首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:研究吡非尼酮对四氯化碳诱导的小鼠肝纤维化的影响。方法:选用8周健康雄性SPF级ICR小鼠40只,随机分为4组(n=10):肝纤维化模型组(CCL4组)、吡非尼酮低剂量组(PFD-L组)、吡非尼酮高剂量组(PFD-H组)及正常对照组。CCL4肝纤维化模型采用0.4 ml/只10%的CCL4大豆油溶液进行小鼠腹腔注射制备,低剂量、高剂量吡非尼酮干预组在造模后采用120 mg/kg、240 mg/kg吡非尼酮(PFD)灌胃,正常对照组采用与前三组等量的生理盐水腹腔注射的方法。全自动生化仪检测血清中谷丙转氨酶(ALT)、谷草转氨酶(AST)、碱性磷酸酶(ALP);取肝脏组织HE染色观察组织的病理学变化;荧光定量PCR法测定肝脏中α-平滑肌肌动蛋白(α-SMA)相关基因的表达,酶联反应法检测肝纤维化指标透明质酸(HA)、层粘连蛋白(LN)、Ⅳ型胶原(IV-C)。结果:与正常组相比,CCL4组小鼠肝小叶结构明显破坏,胶原纤维沉积明显,可见假小叶形成;血清ALT、AST、ALP均显著升高(P<0.05);血清肝纤维化指标HA、LN、IV-C均显著升高(P<0.05);α-SMA基因的表达水平也显著升高(P<0.05)。PFD-L组和PFD-H组小鼠AST、ALT、ALP相较于CCL4组明显降低,PFD-L组和PFD-H组小鼠血清肝纤维化指标HA、LN、IV-C相较于CCL4组明显降低,α-SMA基因的表达也受到抑制(P<0.05)。病理学观察发现,PFD-L组小鼠的肝纤维化程度减轻,胶原纤维减少,仅见少量假小叶;PFD-H组小鼠细胞排列恢复,小叶结构轻度紊乱,未见明显假小叶,恢复效果比PFD-L组好。结论:吡非尼酮对于肝纤维化有一定的治疗作用,其可成为肝纤维化早期干预的新药物。  相似文献   

2.
C C Shih  Y W Wu  W C Lin 《Phytomedicine》2005,12(6-7):453-460
The aim of this study was to investigate the effects of aqueous extract of Anoectochilus formosanus (AFE) on liver fibrogenesis in carbon tetrachloride (CCl4)-induced cirrhosis. Fibrosis was induced in rats by oral administration of CCl4 (20%, 0.5 ml/rat, p.o.) twice a week for 8 weeks. AFE (0.5 and 2.0 g/kg, p.o., daily for 8 weeks) was administered to rats simultaneously. AFE showed reducing actions on the elevated levels of GOT and GPT caused by CCl4. Liver fibrosis in rats induced by CCl4 led to the drop of serum albumin concentration; the AFE increased the albumin concentration. The CCl4-induced liver fibrosis markedly caused liver atrophy and splenomegalia, while AFE increased the liver weight, and decreased the spleen weight. The CCl4-induced liver fibrosis decreased the protein content, and increased collagen contents in rat's liver. AFE significantly increased the contents of protein and reduced the amount of collagen in the liver. In CCl4-treated rats, glutathione concentrations of liver were not affected. AFE significantly increased liver glutathione concentrations. All these results clearly demonstrate that AFE can reduce the liver fibrogensis in rats induced by CCl4.  相似文献   

3.
4.
5.
The protective effect of Lygodium flexuosum extract in preventive and curative treatments of CCl(4) induced fibrosis was quantified. Hepatic fibrosis was induced in male Wistar rats by CCl(4) administration (150 microL/100 gm rat weight, oral) twice a week for 10 weeks. In preventive treatment daily doses of L. flexuosum n-hexane extract (200 mg/kg, p.o) were administered for 10 weeks. In curative treatment L. flexuosum extract (200 mg/kg, p.o) was given for 2 weeks after the establishment of fibrosis for 10 weeks. Treatment with the n-hexane extract (200 mg/kg) reduced the mRNA levels of proinflammatory cytokines, growth factors and other signaling molecules, which are involved in hepatic fibrosis. The expression levels of tumor necrosis factor-alpha, interleukin-1beta, transforming growth factor-beta1, procollagen-I, procollagen-III and tissue inhibitor of metalloproteinase-1 were elevated during carbon tetrachloride administration and reduced the levels to normal by the treatment with the extract treatment. The increased levels of matrix metalloproteinase-13 in extract treated rats were indicative of the protective action of L. flexuosum n-hexane extract. In conclusion, L. flexuosum n-hexane extract functions as a potent fibrosuppresant, effectively reverses carbon tetrachloride-induced hepatic fibrosis in curative treatment and reduces the effects of ongoing toxic liver injury in preventive treatment by promoting extracellular matrix degradation in the fibrotic liver.  相似文献   

6.
The effect of carbon tetrachloride (CCl4) on the capacity of hepatic microsomes to sequester calcium was studied following pretreatment of rats with chlordecone. Chlordecone pretreatment alone had no effect on the kinetics of calcium uptake by hepatic microsomes. It was found, however, that chlordecone pretreatment of rats potentiated by sixfold the potency of CCl4 to suppress microsomal calcium sequestration capacity when measured one hour after CCl4 administration.  相似文献   

7.
Summary. The aim of this study was to investigate the effect of betaine or taurine on liver fibrogenesis and lipid peroxidation in rats. Fibrosis was induced by treatment of rats with drinking water containing 5% ethanol and CCl4 (2×weekly, 0.2ml/kg, i.p.) for 4 weeks. Ethanol plus CCl4 treatment caused increased lipid peroxidation and disturbed antioxidant system in the liver. Histopathological findings suggested that the development of liver fibrosis was prevented in rats treated with betaine or taurine (1% v/v in drinking water) together with ethanol plus CCl4 for 4 weeks. When hepatic taurine content was depleted with -alanine (3% v/v in drinking water), portal-central fibrosis induced by ethanol+CCl4 treatment was observed to proceed cirrhotic structure. Betaine or taurine was also found to decrease serum transaminase activities and hepatic lipid peroxidation without any change in hepatic antioxidant system in rats with hepatic fibrosis. In conclusion, the administration of betaine or taurine prevented the development of liver fibrosis probably associated with decreased oxidative stress.  相似文献   

8.
The aim of this work was to determine if the action mechanism of gadolinium on CCl(4)-induced liver damage is by preventing lipid peroxidation (that may be induced by Kupffer cells) and its effects on liver carbohydrate metabolism. Four groups of rats were treated with CCl(4), CCl(4)+GdCl(3), GdCl(3), and vehicles. CCl(4) was given orally (0.4 g 100 g(-1) body wt.) and GdCl(3) (0.20 g 100 g(-1) body wt.) was administered i.p. All the animals were killed 24 h after treatment with CCl(4) or vehicle. Glycogen and lipid peroxidation were measured in liver. Alkaline phosphatase, gamma-glutamyl transpeptidase, alanine amino transferase activities and bilirubins were measured in rat serum. A liver histological analysis was performed. CCl(4) induced significant elevations on enzyme activities and bilirubins; GdCl(3) completely prevented this effect. Liver lipid peroxidation increased 2.5-fold by CCl(4) treatment; this effect was also prevented by GdCl(3). Glycogen stores were depleted by acute intoxication with CCl(4). However, GdCl(3) did not prevent this effect. The present study shows that Kupffer cells may be responsible for liver damage induced by carbon tetrachloride and that lipid peroxidation is produced or stimulated by Kupffer cells, since their inhibition with GdCl(3) prevented both lipid peroxidation and CCl(4)-induced liver injury.  相似文献   

9.
10.
11.
目的:通过注射低剂量四氯化碳( carbon tetrachloride ,CC14)建立B/C小鼠肝损伤模型。方法正常B/C小鼠随机分为正常对照组、油对照组、CCl4模型组。正常对照组常规饲养;油对照组腹腔注射鲁花花生油(10μL/g,1次/3天,连续6周);CC14模型组腹腔注射0.5%CC14(10μL/g,1次/3天,连续6周)。第6周,各组小鼠检测血清AST、ALT浓度,HE及Masson染色后观察小鼠肝脏结构、细胞形态及纤维化程度。结果第6周CCl4模型组小鼠血清ALT(P=0.00)、AST(P=0.00)浓度极显著性增高,HE及Masson染色显示CCl4模型组小鼠肝上皮细胞呈广泛性空泡样变及大量坏死,肝小叶内出现明显的条索样纤维增生,其纤维化程度评分显著性升高(P =0.00),纤维显色积分光密度值极显著性增高(P =0.00)。结论注射低剂量CCl4可以诱导B/C小鼠肝损伤模型,实验模型具备肝损伤和肝纤维化病理特征。  相似文献   

12.
Major objective of this study was to explore the protective effect of the methanolic extract of Chenopodium album against carbon tetrachloride induced hepatotoxicity in rats. Chenopodium album has locally been used for multiple medicinal proposes. Methanolic extract of Chenopodium album (whole plant) was prepared with Soxhlet extractor and rotatory evaporator. Antioxidant activity of Chenopodium album was determined by DPPH free radical scavenging assay. Thirty Wister (albino) rats (150–200 g) were divided into six groups for the evaluation of hepatoprotective potential of different concentrations of Chenopodium album against carbon tetrachloride (1:1 CCl4: Olive oil) under the controlled laboratory conditions. Group-I rats were administrated with olive oil (Normal control), Group-II with CCl4 only, Group-III with Silymarin (positive control), Group-IV with Chenopodium album (100 mg/kg), Group-V with Chenopodium album (200 mg/kg) and Group-VI rats with Chenopodium album (300 mg/kg) for the period of 28 days. Serum was taken to determine the levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, cholesterol, triglyceride, creatinine and urea in the blood. Formalin stored tissues were examined for histopathological analysis. DPPH assay showed that Chenopodium album has the potential for reduction of oxidative stress. Chenopodium album minimized the levels of ALT (70 ± 8.68 U/L, 68.75 ± 8.38 U/L & 73.5 ± 10.28 U/L), AST (219.5 ± 19.16 U/L, 140.75 ± 13.35 U/L & 221.25 ± 13.33 U/L) and ALP (289.5 ± 28.21 U/L, 258 ± 11.12 U/L & 248.25 ± 4.03 U/L) at different concentrations (100 mg/kg, 200 mg/kg, 300 mg/kg respectively). Chenopodium album enhanced triglyceride level (64.75 ± 12.66 mg/dl at 200 mg/kg) as compared to CCl4 treated group (33.25 ± 1.26 mg/dl). Carbon tetrachloride elevated urea level (43.25 ± 6.6) was decreased by high dose of Chenopodium album (18 ± 8.17). Moreover, Chenopodium album also improved WBC level (9.69 × 103 /Cu.mr & 10.59 × 103 /Cu.mr at low and medium doses respectively), RBCs level (6.97 × 103 /Cu.mr) and hemoglobin level (13.95 G/dL, 13.467 G/dL & 14.05 G/dL at low, medium and high doses). In vivo study of Chenopodium album methanolic extract demonstrates the potential for protection of liver and after pre-clinical studies the plant can be used as a safe alternative of commercially available hepatoprotective medicines.  相似文献   

13.
We have previously demonstrated the partial protection of the rat liver by 16,16-dmPGE2 (DMPG) against a number of hepatotoxins including carbon tetrachloride (CCl4). However, it has not been determined whether hepatoprotection by DMPG represents a true "cytoprotective" action or if merely accomplished through inhibition of CCl4 metabolism to reactive, toxic trichoromethyl (CCl3.) free radicals. This report details a series of experiments in which the effects of DMPG on CCl4 metabolism was evaluated in the rat. These data indicate that pretreatment with DMPG may reduce the hepatic concentration of the toxic CCl3. free radicals in CCl4 poisoned rats. Evidence is presented which suggests that this reduction in binding may have been due to a decrease in the rate of CCl4 metabolism. However, DMPG did not affect the hepatic concentration of total microsomal cytochrome P450, the necessary enzyme in this metabolic process. On the other hand, free radical spin trapping experiments indicate that the rate of free radical formation from CCl4 was slowed by treatment. Also, indirect evidence suggests that the metabolism of another cytochrome P450 substrate, phenobarbital, was slowed in DMPG treated rats. We conclude that the rate of CCl4 metabolism may be reduced by pretreatment with DMPG. Furthermore, some measure of hepatic protection might be expected to occur as a result of the reduction in the rate of CCl4 metabolism. However, we are unable to determine if this action was solely responsible for the observed hepatic protection.  相似文献   

14.
Sudo K  Yamada Y  Moriwaki H  Saito K  Seishima M 《Cytokine》2005,29(5):236-244
Chronic liver injury causes liver regeneration, resulting in fibrosis. The proinflammatory cytokine tumor necrosis factor (TNF) is involved in the pathogenesis of many acute and chronic liver diseases. TNF has pleiotropic functions, but its role in liver fibrosis has not been clarified. Chronic repeated injection of CCl4 induces liver fibrosis in mice. We examined whether signaling through TNF receptors was critical for this process, using mice lacking either TNF receptor (TNFR) type 1 or TNFR type 2 to define the pathophysiologic role of TNFR signals in liver fibrosis. Liver fibrosis caused by chronic CCl4 exposure was TNF-dependent; histological fibrosis was seen in wild-type (WT) and TNFR-2 knockout (KO) mice, but not in TNFR-1 KO mice. Furthermore, a marked reduction in procollagen and TGF-beta synthesis was observed in TNFR-1 KO mice, which also had little detectable NF-kappa B, STAT3, and AP1 binding, and reduced levels of liver interleukin-6 (IL-6) mRNA compared to WT and TNFR-2 KO mice. In conclusion, our results indicate the possibility that NF-kappa B, STAT3, and AP1 binding by signals transduced through TNFR-1 plays an important role in liver fibrosis formation.  相似文献   

15.
In this study we investigated TNF-alpha and leptin levels in two different liver fibrosis models induced by carbon tetrachloride (CCl(4)) and common bile duct ligation (CBDL). A total of 36 male rats of Albino-Wistar strain were allocated to three groups. One of the groups was the control. The second group received 0.15 ml 100 g(-1) CCl(4) subcutaneously for 6 weeks, 3 days per week. The third group underwent common bile duct ligation (CBDL) and was monitored for 4 weeks. Histopathological investigation included fibrosis, steatosis and inflammation. Serum IL-6 and TNF-alpha levels were analysed by ELISA methods and leptin was analysed by RIA. Fibrosis and steatosis increased significantly in the CCl(4) group in comparison with the CBDL group (p < 0.01; p < 0.001). Leptin and TNF-alpha levels in CCl(4) group were higher than those in the CBDL and control groups (p < 0.05). TNF-alpha and leptin levels were not related to each another in either the CCl(4) group or the CBDL group (r=0.22, p > 0.05; r=0.19, p > 0.05). The IL-6 level was higher in the CCl(4) group in relation to severity of inflammation (p < 0.05). TNF-alpha and leptin levels were higher in animals with liver fibrosis induced by CCl(4), than they were in those whose liver fibrosis was induced by common bile duct ligation. Leptin and TNF-alpha may be less effective on the development of liver fibrosis in the group which underwent common bile duct ligation.  相似文献   

16.
Diammonium glycyrrhizinate (DG), a constitutent of Glycyrrhiza uralensis, has a protective effect on hepatic injury, hepatisis and cirrhosis. To date, the mechanism has been poorly understood, especially at the metabolic level. A metabolomic profiling study was performed to characterize the carbon tetrachloride (CCl4) induced global metabolic alteration and the protective effects of DG in Sprague-Dawley rats. Urinary and hepatic tissue metabolic profiling revealed that CCl4 perturbed the amino acid metabolism (alanine, glycine, leucine), tricarboxylic acid cycle (citrate), lipid metabolism (unsaturated fatty acids) and gut microbiota related metabolites. Our results also indicated that DG was able to attenuate CCl4 perturbed metabolic pathways and ameliorated biochemical markers of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Total cholesterol (TCHO). This global metabolomic approach also revealed full metabolic recovery takes longer than apparent and conventional histological and biochemical markers.  相似文献   

17.
18.
19.
AimThis study investigates the effects of montelukast sodium (MK) (CysLTLT1 receptor antagonist) on CCl4induced hepatopathy on rat.Material and methodsWe worked on 4 groups of 10 Wistar male rats each. The groups received as follows: group I (control group) – saline, group II – MK 5 mg/kg/day i.p. for 5 days, group III – MK 5 mg/kg/day i.p., 1 day prior to and 4 days concomitantly with CCl4 p.o., 0.3 ml/Kg/day and group IV – CCl4, p.o., 0.3 ml/Kg/day for 4 days. One day after the last administration, samples of blood were taken and alanine aminotransferase (ALT), total bilirubin (TB), direct bilirubin (DB), malondialdehyde (MDA), catalase (CAT) as well as total antioxidant capacity (TAC) were determined. The histopathological exam was performed. We also determined superoxide dismutase (SOD), MDA, CAT and GSH in liver homogenate.ResultsCompared to group IV, group III exhibited statistically significant lower levels of ALT (318 ± 15.75 versus 203.14 ± 10.28 UI, p < 0.0001), TB (3.16 ± 0.30 versus 1.99 ± 0.08 mg/dl, p < 0.0001), MDA in blood and in liver homogenate (4.98 ± 1.71 versus 2.15 ± 1.18 nmol/ml, p = 0.0004) and higher levels of SOD and CAT. Histopathologically, group IV presented important macro- and micro-vesicular hepatic steatosis and group III preserved lobular histoarchitecture and had less severe cellular lesions.ConclusionMK exhibits a partial hepatoprotective effect on rats treated with CCl4.  相似文献   

20.
During rat liver regeneration induced by carbon tetrachloride administration, the protein kinase C alpha subspecies was activated in a heterogeneous fashion, a higher number of hepatocytes expressing the protein kinase C alpha subspecies being detected in the pericentral zone than in the periportal zone. This zonal heterogeneity became maximal at 24 h after the treatment. The distribution of hepatocytes expressing the protein kinase C alpha subspecies was roughly coincident with that of hepatocytes exhibiting DNA synthesis. These results suggest that protein kinase C may play a crucial role in liver regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号