ligase. These radioactively labeled poly(A) oligonucleotides were shown by electrophoresis through DNA sequencing gels to average 10 bases in length, with major components of 5, 9, 10, 11, and 12 bases. The lengths of these poly(A) sequences are in agreement with estimates obtained from RNase A and RNase T1 digestions of [3H]adenine-labeled poly(A)+ RNA molecules. Poly(A)+ RNA molecules from M. vannielii were labeled at their 5' termini with T4 polynucleotide kinase after dephosphorylation with calf intestine alkaline phosphatase. Pretreatment of the RNA molecules with tobacco acid pyrophosphatase did not increase the amount of phosphate incorporated into poly(A)+ RNA molecules by polynucleotide kinase, indicating that the poly(A)+ RNA molecules did not have modified bases (caps) at their 5' termini. The relatively short poly(A) tracts, the lack of 5' cap structures, and the instability of the poly(A)+ RNA molecules isolated from M. vannielii indicate that these archaebacterial poly(A)+ RNAs more closely resemble eubacterial mRNAs than eucaryotic mRNAs.  相似文献   

7.
Free and membrane-bound polysomes were isolated from rat liver in high yields with minimal degradation, cross-contamination, or contamination by nuclear or nonpolysomal cytoplasmic ribonucleoprotein. Poly(A)+ RNA fractions isolated from free and bound polysomal RNA (poly(A)+ RNAfree and poly(A)+ RNAbound) by oligo(dT) cellulose chromatography exhibited number-average lengths of 1,600 and 1,200 nucleotides, respectively, on formamide sucrose gradients. Poly(A)+ RNAfree and poly(A)+ RNAbound contain 9.1 +/- 0.55 and 10.7 +/- 0.50% poly(A) as measured by hybridization to [3H]poly(U) and comprise 2.37 and 1.22% of their respective polysomal RNA populations. Homologous poly(A)+ RNA-cDNA hybridizations revealed that greater than 95% of the mass of poly(A)+ RNAfree and poly(A)+ RNAbound contain nucleotide complexities of about 3.4 x 10(7) and 6.0 x 10(6), respectively. This represents about 20,000 and 5,000 poly(A)+ RNA species of average sizes. Heterologous hybridizations suggested that considerable overlap exists between poly(A)+ RNAfree and poly(A)+ RNAbound sequences that cannot be attributed to cross-contamination. This was confirmed by conducting heterologous reactions using kinetically enriched cDNA populations. Heterologous hybridizations involving poly(A)+ RNA derived from tightly bound polysomes and cDNAfree indicated tha most of the overlapping sequences are not contributed by loosely bound (high-salt releasable) polysomes. The ramifications of these findings are discussed.  相似文献   

8.
Encysted embryos of Artemia contain latent mRNA, to a large extent associated with a fraction of cytoplasmic membranes. The membranes, purified by EDTA treatment and banding in a sucrose gradient at 1.17 g/cm3, include endoplasmic vesicles and mitochondria. The origin of the membrane-associated poly(A)+RNA was therefore investigated. In gel electrophoresis poly(A)+RNA from the purified membranes of dormant cysts forms two distinct bands at approx. 3 . 10(5) and 5 . 10(5) Da. Later during development the lighter component decreases. Nuclei from dormant cysts are devoid of poly(A)+RNA, while nuclei from developing embryos (50% emergence) contain a predominant poly(A)+RNA component of approx. 5 . 10(5) Da. 125I-labelled preparations of nuclear DNA and of nuclear and membrane-associated poly(A)+RNA were used in reassociation and hybridization experiments with excess nuclear DNA. Poly(A)+RNA from the membranes of dormant cysts hybridized to nuclear DNA to the same extent as the nuclear poly(A)+RNA from developing embryos. The hybridization of labelled, nuclear poly(A)+RNA to nuclear DNA was strongly inhibited by unlabelled membrane RNA from either dormant cysts or developing embryos. It is concluded that the stored, membrane-associated poly(A)+RNA in dormant cysts is essentially of nuclear origin. The 5 . 10(5)-Da component is largely homologous with the corresponding component of nuclear poly(A)+RNA at later stages.  相似文献   

9.
10.
S Falkenthal  J A Lengyel 《Biochemistry》1980,19(25):5842-5850
We have characterized the copia RNA in the cytoplasm of cultured Drosophila cells. Copia RNA was detected and purified by hybridization to DNA of the plasmid cDm 1142, which contains the copia sequence. A large fraction (2.2%) of the total cytoplasmic poly(A)+ RNA was found to be copia RNA. Cytoplasmic copia RNA displays all the characteristics expected for a messenger RNA. It possesses a poly(A) tract identical in length with that of total poly(A)+ cytoplasmic RNA. It is associated with polysomes and can be released from this association by treatment with EDTA. When purified copia RNA is added to an mRNA-dependent rabbit reticulocyte lysate, three polypeptides of 51000, 33000, and 21000 daltons are seen. We have not determined if these are different polypeptides or if the two smaller polypeptides are fragments of the 51000-dalton polypeptide. The half-life of copia cytoplasmic RNA was determined in pulse--chase experiments to be 9.5 h; this is 1.6 times longer than the half-life of the intermediate decay class of total poly(A)+ cytoplasmic RNA. These properties provide strong evidence that copia RNA functions in vivo as a messenger RNA.  相似文献   

11.
Double strand cDNA copies of lls poly(A)+mRNA purified from adult rat seminal vesicles (RSV), have been cloned in E.coli C600 using the Pst I site of pBR322. Filter hybridization, nucleotide sequence analysis and positive hybridization translation were used to demonstrate that one of the recombinant plasmids obtained (pRSV25) contained a 260 bp long insert coding for a significant part of the precursor to the protein IV present in the RSV secretion. By using labelled pRSV25 DNA we have found that high levels of RSV IV mRNA were present only in the rat seminal vesicle epithelium. The amounts of RSV IV mRNA present in other tissues of the same organism were below the levels detectable by the methods used. In addition, other data reported here indicate that the RSV IV gene(s) is present in both sexes, probably with a different organization.  相似文献   

12.
Poly(A)+ (polyadenylated) RNA was isolated from vitellogenic female-locus fat-body by LiCl/urea extraction and poly(U)-Sepharose 4B affinity chromatography. Agarose-gel electrophoresis of this poly(A)+ RNA under denaturing conditions shows the presence of a high-molecular-weight species (greater than 31 S, 7100 nucleotides) as the major species, which is absent from the RNA prepared from male-locust fat-body. Inclusion of this poly(A)+ RNA in a mRNA-dependent reticulocyte-lysate system directs the synthesis of polypeptides that could be immunoprecipitated with monospecific antibodies against locust egg vitellin. DNA complementary (cDNA) to the poly(A)+ RNA was synthesized, and back-hybridization of the cDNA to its template reveals a major abundant species comprising about 45% of the total poly(A)+ RNA hybridizing with R0t 1/2 of 2 x 10(-2) mol . litre-1 . s. Abundant cDNA isolated from the total cDNA hybridizes to poly(A)+ RNA with a R0t 1/2 of 9 x 10(-3) mol . litre-1 . s. There are 9.1 x 10(3) copies of vitellogenin mRNA per cell of vitellogenic female-locust fat-body, comprising 55% of the poly(A)+ RNA and equivalent to 0.7% of total cellular RNA.  相似文献   

13.
Isolation of poly(A)+ RNA by paper affinity chromatography   总被引:16,自引:0,他引:16  
Poly(A)+ RNA was isolated from in vitro short-term-labeled total cytoplasmic RNA of Ehrlich ascites tumor cells by oligo(dT) cellulose chromatography. This poly(A)+ RNA fraction was compared with a poly(A)+ RNA fraction isolated by a new procedure which involves specific binding of poly(A)+ RNA to messenger affinity paper (mAP) and its release in hot (70 degrees C) water. In typical experiments 10-11 micrograms (2.3%) of poly(A)+ RNA can be retained from 500 micrograms of total cytoplasmic RNA per cm2 of mAP in a quick one-step procedure. The poly(A)+ RNA preparations isolated by the two methods proved to be almost identical with respect to their fraction in total cytoplasmic RNA, specific radioactivities, sucrose gradient profiles, and translation assays. Since the isolation of poly(A)+ RNA by mAP is much less time consuming than that by oligo(dT) column chromatography and since the poly(A)+ RNA can be recovered from mAP in small volumes, which avoids further loss during precipitations, it can be advantageously used for preparative isolation of poly(A)+ RNA.  相似文献   

14.
15.
Poly(A)-RNA fractions of dormant, dark-imbibed (non-germinating) and photoinduced (germinating) spores of Onoclea sensibilis were poor templates in the rabbit reticulocyte lysate protein synthesizing system, but the translational efficiency of poly(A)+RNA was considerably higher than that of unfractionated RNA. Poly(A)+RNA isolated from photoinduced spores had a consistently higher translational efficiency than poly(A)+RNA from dark-imbibed spores. Analysis of the translation products by one-dimensional polyacrylamide gel electrophoresis showed no qualitative differences in the mRNA populations of dormant, dark-imbibed, and photoinduced spores. However, poly(A)+RNA from dark-imbibed spores appeared to encode in vitro fewer detectable polypeptides at a reduced intensity than photoinduced spores. A DNA clone encoding the large subunit of maize ribulose bisphosphate carboxylase hybridized at strong to moderate intensity to RNA isolated from dark-imbibed spores, indicating the absence of mRNA degradation. Although alpha-amanitin did not inhibit the germination of spores, the drug prevented the elongation of the rhizoid and protonemal initial with a concomitant effect on the synthesis of poly(A)+RNA. These results are consistent with the view that some form of translational control involving stored mRNA operates during dark-imbibition and photoinduced germination of spores.  相似文献   

16.
Starvation induces vegetative microplasmodia of Physarum polycephalum to differentiate into translationally-dormant sclerotia. The existence and the biochemical nature of stored mRNA in sclerotia is examined in this report. The sclerotia contain about 50% of the poly(A)-containing RNA [poly(A)+RNA] complement of microplasmodia as determined by [3H]-poly(U) hybridization. The sclerotial poly(A)+RNA sequences are associated with proteins in a ribonucleoprotein complex [poly(A)+mRNP] which sediments more slowly than the polysomes. Sclerotial poly(A)+RNP sediments more rapidly than poly(A)+RNP derived from the polysomes of microplasmodia despite the occurrence of poly(A)+RNA molecules of a similar size in both particles suggesting the existence of differences in protein composition. Isolation of poly(A)+RNP by oligo (dT)-cellulose chromatography and the analysis of its associated proteins by polyacrylamide gel electrophoresis show that sclerotial poly(A)+RNP contains at least 14 major polypeptides, 11 of which are different in electrophoretic mobility from the polypeptides found in polysomal poly(A)+RNP. Three of the sclerotial poly(A)+RNP polypeptides are associated with the poly(A) sequence (18, 46, and 52 × 103 mol. wt. components), while the remaining eight are presumably bound to non-poly(A) portions of the poly(A)+RNA. Although distinct from polysomal poly(A)+RNP, the sclerotial poly(A)+RNP is similar in sedimentation behavior and protein composition (with two exceptions) to the microplasmodial free cytoplasmic poly(A)+RNP. The results suggest that dormant sclerotia store mRNA sequences in association with a distinct set of proteins and that these proteins are similar to those associated with the free cytoplasmic poly(A)+RNP of vegetative plasmodia.  相似文献   

17.
Poly(A)+RNA fractions prepared from free and loosely and tightly membrane-bound polysome populations (poly(A)+RNAfree, poly(A)+RNAloose, and poly(A)+RNAtight) were used to drive cDNA in homologous and heterologous hybridization reactions. A large fraction by mass of sequences was shared among the three poly(A)+RNA populations, but shared sequences exhibited distinct frequency distributions within the different populations. 13-15 in vitro translation products of poly(A)+RNAfree and poly(A)+RNAloose detected by gel electrophoresis were shared. Most of these were produced in different relative quantities by the two RNA populations. Five or six higher mol wt polypeptides were produced by poly(A)+RNAloose that were not detected as products of either poly(A)+free or poly(A)+RNAtight. We suggest that loosely bound polysomes may not be artifactually derived as reflected in their quantitatively distinct poly(A)+RNA population. Two tightly membrane-bound RNP fractions were prepared from rat liver on the basis of their release from or retention on purified rough microsomes or a crude membrane fraction after in vitro disaggregation of polysomes with high-salt and puromycin. Homologous and heterologous hybridizations involving their poly(A)+RNA fractions revealed that a large portion by mass of sequences was shared but that these sequences exhibited distinct frequency distributions in the two fractions. The RNA fractions produced exhibited distinct frequency distributions in the two fractions. The RNA fractions produced an identical set of in vitro translation products but individual polypeptides were produced in different relative quantities. This indicates that the two RNP fractions do not arise by any random artifactual process and suggests that they may represent functionally distinct populations.  相似文献   

18.
C L Lee  S S Li  C Y Li    T M Chu 《The Biochemical journal》1983,215(3):605-612
Four ribonucleases (RNAases I-IV) have been purified to homogeneity from human seminal plasma by precipitation with 40-75%-satd. (NH4)2SO4, followed by chromatographies on concanavalin A-Sepharose 4B, DEAE-cellulose phosphocellulose, agarose-5'-(4-aminophenylphospho)uridine 2'(3')-phosphate (RNAase affinity column) and Sephadex G-75 or G-100. The homogeneity of these RNAases was confirmed by polyacrylamide-gel electrophoresis. Mr values for these purified RNAases were 78 000, 16 000, 13 300 and 5000 as estimated by gel filtration. Enzyme activities of RNAases I, III and IV were inhibited by Mn2+, Zn2+ and Cu2+ and activated by Na+, K+, Ba2+, Mg2+, Fe2+ and EDTA, whereas that of RNAase II was inhibited by Ba2+, Mg2+, Fe2+, Mn2+, Zn2+ and Cu2+ and activated by Na+, K+ and EDTA. RNAases I, II and IV demonstrated a higher affinity for poly(C) and poly(U) or yeast RNA, whereas RNAase III preferentially hydrolysed poly(U) over poly(C) and yeast RNA. In the presence of 5 mM-spermine, RNAase I was dissociated to a low-Mr (5000) enzyme with an increase in total RNAase enzymic activity. Xenoantiserum to each RNAase was raised and evaluated by immunoprecipitation and immunohistochemical methods. Anti-(seminal RNAase III) antiserum showed no immunological cross-reaction with RNAases of other human origin, whereas anti-(seminal RNAase I), -(RNAase II) and -(RNAase IV) antisera exhibited indistinguishable immunological reactions with serum RNAase and other human RNAases, except that anti-(seminal RNAase I) and -(RNAase antisera IV) did not react with pancreatic RNAases. Seminal RNAases I and IV were identical immunologically as shown by anti-(RNAase I) and anti-(RNAase IV) in immunodiffusion. Immunohistochemical study revealed that, among human tissues examined, only prostate expressed seminal RNAase III. These results suggested that human seminal RNAase I may be an aggregated molecule of RNAase IV and that seminal RNAases II and IV are similar to serum RNAases, whereas seminal RNAase III is a prostate-specific enzyme.  相似文献   

19.
Polyadenylated [poly(A)+] RNA has been isolated from the halophilic archaebacterium Halobacterium halobium by binding, at 4 degrees C, to oligo(dT)-cellulose. H. halobium contains approximately 12 times more poly(A) per unit of RNA than does the methanogenic archaebacterium Methanococcus vannielii. The 3' poly(A) tracts in poly(A)+ RNA molecules are approximately twice as long (average length of 20 nucleotides) in H. halobium as in M. vannielii. In both archaebacterial species, poly(A)+ RNAs are unstable.  相似文献   

20.
We isolated the major protein of apparent Mr of 15,000–16,000 from seminal plasma as well as from seminal veiscle secretion of bull and proved by amino acid analysis and tryptic peptide mapping that the two proteins were identical. An antiserum against this major protein was employed to quantitate and identify the major protein in seminal plasma as well as seminal vesicle secretion. The antiserum did not cross-react with proteins from bovine or human plasma or follicular fluid respectively.Cell-free translation of poly(A)RNA from seminal vesicle tissue and immunoprecipitation yielded one major species with apparent Mr of 18,000. Using the anti-major protein antiserum, this major species was specifically immuno absorbed. Cloning and sequencing of a major protein-specific cDNA led to the identification of clone pMP17, encoding a precursor of the major protein of 128 amino acid residues. We proved that the major protein is identical to protein PDC 109 (Eschet al., Biochem. Biophys. Res. Comm. 113:861–867, 1983).The seminal vesicles synthesize major protein in an androgen-dependent fashion. In addition to intraluminal secretion of the vas deferens, ampullary spermatozoa revealed an intense immunoreaction which was restricted to the neck region of the sperm head and the middle piece, while the principal piece of the tail as well as the sperm head were devoid of immunoreactive material. Epididymal epithelium (as well as calf seminal vesicle epithelium) showed no immunoreactivity with major protein antiserum. Immunoelectron microscopy demonstrated that only spermatozoa devoid of a plasma membrane around the middle piece were able to bind the antiserum against major protein. After removal of the plasma membrane from epididymal spermatozoa, binding of major protein to subplasmalemmal binding sites was visualised using gold-labeled MP.Transblotting with gold-labeled MP demonstrated a protein of about 66 kDa which appears to represent the major protein-receptor. Binding of major protein to the receptor (after loss of the plasma membrane in the mid-piece region of the spermatozoa after contact with secretions from seminal vesicles) is interpreted as a phyisological process presumably related to the onset of sperm motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号