首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xu Q  Gunner MR 《Biochemistry》2001,40(10):3232-3241
In protein, conformational changes are often crucial for function but not easy to observe. Two functionally relevant conformational intermediate states of photosynthetic reaction center protein (RCs) are trapped and characterized at low temperature. RCs frozen in the dark do not allow electron transfer from the reduced primary quinone, Q(A)(-), to the secondary quinone, Q(B). In contrast, RCs frozen under illumination in the product (P(+)Q(A)Q(B)(-)) state, with the oxidized electron donor, P(+), and reduced Q(B)(-), return to the ground state at cryogenic temperature in a conformation that allows a high yield of Q(B) reduction. Thus, RCs frozen under illumination are found to be trapped above the ground state in a conformation that allows product formation. When the temperature is raised above 120 K, the protein relaxes to an inactive conformation which is different from the RCs frozen in the dark. The activation energy for this change is 87 +/- 8 meV, and the active and inactive states differ in energy by only 16 +/- 3 meV. Thus, there are several conformational substates along the reaction coordinate with different transition temperatures. The ground state spectra of the RCs in active and inactive conformations report differences in the intraprotein electrostatic field, demonstrating that the dipole or charge distribution has changed. In addition, the electrochromic shift associated with the Q(A)(-) to Q(B) electron transfer at low temperature was characterized. The electron-transfer rate from Q(B)(-) to P(+) was measured at cryogenic temperature and is similar to the rate at room temperature, as expected for an exothermic, electron tunneling reaction in RCs.  相似文献   

2.
Ras regulates signal transduction pathway function by dynamically interacting with various effectors. To understand the basis for Ras function, its conformational dynamics were measured in the absence and presence of effectors using single molecule fluorescence resonance energy transfer (FRET) between probes located on the Switch II region and GTP. The time trajectories of FRET efficiency from GTP-bound Ras showed that this conformation spontaneously varies among multiple states. Among them, a low FRET state was identified as an inactive state. The transition involving the inactive conformational state occurred in the time range of seconds. In contrast, fluctuation occurring most probably between multiple active high FRET conformational states lasted approximately 30 ms but converged to a specific conformational state upon binding to an effector. Thus, Ras conformation spontaneously fluctuates to readily interact with various effectors.  相似文献   

3.
1. The NADP-dependent glutamate dehydrogenase of Neurospora crassa undergoes slow reversible structural transitions, with half-times in the order of a few minutes, between active and inactive states. The inactive state of the enzyme, which predominates at pH values below 7.0, has an intrinsic tryptophan fluorescence 25% lower than that of the active state, which predominates at pH values above 7.6. The inactive state can be activated either by an increase in pH or by addition of activators such as succinate. 2. The kinetics of the slow transitions that follow activating and inactivating rapid changes in conditions have been monitored by measurements of protein fluorescence. The results show that the slow reversible conformational change detected by the change in fluorescence is the rate-limiting process for enzyme activation and inactivation. 3. In both directions this conformational change follows apparent first-order kinetics and the rate constant is independent of protein concentration. These kinetics and published measurements of molecular weight are indicative of an isomerization process. 4. In both directions the changes show a large energy of activation and a large positive entropy of activation, consistent with a considerable disturbance of conformation in the transition state. 5. Comparisons of the fluorescence emission spectra of the active and inactive states indicate that the difference in fluorescence is produced by quenching, possibly intramolecular, in the inactive conformation. Iodide ions cause similar quenching. 6. In some mutationally altered forms of the enzyme comparable but modified conformational changes can be followed by protein fluorescence.  相似文献   

4.
A set of empirical potential functions (EPF), previously used in conformational energy calculations of polymers, was employed in the study of the conformational properties of a number of methyl-substituted phenethylmines, as well as phenylmethylamine, phenyl-n-propylamine, and 3,4,5-trimethoxyamphetamine. The conformational free energy was computed for each of these molecular species in four states: neutral charge-vacuo (I), neutral charge-aqueous solution (II), positive charge-vacuo (III), positive charge-aqueous solution (IV). The molecules generally adopt one of two stable conformations: a folded conformation with the amine chain perpendicular to the ring, and the amine group nearest to the ring; and an extended conformation with the amine chain perpendicular to the ring, and the amine group far from the ring. The folded conformation is usually preferred for states I, II and III, while the extended form is adopted for state IV. By using empirical potential functions it was also possible to calculate the conformational entropies associated with the minimum energy conformations, thereby allowing the Boltzmann probabilities to be determined. These probabilities are a measure of the population density of each of the various low energy regions. Some of the molecules studied have a steric “bulge” below the plane of the benzene ring. All of the compounds studied which possess this “bulge” are psychotropically inactive, and, in most cases, also pharmacologically inactive. All active compounds studied do not possess this “bulge”.  相似文献   

5.
Guanine nucleotide binding proteins (GNB-proteins) play an essential role in cellular signaling, acting as molecular switches, cycling between the inactive, GDP-bound form and the active, GTP-bound form. It has been shown that conformational equilibria also exist within the active form of GNB-proteins between conformational states with different functional properties. Here we present (31)P NMR data on ADP ribosylation factor 1 (Arf1), a GNB-protein involved in Golgi traffic, promoting the coating of secretory vesicles. To investigate conformational equilibria in active Arf1, the wild type and switch I mutants complexed with GTP and a variety of commonly used GTP analogues, namely, GppCH(2)p, GppNHp, and GTPγS, were analyzed. To gain deeper insight into the conformational state of active Arf1, we titrated with Cu(2+)-cyclen and GdmCl and formed the complex with the Sec7 domain of nucleotide exchange factor ARNO and an effector GAT domain. In contrast to the related proteins Ras, Ral, Cdc42, and Ran, from (31)P NMR spectroscopic view, Arf1 exists predominantly in a single conformation independent of the GTP analogue used. This state seems to correspond to the so-called state 2(T) conformation, according to Ras nomenclature, which is interacting with the effector domain. The exchange of the highly conserved threonine in position 48 with alanine led to a shift of the equilibrium toward a conformational state with typical properties obtained for state 1(T) in Ras, such as interaction with guanine nucleotide exchange factors, a lower affinity for nucleoside triphosphates, and greater sensitivity to chaotropic agents. In active Arf1(wt), the effector interacting conformation is strongly favored. These intrinsic conformational equilibria of active GNB-proteins could be a fine-tuning mechanism of regulation and thereby an interesting target for the modulation of protein activity.  相似文献   

6.
Mahalingam M  Vogel R 《Biochemistry》2006,45(51):15624-15632
Meta III is formed during the decay of rhodopsin's active receptor state at neutral to alkaline pH by thermal isomerization of the retinal Schiff base C15=N bond, converting the ligand from all-trans 15-anti to all-trans 15-syn. The thereby induced change of ligand geometry switches the receptor to an inactive conformation, such that the decay pathway to Meta III contributes to the deactivation of the signaling state at higher pH values. We have examined the conformation of Meta III over a wider pH range and found that Meta III exists in a pH-dependent conformational equilibrium between this inactive conformation at neutral to alkaline pH and an active conformation similar to that of Meta II, which, however, is assumed at very acidic pH only. The apparent pKa of this transition is around 5.1 and thus several units lower than that of the Meta I/Meta II photoproduct equilibrium with its all-trans 15-anti ligand, but still about 1 unit higher than that of the opsin conformational equilibrium in the absence of ligand. The all-trans-15-syn-retinal chromophore is therefore not an inverse agonist like 11-cis- or 9-cis-retinal, which lock the receptor in an inactive conformation, but a classical partial agonist, which is capable of activating the receptor, yet with an efficiency considerably lower than the full agonist all-trans 15-anti. As the Meta III chromophore differs structurally from this full agonist only in the isomeric state of the C15=N bond, this ligand represents an excellent model system to study principal mechanisms of partial agonism which are helpful to understand the partial agonist behavior of other ligands.  相似文献   

7.
A new program ACSBAIA (Active Conformation Search Based on Active and Inactive Analogues) for determination of the active conformations was developed based on the rationales that specific functional groups of active analogues could reach and interact with the active site of target receptor by means of the change of conformations, but that of inactive analogues could not interact with the active site owing to conformational restriction. The program consisted of 4 sub-programs: conformation sampling system, active conformation constraint system, inactive conformation exclusion system, and activity prediction system. Pharmacophoric conformation of allylamine antimycotics was studied by this method. Activities of 2 analogues were predicted and tested. The results suggested that the method was scientific and practical. The application of this method was not restricted by the three-dimensional structural knowledge of target receptor. In the absence of structural information about the receptor, the method was particularly applicable.  相似文献   

8.
Diseases with readily available therapies may eventually prevail against the specific treatment by the acquisition of resistance. The constitutively active Abl1 tyrosine kinase known to cause chronic myeloid leukemia is an example, where patients may experience relapse after small inhibitor drug treatment. Mutations in the Abl1 tyrosine kinase domain (Abl1‐KD) are a critical source of resistance and their emergence depends on the conformational states that have been observed experimentally: the inactive state, the active state, and the intermediate inactive state that resembles Src kinase. Understanding how resistant positions and amino acid identities are determined by selection pressure during drug treatment is necessary to improve future drug development or treatment decisions. We carry out in silico site‐saturation mutagenesis over the Abl1‐KD structure in a conformational context to evaluate the in situ and conformational stability energy upon mutation. Out of the 11 studied resistant positions, we determined that 7 of the resistant mutations favored the active conformation of Abl1‐KD with respect to the inactive state. When, instead, the sequence optimization was modeled simultaneously at resistant positions, we recovered five known resistant mutations in the active conformation. These results suggested that the Abl1 resistance mechanism targeted substitutions that favored the active conformation. Further sequence variability, explored by ancestral reconstruction in Abl1‐KD, showed that neutral genetic drift, with respect to amino acid variability, was specifically diminished in the resistant positions. Since resistant mutations are susceptible to chance with a certain probability of fixation, combining methodologies outlined here may narrow and limit the available sequence space for resistance to emerge, resulting in more robust therapeutic treatments over time.  相似文献   

9.
A new program ACSBAIA (Active Conformation Search Based on Active and Inactive Analogues) for determination of the active conformations was developed based on the rationales that specific functional groups of active analogues could reach and interact with the active site of target receptor by means of the change of conformations, but that of inactive analogues could not interact with the active site owing to conformational restriction. The program consisted of 4 sub-programs: conformation sampling system, active conformation constraint system, inactive conformation exclusion system, and activity prediction system. Pharmacophoric conformation of allylamine antimycotics was studied by this method. Activities of 2 analogues were predicted and tested. The results suggested that the method was scientific and practical. The application of this method was not restricted by the three-dimensional structural knowledge of target receptor. In the absence of structural information about the receptor, the method was  相似文献   

10.
A mechanism of activation of the ATP.Mg-dependent protein phosphatase (FC.M) has been proposed (Jurgensen, S., Shacter, E., Huang, C. Y., Chock, P. B., Yang, S.-D., Vandenheede, J. R., and Merlevede, W. (1984) J. Biol. Chem. 259, 5864-5870) in which a transient phosphorylation by the kinase FA of the modulator subunit (M) is the driving force for the transition of the inactive catalytic subunit (FC) into its active conformation. Incubation of FC.M with kinase FA and Mg2+ and adenosine 5'-(gamma-thio)triphosphate results in thiophosphorylation of M and also a conformational change in the phosphatase catalytic subunit; however, the enzyme remains inactive. Proteolysis of this inactive, thiophosphorylated complex causes proteolytic destruction of the modulator subunit and yields an active phosphorylase phosphatase species. Similar treatment of the native inactive enzyme does not yield active phosphatase. Evidence is presented, suggesting that a molecule of modulator is bound at an "inhibitory site" on the native enzyme. This modulator does not prevent the conformational change in the phosphatase catalytic subunit upon incubation with kinase FA and ATP.Mg but does partially inhibit the expression of the phosphorylase phosphatase activity.  相似文献   

11.
Thymidylate synthase (TS) is the target in colon cancer therapeutic protocols utilizing such drugs as 5-fluorouracil and raltitrexed. The effectiveness of these treatments is hampered by emerging drug resistance, usually related to increased levels of TS. Human TS (hTS) is unique among thymidylate synthases from all species examined as its loop 181-197 can assume two main conformations related by rotation of 180 degrees. In one conformation, "active", the catalytic Cys-195 is positioned in the active site; in the other conformation, "inactive", it is at the subunit interface. Also, in the active conformation, region 107-128 has one well-defined conformation while in the inactive conformation this region assumes multiple conformations and is disordered in crystals. The native protein exists in apparent equilibrium between the two conformational states, while the enzyme liganded with TS inhibitors assumes the active conformation. The native protein has been reported to bind to several mRNAs, including its own mRNA, but upon ligation, RNA binding activity is lost. Ligation of TS by inhibitors also stabilizes it to turnover. Since currently used TS-directed drugs stabilize the active conformation and slow down the enzyme degradation, it is postulated that inhibitors of hTS stabilizing the inactive conformation of hTS should cause a down-regulation in enzyme levels as well as inactivate the enzyme.  相似文献   

12.
Glutamate dehydrogenase from Candida utilis undergoes a reversible conformational transition between an active and an inactive state at low pH AND low temperature. This conformational transition can also be followed by fluorescence measurements. The temperature-dependent equilibrium between the active and the inactive state is characterized by a transition temperature of 10.7 degrees C and a delta H value of 148 kcal/mol (620 kJ/mol). The temperature dependence of the enzymic activity above 15 degrees C yields an activation energy of 15 kcal/mol (63 kJ/mol), a larger value than that for the beef liver enzyme (9 kcal/mol; 38 kJ/mol). In contrast to the yeast enzyme the Arrhenius plot is linear and, therefore, the beef liver enzyme is not transformed into an inactive conformation at low temperatures. Sedimentation analysis shows that the inactivation of the Candida utilis enzyme is not caused by change in the quaternary structure. The pH dependence of the conformational transition at low pH measured by fluorescence change is characterized by a pK value of 7.01 for the enzyme in the absence and of 6.89 for the enzyme in the presence of 2-oxoglutarate with a Hill coefficient of 3.4 in both cases. Similar results are found when the pH dependence of the enzymic activity is analyzed. With the beef liver enzyme the same pK value is obtained but with a Hill coefficient of 1 indicating cooperativity only in the case of the Candida utilis enzyme. The best fit of the pH dependence of the rate constants of the fluorescence changes was obtained with pK values of 7.45 and 6.45 for the active and the inactive state respectively. In this model the lowest time constant which is obtained at the pH of the equilibrium was found to be 0.05 s-1. Preincubation experiments with the substrate 2-oxoglutarate but not with the coenzyme shift the equilibrium to the active conformation. The coenzyme obviously reduces the rate constant of the conformational transition. The sedimentation coefficient (SO20, w) and the molecular weight were found to be 11.0 S and 276 000, respectively. The enzyme molecule is built up by six polypeptide chains each having a molecular weight of 47 000.  相似文献   

13.
The activating effect of Na(+) on thrombin is allosteric and depends on the conformational transition from a low activity Na(+)-free (slow) form to a high activity Na(+)-bound (fast) form. The structures of these active forms have been solved. Recent structures of thrombin obtained in the absence of Na(+) have also documented inactive conformations that presumably exist in equilibrium with the active slow form. The validity of these inactive slow form structures, however, is called into question by the presence of packing interactions involving the Na(+) site and the active site regions. Here, we report a 1.87A resolution structure of thrombin in the absence of inhibitors and salts with a single molecule in the asymmetric unit and devoid of significant packing interactions in regions involved in the allosteric slow --> fast transition. The structure shows an unprecedented self-inhibited conformation where Trp-215 and Arg-221a relocate >10A to occlude the active site and the primary specificity pocket, and the guanidinium group of Arg-187 penetrates the protein core to fill the empty Na(+)-binding site. The extreme mobility of Trp-215 was investigated further with the W215P mutation. Remarkably, the mutation significantly compromises cleavage of the anticoagulant protein C but has no effect on the hydrolysis of fibrinogen and PAR1. These findings demonstrate that thrombin may assume an inactive conformation in the absence of Na(+) and that its procoagulant and anticoagulant activities are closely linked to the mobility of residue 215.  相似文献   

14.
C Balny  H Anni  T Yonetani 《FEBS letters》1987,221(2):349-354
Transient kinetic measurements show that cytochrome c peroxidase reacts with excess of hydroperoxides to produce compound ES in two phases. The activation energies for the fast and slow phases are calculated to be 6.3 and 20.5 kcal X mol-1, respectively. The fast phase is assigned to the reaction of native active (pulsed) cytochrome c peroxidase with peroxides, whereas the slow phase is due to the presence of an inactive (aged, resting) enzyme. As the active species is exhausted, the equilibrium between the active and inactive enzymes is shifted by a slow conformational change to replenish the active enzyme. Since the rate-limiting step of the reaction of the inactive enzyme with peroxides is the conformation change, the overall reaction rate is independent of the nature and concentration of peroxides.  相似文献   

15.
Trypsin-like serine proteases play essential roles in diverse physiological processes such as hemostasis, apoptosis, signal transduction, reproduction, immune response, matrix remodeling, development, and differentiation. All of these proteases share an intriguing activation mechanism that involves the transition of an unfolded domain (activation domain) of the zymogen to a folded one in the active enzyme. During this conformational change, activation domain segments move around highly conserved glycine hinges. In the present study, hinge glycines were replaced by alanine residues via site directed mutagenesis. The effects of these mutations on the interconversion of the zymogen-like and active conformations as well as on catalytic activity were studied. Mutant trypsins showed zymogen-like structures to varying extents characterized by increased flexibility of some activation domain segments, a more accessible N-terminus and a deformed substrate binding site. Our results suggest that the trypsinogen to trypsin transition is hindered by the mutations, which results in a shift of the equilibrium between the inactive zymogen-like and active enzyme conformations toward the inactive state. Our data also showed, however, that the inactive conformations of the various mutants differ from each other. Binding of substrate analogues shifted the conformational equilibrium toward the active enzyme since inhibited forms of the trypsin mutants showed similar structural features as the wild-type enzyme. The catalytic activity of the mutants correlated with the proper conformation of the active site, which could be supported by varying conformations of the N-terminus and the autolysis loop. Transient kinetic measurements confirmed the existence of an inactive to active conformational transition occurring prior to substrate binding.  相似文献   

16.
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.  相似文献   

17.
Incubation of human plasma prorenin (PR), the enzymatically inactive precursor of renin (EC 3.4.23.15), with a number of nonpeptide high-affinity active site-directed renin inhibitors induces a conformational change in PR, which was detected by a monoclonal antibody that reacts with active renin but not with native inactive PR. This conformational change also occurred when inactive PR was activated during exposure to low pH. Nonproteolytically acid-activated PR, and inhibitor-"activated" PR, as well as native PR, were retained on a blue Sepharose column, in contrast to proteolytically activated PR. Kinetic analysis of the activation of plasma prorenin by renin inhibitor (INH) indicated that native plasma contains an open intermediary form of prorenin, PRoi, in which the active site is exposed and which is in rapid equilibrium with the inactive closed form, PRc. PRoi reacts with inhibitor to form a reversible complex, PRoi.INH, which undergoes a conformational change resulting in a tight complex of a modified open form of prorenin, PRo, and the inhibitor, PRoi.INH-->PRo.INH. The PRoi-to-PRo conversion leads to the expression of an epitope on the renin part of the molecule that is recognized by a renin-specific monoclonal antibody. Presumably, PRo corresponds to the enzymatically active form of PR that is formed during exposure to low pH. Thus, it seems that the propeptide of PR interacts with the renin part of the molecule not only at or near the enzyme's active site but also at some distance from the active site. Interference with the first interaction by renin inhibitor leads to destabilization of the propeptide, by which the second interaction is disrupted and the enzyme assumes its active conformation. The results of this study may provide a model for substrate-mediated prorenin activation and increase the likelihood that enzymatically active prorenin is formed in vivo.  相似文献   

18.
AmpD is a cytoplasmic peptidoglycan (PG) amidase involved in bacterial cell-wall recycling and in induction of β-lactamase, a key enzyme of β-lactam antibiotic resistance. AmpD belongs to the amidase_2 family that includes zinc-dependent amidases and the peptidoglycan-recognition proteins (PGRPs), highly conserved pattern-recognition molecules of the immune system. Crystal structures of Citrobacter freundii AmpD were solved in this study for the apoenzyme, for the holoenzyme at two different pH values, and for the complex with the reaction products, providing insights into the PG recognition and the catalytic process. These structures are significantly different compared with the previously reported NMR structure for the same protein. The NMR structure does not possess an accessible active site and shows the protein in what is proposed herein as an inactive “closed” conformation. The transition of the protein from this inactive conformation to the active “open” conformation, as seen in the x-ray structures, was studied by targeted molecular dynamics simulations, which revealed large conformational rearrangements (as much as 17 Å) in four specific regions representing one-third of the entire protein. It is proposed that the large conformational change that would take the inactive NMR structure to the active x-ray structure represents an unprecedented mechanism for activation of AmpD. Analysis is presented to argue that this activation mechanism might be representative of a regulatory process for other intracellular members of the bacterial amidase_2 family of enzymes.  相似文献   

19.
Recent technological developments permit us to examine the accessibility of specific atoms on any nucleotide in any large RNA molecule to certain chemical probes. This can provide detailed information about the higher order structure of large RNA molecules, including secondary and tertiary structure, protein-RNA contacts, binding sites for functional ligands and possible biologically significant conformational changes. Here, we summarize recent studies on (i) the conformation of naked 16S rRNA under a variety of ionic conditions, and (ii) the behaviour of 16S rRNA in active and inactive 30S subunits, as defined by Zamir, Elson and their colleagues. The latter study reveals a reciprocal conformational change in the vicinity of the decoding region of 16S rRNA in 30S ribosomal subunits. This conformational change appears to be a rearrangement of tertiary and/or quaternary structure involving several universally conserved nucleotides. No reproducible effects are seen elsewhere in the molecule, suggesting that the active-inactive transition is a result of the observed conformational change.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号