首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on human osteoclast formation have been hampered by lack of a defined isolated progenitor cell population. We describe here the establishment of a human leukemic cell line (designated FLG 29.1) from bone marrow of a patient with acute monoblastic leukemia. The cultured cells are predominantly undifferentiated leukemic blasts, but addition of 12-o-tetradecanoylphorbol 13-acetate (TPA; 0.1 microM) induces irreversible differentiation into adherent, non-dividing, multinucleated cells. TPA-treated cells bear surface antigens typical of fetal osteoclasts, degrade 45Ca-labeled devitalized bone particles, display tartrate-resistant acid phosphatase in both mononuclear and multinuclear cells and receptors for calcitonin. Calcitonin increases intracellular cAMP accumulation in TPA-treated cells. TPA-treated cells show some ultrastructural features of osteoclasts as evidenced by transmission EM. These results indicate that FLG 29.1 cells may represent an osteoclast committed cell population, which upon induction with TPA acquire some morphological, phenotypical, and functional features of differentiated osteoclasts.  相似文献   

2.
Increasing evidence suggests that transforming growth factor-β (TGF-β) is involved in bone formation during remodeling. Using a recently cloned human leukemic cell line (FLG 29.1 cells) we demonstrate that these cells synthesize and secrete TGF-β1 and that exogenous or autocrine TGF-β1 can induce the same features of osteoclastic-like cells, exerting its effects through the binding to TGF-β specific receptors. Scatchard analysis of 125I-labeled TGF-β1 to FLG 29.1 cells revealed the presence of a single high affinity binding site with a Kd value of ~25 pM and a binding capacity of ~900 sites/cell. Affinity labeling experiments showed that FLG 29.1 cells express type I and type II TGF-β receptors. Stimulation of FLG 29.1 cells with low TGF-β1 doses reduced cell proliferation and increased cell adhesion and tartrate resistant acid phosphatase (TRAcP) activity. Pretreatment of FLG 29.1 cells with TGF-β1 caused a significant and dose-dependent response to calcitonin. Northern blot of total mRNA and analysis of the conditioned media (CM) showed that TGF-β1 was synthesized by FLG 29.1 cells. TPA treatment, which induces partial differentiation of these cells, markedly increased TGF-β1 mRNA expression and growth factor release. The majority of TGF-β1 secreted by TPA-treated cells was in its latent form. However, anti-TGF-β antibodies inhibited TGF-β1 and TPA-induced growth inhibition, calcitonin responsiveness, and TRAcP activity, suggesting that the TPA effect is mediated in part by autocrine TGF-β1 and indicating that the cells can activate and respond to the TGF-β that they secrete. These findings support a potential autocrine role for TGF-β1 in osteoclast differentiation. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Osteoarthritis-affected cartilage exhibits enhanced expression of fibronectin (FN) and osteopontin (OPN) mRNA in differential display and bioinformatics screen. Functional genomic analysis shows that the engagement of the integrin receptors alpha 5 beta 1 and alpha v beta 3 of FN and OPN, respectively, have profound effects on chondrocyte functions. Ligation of alpha 5 beta 1 using activating mAb JBS5 (which acts as agonist similar to FN N-terminal fragment) up-regulates the inflammatory mediators such as NO and PGE2 as well as the cytokines, IL-6 and IL-8. Furthermore, up-regulation of these proinflammatory mediators by alpha 5 beta1 integrin ligation is mediated via induction and autocrine production of IL-1 beta, because type II soluble IL-1 decoy receptor inhibits their production. In contrast, alpha v beta 3 complex-specific function-blocking mAb (LM609), which acts as an agonist similar to OPN, attenuates the production of IL-1 beta, NO, and PGE2 (triggered by alpha 5 beta 1, IL-1 beta, IL-18, or IL-1 beta, TNF-alpha, plus LPS) in a dominant negative fashion by osteoarthritis-affected cartilage and activated bovine chondrocytes. These data demonstrate a cross-talk in signaling mechanisms among integrins and show that integrin-mediated "outside in" and "inside out" signaling very likely influences cartilage homeostasis, and its deregulation may play a role in the pathogenesis of osteoarthritis.  相似文献   

4.
Heterotropic association of tissue transglutaminase (TG2) with extracellular matrix-associated fibronectin (FN) can restore the adhesion of fibroblasts when the integrin-mediated direct binding to FN is impaired using RGD-containing peptide. We demonstrate that the compensatory effect of the TG-FN complex in the presence of RGD-containing peptides is mediated by TG2 binding to the heparan sulfate chains of the syndecan-4 cell surface receptor. This binding mediates activation of protein kinase Calpha (PKCalpha) and its subsequent interaction with beta(1) integrin since disruption of PKCalpha binding to beta(1) integrins with a cell-permeant competitive peptide inhibits cell adhesion and the associated actin stress fiber formation. Cell signaling by this process leads to the activation of focal adhesion kinase and ERK1/2 mitogen-activated protein kinases. Fibroblasts deficient in Raf-1 do not respond fully to the TG-FN complex unless either the full-length kinase competent Raf-1 or the kinase-inactive domain of Raf-1 is reintroduced, indicating the involvement of the Raf-1 protein in the signaling mechanism. We propose a model for a novel RGD-independent cell adhesion process that could be important during tissue injury and/or remodeling whereby TG-FN binding to syndecan-4 activates PKCalpha leading to its association with beta(1) integrin, reinforcement of actin-stress fiber organization, and MAPK pathway activation.  相似文献   

5.
Interaction between the extracellular matrix and integrin receptors on cell surfaces leads not only to cell adhesion but also to intracellular signaling events that affect cell migration, proliferation, and survival. The vitronectin receptor alpha(v)beta(3) integrin is of key importance in glioma cell biology. The expression of urokinase-type plasminogen activator receptor (uPAR) was recently shown to co-regulate with the expression of alpha(v)beta(3) integrin. Moreover, restoration of the p16 protein in glioma cells inhibits the alpha(v)beta(3) integrin-mediated spreading of those cells on vitronectin. Thus we hypothesized that adenovirus-mediated down-regulation of uPAR and overexpression of p16 might down-regulate the expression of alpha(v)beta(3) integrin and the integrin-mediated signaling in glioma cells, thereby defeating the malignant phenotype. In this study, we used replication-deficient adenovirus vectors that contain either a uPAR antisense expression cassette (Ad-uPAR) or wild-type p16 cDNA (Ad-p16) and a bicistronic adenovirus construct in which both the uPAR antisense and p16 sense expression cassettes (Ad-uPAR/p16) are inserted in the E1-deleted region of the vector. Infecting the malignant glioma cell line SNB19 with Ad-uPAR, Ad-p16, or Ad-uPAR/p16 in the presence of vitronectin resulted in decreased alpha(v)beta(3) integrin expression and integrin-mediated biological effects, including adhesion, migration, proliferation, and survival Our results support the therapeutic potential of simultaneously targeting uPAR and p16 in the treatment of gliomas.  相似文献   

6.
The signaling events downstream of integrins that regulate cell attachment and motility are only partially understood. Using osteoclasts and transfected 293 cells, we find that a molecular complex comprising Src, Pyk2, and Cbl functions to regulate cell adhesion and motility. The activation of integrin alpha(v)beta(3) induces the [Ca(2+)](i)-dependent phosphorylation of Pyk2 Y402, its association with Src SH2, Src activation, and the Src SH3-dependent recruitment and phosphorylation of c-Cbl. Furthermore, the PTB domain of Cbl is shown to bind to phosphorylated Tyr-416 in the activation loop of Src, the autophosphorylation site of Src, inhibiting Src kinase activity and integrin-mediated adhesion. Finally, we show that deletion of c Src or c-Cbl leads to a decrease in osteoclast migration. Thus, binding of alpha(v)beta(3) integrin induces the formation of a Pyk2/Src/Cbl complex in which Cbl is a key regulator of Src kinase activity and of cell adhesion and migration. These findings may explain the osteopetrotic phenotype in the Src(-/-) mice.  相似文献   

7.
The discovery of osteoprotegerin (OPG), osteoprotegerin ligand (OPGL), and RANK has elucidated the mechanism by which osteoblasts and stromal cells regulate osteoclastic differentiation and function and mediate the effects exerted by other hormones and cytokines. We have investigated the effects of these novel cytokines on the preosteoclastic cell line FLG 29.1. We show that OPGL alone and in combination with macrophage colony-stimulating factor (CSF-1) dramatically reduced replication and increased tartrate-resistant acid phosphatase activity. However, although FLG29.1 cells appear to adhere to the bone surface, they are not able to form resorption lacunae. OPG and calcitonin completely abolished the differentiation induced by OPGL. RANK was detectable in FLG 29.1 and the number of positive cells was increased by OPGL/CSF-1 treatment while reduced by calcitonin. We propose that calcitonin could interact with the OPG/OPGL, and its effects on RANK may explain in part the action of this hormone in suppressing bone resorption.  相似文献   

8.
Integrin-extracellular matrix (ECM) interactions in two-dimensional (2D) culture systems are widely studied (Goldstein and DiMilla, 2002. J Biomed. Mater. Res. 59, 665-675; Koo et al., 2002. J. Cell Sci. 115, 1423-1433). Less understood is the role of the ECM in promoting intercellular cohesion in three-dimensional (3D) environments. We have demonstrated that the alpha5beta1-integrin mediates strong intercellular cohesion of 3D cellular aggregates (Robinson et al., 2003. J. Cell Sci. 116, 377-386). To further investigate the mechanism of alpha5beta1-mediated cohesivity, we used a series of chimeric alpha5beta1-integrin-expressing cells cultured as multilayer cellular aggregates. In these cell lines, the alpha5 subunit cytoplasmic domain distal to the GFFKR sequence was truncated, replaced with that of the integrin alpha4, the integrin alpha2, or maintained intact. Using these cells, alpha5beta1-integrin-mediated cell aggregation, compaction and cohesion were determined and correlated with FN matrix assembly. The data presented demonstrate that cells cultured in the absence of external mechanical support can assemble a FN matrix that promotes integrin-mediated aggregate compaction and cohesion. Further, inhibition of FN matrix assembly blocks the intercellular associations required for compaction, resulting in cell dispersal. These results demonstrate that FN matrix assembly contributes significantly to tissue cohesion and represents an alternative mechanism for regulating tissue architecture.  相似文献   

9.
Cells of the rat neuronal line, PC12, adhere well to substrates coated with laminin and type IV collagen, but attach poorly to fibronectin. Adhesion and neurite extension in response to these extracellular matrix proteins are inhibited by Fab fragments of an antiserum (anti-ECMR) that recognizes PC12 cell surface integrin subunits of Mr 120,000, 140,000, and 180,000 (Tomaselli, K. J., C. H. Damsky, and L. F. Reichardt. 1987. J. Cell Biol. 105:2347-2358). Here we extend our study of integrin structure and function in PC12 cells using integrin subunit-specific antibodies prepared against synthetic peptides corresponding to the cytoplasmic domains of the human integrin beta 1 and the fibronectin receptor alpha (alpha FN) subunits. Anti-integrin beta 1 immunoprecipitated a 120-kD beta 1 subunit and two noncovalently associated integrin alpha subunits of 140 and 180 kD from detergent extracts of surface-labeled PC12 cells. Immunodepletion studies using anti-integrin beta 1 demonstrated that these two putative alpha/beta heterodimers are identical to those recognized by the adhesion-perturbing ECMR antiserum. Anti-alpha FN immunoprecipitated fibronectin receptor heterodimers in human and rat fibroblastic cells, but not in PC12 cells. Thus, low levels of expression of the integrin alpha FN subunit can explain the poor attachment of PC12 cells to FN. The PC12 cell integrins were purified using a combination of lectin and ECMR antibody affinity chromatography. The purified integrins: (a) completely neutralize the ability of the anti-ECMR serum to inhibit PC12 cell adhesion to laminin and collagen IV; (b) have hydrodynamic properties that are very similar to those of previously characterized integrin alpha/beta heterodimeric receptors for ECM proteins; and (c) can be incorporated into phosphatidylcholine vesicles that then bind specifically to substrates coated with laminin or collagen IV but not fibronectin. Thus, the ligand-binding specificity of the liposomes containing the purified PC12 integrins closely parallels the substrate-binding preference of intact PC12 cells. These results demonstrate that mammalian integrins purified from a neuronal cell line can, when incorporated into lipid vesicles, function as receptors for laminin and type IV collagen.  相似文献   

10.
Integrin transmembrane receptors generate multiple signals, but how they mediate specific signaling is not clear. Here we test the hypothesis that particular sequences along the beta(1) integrin cytoplasmic domain may exist that are intimately related to specific integrin-mediated signaling pathways. Using systematic alanine mutagenesis of amino acids conserved between different beta integrin cytoplasmic domains, we identified the tryptophan residue at position 775 of human beta(1) integrin as specific and necessary for integrin-mediated protein kinase B/Akt survival signaling. Stable expression of a beta(1) integrin mutated at this amino acid in GD25 beta(1)-null cells resulted in reduction of Akt phosphorylation at both Ser(473) and Thr(308) activation sites. As a consequence, the cells were substantially more sensitive to serum starvation-induced apoptosis when compared with cells expressing wild type beta(1) integrin. This inactivation of Akt resulted from increased dephosphorylation by a localized active population of protein phosphatase 2A. Both Akt and protein phosphatase 2A were present in beta(1) integrin-organized cytoplasmic complexes, but the activity of this phosphatase was 2.5 times higher in the complexes organized by the mutant integrin. The mutation of Trp(775) specifically affected Akt signaling, without effects on other integrin-activated pathways including phosphoinositide 3-kinase, MAPK, JNK, and p38 nor did it influence activation of the integrin-responsive kinases focal adhesion kinase and Src. The identification of Trp(775) as a specific site for integrin-mediated Akt signaling supports the concept of specificity of signaling along the integrin cytoplasmic domain.  相似文献   

11.
Osteoblasts are involved in the bone resorption process by regulating osteoclast maturation and activity. In order to elucidate the mechanisms underlying osteoblast/preosteoclast cell interactions, we developed an in vitro model of co-cultured human clonal cell lines of osteoclast precursors (FLG 29.1) and osteoblastic cells (Saos-2), and evaluated the migratory, adhesive, cytochemical, morphological, and biochemical properties of the co-cultured cells. In Boyden chemotactic chambers, FLG 29.1 cells exhibited a marked migratory response toward the Saos-2 cells. Moreover, they preferentially adhered to the osteoblastic monolayer. Direct co-culture of the two cell types induced: (1) positive staining for tartrate-resistant acid phosphatase in FLG 29.1 cells; (2) a decrease of the alkaline phosphatase activity expressed by Saos-2 cells; (3) the appearance of typical ultrastructural features of mature osteoclasts in FLG 29.1 cells; (4) the release into the culture medium of granulocyte-macrophage colony stimulating factor. The addition of parathyroid hormone to the co-culture further potentiated the differentiation of the preosteoclasts, the cells tending to fuse into large multinucleated elements. These in vitro interactions between osteoblasts and osteoclast precursors offer a new model for studying the mechanisms that control osteoclastogenesis in bone tissue.  相似文献   

12.
13.
Retraction of the blood clot by nucleated cells contributes both to hemostasis and to tissue remodeling. Although plasma fibronectin (FN) is a key component of the clot, its role in clot retraction is unclear. In this report, we demonstrate that the incorporation of FN into fibrin matrices significantly improves clot retraction by nucleated cells expressing the integrin alpha(5)beta(1). Further, we show that FN-fibrin clots support increased cell spreading when compared with fibrin matrices. To determine the structural requirements for FN in this process, recombinant FN monomers deficient in ligand binding or fibrin cross-linking were incorporated into fibrin clots. We show that recombinant FN monomers support clot retraction by Chinese hamster ovary cells expressing the integrin alpha(5)beta(1). This process depends on both the Arg-Gly-Asp (RGD) and the synergy cell-binding sites and on covalent FN-fibrin binding, demonstrating that cross-linking within the clot is important for cell-FN interactions. These data show that alpha(5)beta(1) can bind to FN within a clot to promote clot retraction and support cell shape change. This provides strong evidence that alpha(5)beta(1)-FN interactions may contribute to the cellular events required for wound contraction.  相似文献   

14.
ADAM12, adisintegrin and metalloprotease, has been demonstrated to be upregulated in human malignant tumors and to accelerate the malignant phenotype in a mouse model for breast cancer. ADAM12 is a substrate for beta1 integrins and may affect tumor and stromal cell behavior through its binding to beta1 integrins. Here, we report that cells deficient in beta1 integrin or overexpressing beta3 integrin can bind to recombinant full-length human ADAM12 via beta3 integrin. Furthermore, cell binding to ADAM12 via beta3 integrin results in the formation of focal adhesions, which are not formed upon beta1 integrin-mediated cell attachment. We also show that RhoA is involved in beta3 integrin-mediated focal adhesion formation.  相似文献   

15.
Integrins link the cell's cytoskeleton to the extracellular matrix, as well as to receptors on other cells. These links occur not only at focal contacts but also at smaller integrin-containing protein complexes outside of focal contacts. We previously demonstrated the importance of focal contact-independent integrin-cytoskeleton interactions of beta(2) integrins: activation of adhesion resulted from a release of integrins from cytoskeletal constraints. To determine whether changes in integrin-cytoskeleton interactions were related to activation of the integrin, we used single particle tracking to examine focal contact-independent cytoskeletal associations of alpha(IIb)beta(3)-integrin, in which activation results in a large conformational change. Direct activation of alpha(IIb)beta(3) by mutation did not mimic activation of lymphocytes with phorbol ester, because it enhanced integrin-cytoskeleton interactions, whereas activation of lymphocytes decreased them. Using additional integrin mutants, we found that both alpha- and beta-cytoplasmic domains were required for these links. This suggests that 1) both beta(2)- and beta(3)-integrins interact with the cytoskeleton outside of focal contacts; 2) activation of a cell and activation of an integrin are distinct processes, and both can affect integrin-cytoskeleton interactions; and 3) the role of the alpha-subunit in integrin-cytoskeleton interactions in at least some circumstances is more direct than generally supposed.  相似文献   

16.
Integrin engagement induces a cascade of signaling pathways that include tyrosine phosphorylation of numerous proteins that lead to modulation of the actin cytoskeleton. Src is a major intracellular mediator of integrin-dependent functions, but the mechanism(s) by which Src is regulated in response to integrin signals is not fully understood. Here, we demonstrate an important role for phospholipase C gamma 2 (PLCgamma2) in Src activation in the osteoclast. Through analysis of primary cells from PLCgamma2(-/-) mice, PLCgamma2 was found to be an important regulator of alpha(v)beta(3) integrin-mediated bone osteoclast cell adhesion, migration, and bone resorption. Adhesion-induced PYK2 and Src phosphorylation is decreased in the absence of PLCgamma2, and the interaction of Src with beta(3) integrin and PYK2 is dramatically reduced. Importantly, PLCgamma2 was found to be required for proper localization of Src to the sealing actin ring, and this function required both its catalytic activity and adapter domains. Based on these results, we propose that PLCgamma2 influences Src activation by mediating the localization of Src to the integrin complex and thereby regulating integrin-mediated functions in the osteoclast.  相似文献   

17.
The macrophage colony stimulating factor (M-CSF) and alpha(v)beta(3) integrins play critical roles in osteoclast function. This study examines M-CSF- and adhesion-induced signaling in prefusion osteoclasts (pOCs) derived from Src-deficient and wild-type mice. Src-deficient cells attach to but do not spread on vitronectin (Vn)-coated surfaces and, contrary to wild-type cells, their adhesion does not lead to tyrosine phosphorylation of molecules activated by adhesion, including PYK2, p130(Cas), paxillin, and PLC-gamma. However, in response to M-CSF, Src(-/-) pOCs spread and migrate on Vn in an alpha(v)beta(3)-dependent manner. Involvement of PLC-gamma activation is suggested by using a PLC inhibitor, U73122, which blocks both adhesion- and M-CSF-mediated cell spreading. Furthermore, in Src(-/-) pOCs M-CSF, together with filamentous actin, causes recruitment of beta(3) integrin and PLC-gamma to adhesion contacts and induces stable association of beta(3) integrin with PLC-gamma, phosphatidylinositol 3-kinase, and PYK2. Moreover, direct interaction of PYK2 and PLC-gamma can be induced by either adhesion or M-CSF, suggesting that this interaction may enable the formation of integrin-associated complexes. Furthermore, this study suggests that in pOCs PLC-gamma is a common downstream mediator for adhesion and growth factor signals. M-CSF-initiated signaling modulates the alpha(v)beta(3) integrin-mediated cytoskeletal reorganization in prefusion osteoclasts in the absence of c-Src, possibly via PLC-gamma.  相似文献   

18.
The diverse cytoplasmic domain sequences within the various integrin subunits are critical for integrin-mediated signaling into the cell (outside-in signaling) and for activation of ligand binding affinity (inside-out signaling). Here we introduce an approach based on phage display technology to identify molecules that specifically interact with the cytoplasmic domain of the beta 5 integrin subunit. We show that a peptide selected for binding specifically to the beta 5 cytoplasmic domain (VVISYSMPD) induces apoptosis upon internalization. The cell death process induced by VVISYSMPD is sensitive to modulation by growth factors and by protein kinase C (PKC), and it cannot be triggered in beta 5 null cells. Finally, we show that the VVISYSMPD peptide is a mimic of annexin V. Our results suggest a functional link between the alpha v beta 5 integrin, annexin V, and programmed cell death. We propose the term "endothanatos" to designate this phenomenon.  相似文献   

19.
During the recruitment of human polymorphonuclear neutrophils (PMN) to sites of inflammation, leukocyte adhesion molecules of the beta2 integrin (CD11/CD18) family mediate firm adhesion of these cells to the endothelial cell monolayer lining the vessel wall. This process is a prerequisite for shape change and spreading of PMN on the endothelium which eventually allows PMN emigration into the extravascular space. In order to elucidate the molecular mechanisms which mediate this sequence of events, intracellular protein tyrosine signaling was studied subsequent to beta2 integrin-mediated ligand binding. Using western blotting technique, beta2 integrin-mediated adhesion was found to induce tyrosine phosphorylation of different proteins. The effect was absent in PMN derived from CD18-deficient mice which lack any beta2 integrin expression on the cell surface demonstrating the specificity of the observed response. Inhibition of beta2 integrin-mediated tyrosine signaling by herbimycin A almost completely inhibited adhesion, shape change, and subsequent spreading of PMN. Herbimycin A also diminished chemotactic migration of these cells in response to the soluble mediator N-formyl-Met-Leu-Phe (fMLP). In contrast, treatment of PMN with cytochalasin D had no substantial effect on beta2 integrin-mediated signaling or adhesion but inhibited shape change, spreading, and chemotactic migration of PMN. This suggests that the signaling capacity exerted by beta2 integrins upon ligand binding was independent of an intact cytoskeleton. Moreover, the beta2 integrin-mediated activation of intracellular signal transduction pathways was critical for firm adhesion of PMN, the prerequisite subsequent shape change and spreading, which allows emigration of PMN into the extravascular space.  相似文献   

20.
Integrin affinity is modulated by intracellular signaling cascades, in a process known as "inside-out" signaling, leading to changes in cell adhesion and motility. Protein kinase C (PKC) plays a critical role in integrin-mediated events; however, the mechanism that links PKC to integrins remains unclear. Here, we report that PKCepsilon positively regulates integrin-dependent adhesion, spreading, and motility of human glioma cells. PKCepsilon activation was associated with increased focal adhesion and lamellipodia formation as well as clustering of select integrins, and it is required for phorbol 12-myristate 13-acetate-induced adhesion and motility. We provide novel evidence that the scaffolding protein RACK1 mediates the interaction between integrin beta chain and activated PKCepsilon. Both depletion of RACK1 by antisense strategy and overexpression of a truncated form of RACK1 which lacks the integrin binding region resulted in decreased PKCepsilon-induced adhesion and migration, suggesting that RACK1 links PKCepsilon to integrin beta chains. Altogether, these results provide a novel mechanistic link between PKC activation and integrin-mediated adhesion and motility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号