首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dimerization inhibitors of HIV-1 protease   总被引:2,自引:0,他引:2  
By targeting the highly conserved antiparallel beta-sheet formed by the interdigitation of the N- and C-terminal strands of each monomer, dimerization inhibitors of HIV-1 protease may be useful to overcome the drug resistance observed with current active-site directed antiproteases. Sequestration of the monomer by the inhibitor (or disruption of the dimer interface) prevents the correct assembly of the inactive monomers to active enzyme. Strategies for the design of drugs targeting the dimer interface are described. Various dimerization inhibitors are reported including N- and C-terminal mimetics, lipopeptides and cross-linked interface peptides.  相似文献   

4.
5.
Compounds containing the easily accessible Phe[CH(OH)CH2N(NH)Phe dipeptide isostere as a non-hydrolyzable replacement of the scissile amide bond in the natural substrate are potent inhibitors of HIV-1 protease. The expected symmetric binding pattern of the most potent inhibitor in this series (CGP 53280, IC50 = 9 nM) is illustrated by the X-ray analysis performed with the corresponding enzyme-inhibitor complex.  相似文献   

6.
There is a great need for alternative modes of inhibition for the design of anti-HIV therapies, due to the increased resistance of HIV to currently approved drugs. A novel strategy for generating potent dimerization inhibitors of HIV-1 protease is described based on sidechain-linked interfacial peptides. In a number of cases the activity of these agents against HIV-1 protease was found to be among the most potent reported, with inhibitory constants in the low nM range.  相似文献   

7.
A significant obstacle to the efficacy of drugs directed against viral targets is the presence of amino acid polymorphisms in the targeted molecules. Amino acid polymorphisms may occur naturally due to the existence of variations within and between viral strains or as the result of mutations associated with drug resistance. An ideal drug will be one that is extremely effective against a primary target and maintains its effectiveness against the most important variations of the target molecule. A drug that simultaneously inhibits different variants of the target will lead to a faster suppression of the virus, retard the appearance of drug-resistant mutants and provide more efficacious and, in the long range, more affordable therapies. Drug molecules with the ability to inhibit several variants of a target with high affinity have been termed adaptive drugs (Nat. Biotechnol. 20 (2002) 15; Biochemistry 42 (2003) 8459; J. Cell. Biochem. S37 (2001) 82). Current drug design paradigms are predicated upon the lock-and-key hypothesis, which emphasizes shape complementarity as a way to attain specificity and improved binding affinity. Shape complementarity is accomplished by the introduction of conformational constraints in the drug molecule. While highly constrained molecules do well against a unique target, they lack the ability to adapt to target variations like those originating from naturally occurring polymorphisms or drug-resistant mutations. Targeting an array of closely related targets rather than a single one while still maintaining selectivity, requires a different approach. A plausible strategy for designing high affinity adaptive inhibitors is to engineer their most critical interactions (for affinity and specificity) with conserved regions of the target while allowing for adaptability through the introduction of flexible asymmetric functionalities in places facing variable regions of the target. The fundamental thermodynamics and structural principles associated with this approach are discussed in this chapter.  相似文献   

8.
A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.  相似文献   

9.
10.
11.
12.
Peptide substrates and inhibitors of the HIV-1 protease   总被引:11,自引:0,他引:11  
Oligopeptides containing the consensus retroviral protease cleavage sequence Ser/Thr-X-Y-Tyr/Phe-Pro are substrates for purified recombinant HIV-1 protease with Km's in the millimolar range. The minimum sequence containing the consensus pentapeptide which serves as a good substrate is a heptapeptide spanning the P4-P3' residues. Substitution of reduced Phe-Pro or Tyr-Pro dipeptide isosteres or the statine analog 3-hydroxy-4-amino-5-phenylpentanoic acid for the scissile dipeptide afforded inhibitors of HIV-1 protease with Ki values in the micromolar range, three orders of magnitude better in affinity than the corresponding substrates. Inhibitors of HIV-1 protease may provide a novel and potentially useful therapeutic approach to the treatment of acquired immune deficiency syndrome (AIDS).  相似文献   

13.
In AIDS therapy, attempts have been made to inhibit the virus-encoded enzymes, e.g. HIV-1 protease, using active site-directed inhibitors. This approach is questionable, however, due to virus mutations and the high toxicity of the drugs. An alternative method to inhibit the dimeric HIV protease is the targeting of the interface region of the protease subunits in order to prevent subunit dimerization and enzyme activity. This approach should be less prone to inactivation by mutation. A list of improved 'dimerization inhibitors' of HIV-1 protease is presented. The main structural features are a short 'interface' peptide segment, including non-natural amino acids, and an aliphatic N-terminal blocking group. The high inhibitory power of some of the lipopeptides [e.g. palmitoyl-Tyr-Glu-Leu-OH, palmitoyl-Tyr-Glu-(L-thyronine)-OH, palmitoyl-Tyr-Glu-(L-biphenyl-alanine)-OH] with low nanomolar Ki values in the enzyme test suggests that mimetics with good bio-availability can be derived for AIDS therapy.  相似文献   

14.
Interaction kinetic and thermodynamic analyses provide information beyond that obtained in general inhibition studies, and may contribute to the design of improved inhibitors and increased understanding of molecular interactions. Thus, a biosensor-based method was used to characterize the interactions between HIV-1 protease and seven inhibitors, revealing distinguishing kinetic and thermodynamic characteristics for the inhibitors. Lopinavir had fast association and the highest affinity of the tested compounds, and the interaction kinetics were less temperature-dependent as compared with the other inhibitors. Amprenavir, indinavir and ritonavir showed non-linear temperature dependencies of the kinetics. The free energy, enthalpy and entropy (DeltaG, DeltaH, DeltaS) were determined, and the energetics of complex association (DeltaG(on), DeltaH(on), DeltaS(on)) and dissociation (DeltaG(off), DeltaH(off), DeltaS(off)) were resolved. In general, the energetics for the studied inhibitors was in the same range, with the negative free energy change (DeltaG < 0) due primarily to increased entropy (DeltaS > 0). Thus, the driving force of the interaction was increased degrees of freedom in the system (entropy) rather than the formation of bonds between the enzyme and inhibitor (enthalpy). Although the DeltaG(on) and DeltaG(off) were in the same range for all inhibitors, the enthalpy and entropy terms contributed differently to association and dissociation, distinguishing these phases energetically. Dissociation was accompanied by positive enthalpy (DeltaH(off) > 0) and negative entropy (DeltaS(off) < 0) changes, whereas association for all inhibitors except lopinavir had positive entropy changes (DeltaS(on) > 0), demonstrating unique energetic characteristics for lopinavir. This study indicates that this type of data will be useful for the characterization of target-ligand interactions and the development of new inhibitors of HIV-1 protease.  相似文献   

15.
16.
The Rce1p protease is required for the maturation of the Ras GTPase and certain other isoprenylated proteins and is considered a chemotherapeutic target. To identify new small-molecule inhibitors of Rce1p, the authors screened the National Cancer Institute Diversity Set compound library using in vitro assays to monitor the proteolytic processing of peptides derived from Ras and the yeast a-factor mating pheromone. Of 46 inhibitors initially identified with a Ras-based assay, only 9 were effective in the pheromone-based assay. The IC(50) values of these 9 compounds were in the low micromolar range for both yeast (6-35 microM) and human Rce1p (0.4-46 microM). Four compounds were somewhat Rce1p selective in that they partially inhibited the Ste24p protease and did not inhibit Ste14p isoprenylcysteine carboxyl methyltransferase, 2 enzymes also involved in the maturation of isoprenylated proteins. The remaining 5 compounds inhibited all 3 enzymes. The 2 most Rce1p-selective agents were ineffective trypsin inhibitors, further supporting the specificity of these agents for Rce1p. The 5 least specific compounds formed colloidal aggregates, a proposed common feature of promiscuous inhibitors. Interestingly, the most specific Rce1p inhibitor also formed a colloidal aggregate. In vivo studies revealed that treatment of wild-type yeast with 1 compound induced a Ras2p delocalization phenotype that mimics observed effects in rce1 ste24 null yeast. The 9 compounds identified in this study represent new tools for understanding the enzymology of postisoprenylation-modifying enzymes and provide new insight for the future development of Rce1p inhibitors.  相似文献   

17.
Crucial amides for dimerization inhibitors of HIV-1 protease   总被引:1,自引:0,他引:1  
An inhibitor based on crosslinked peptides from the interfacial region of HIV-1 protease, previously shown to act by dimerization inhibition, was modified by N-methylation to ascertain the importance of the amide hydrogens on inhibition. The effects of N-methylation on HIV-1 protease inhibition, as well as the effects on degradation by proteases are described.  相似文献   

18.
HIV-1 protease inhibitors (PI's) bearing 1,3,4-oxadiazoles at the P1' position were prepared by a novel method involving the diastereoselective installation of a carboxylic acid and conversion to the P1' heterocycle. The compounds are picomolar inhibitors of native HIV-1 protease, with most of the compounds maintaining excellent antiviral activity against a panel of PI-resistant strains.  相似文献   

19.
M A Ondetti  D W Cushman 《Biopolymers》1981,20(9):2001-2010
There is a general parallelism in the strategy followed in the design of hormonal peptide analogs and protease inhibitors. However, in the latter, one more dimension has been added with the development of mechanism-based inhibitors, a dimension that is not yet available for hormonal peptides because of the lack of knowledge about receptor mechanisms. The recently advanced concepts of transition state and bi-product analogs have made possible the development of highly potent active-site directed reversible protease inhibitors of great therapeutic potential.  相似文献   

20.
A series of HIV-1 protease inhibitors containing an epsilon substituted lysinol backbone was synthesized. Two novel synthetic routes using N-boc-l-glutamic acid alpha-benzyl ester and 2,6-diaminopimelic acid were developed. Incorporation of this epsilon substituent enabled access to the S2 pocket of the enzyme, affording high potency inhibitors. Modeling studies and synthetic efforts suggest the potency increase is due to both conformational bias and van der Waals interactions with the S2 pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号