首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goodpasture disease is a prototype autoimmune disease characterized by the formation of autoantibodies against the heterotrimeric basement membrane collagen type IV, which causes a rapidly progressive glomerulonephritis. The pathogenic antibody response is directed to the non-collagenous (NC1) domain of the alpha3 chain of type IV collagen (alpha3(IV)NC1), but not to the homologous region of the alpha1(IV)NC1. To identify the conformation-dependent immunodominant epitope on the alpha3(IV)NC1, a variety of recombinant NC1 domains were constructed by replacing single residues of alpha3(IV) with the corresponding amino acids from the nonreactive alpha1(IV) chain. Replacement mutations were identified that completely destroyed the Goodpasture epitope in the alpha3(IV) chain. Based on the identification of these critical positions, the epitope was finally reconstructed within the frame of the alpha1(IV) chain. The substitution of nine discontinuous positions in the alpha1(IV)NC1 with amino acid residues from the alpha3 chain resulted in a recombinant construct that was recognized by all patients' sera (n = 20) but by none of the sera from healthy controls (n = 10). This provides, for the first time, the molecular characterization of a single immunodominant conformational epitope recognized by pathogenic autoantibodies in a human autoimmune disease, representing the basis for the development of new epitope-specific strategies in the treatment of Goodpasture disease.  相似文献   

2.
Goodpasture's (GP) disease is caused by autoantibodies that target the alpha3(IV) collagen chain in the glomerular basement membrane (GBM). Goodpasture autoantibodies bind two conformational epitopes (E(A) and E(B)) located within the non-collagenous (NC1) domain of this chain, which are sequestered within the NC1 hexamer of the type IV collagen network containing the alpha3(IV), alpha4(IV), and alpha5(IV) chains. In this study, the quaternary organization of these chains and the molecular basis for the sequestration of the epitopes were investigated. This was accomplished by physicochemical and immunochemical characterization of the NC1 hexamers using chain-specific antibodies. The hexamers were found to have a molecular composition of (alpha3)(2)(alpha4)(2)(alpha5)(2) and to contain cross-linked alpha3-alpha5 heterodimers and alpha4-alpha4 homodimers. Together with association studies of individual NC1 domains, these findings indicate that the alpha3, alpha4, and alpha5 chains occur together in the same triple-helical protomer. In the GBM, this protomer dimerizes through NC1-NC1 domain interactions such that the alpha3, alpha4, and alpha5 chains of one protomer connect with the alpha5, alpha4, and alpha3 chains of the opposite protomer, respectively. The immunodominant Goodpasture autoepitope, located within the E(A) region, is sequestered within the alpha3alpha4alpha5 protomer near the triple-helical junction, at the interface between the alpha3NC1 and alpha5NC1 domains, whereas the E(B) epitope is sequestered at the interface between the alpha3NC1 and alpha4NC1 domains. The results also reveal the network distribution of the six chains of collagen IV in the renal glomerulus and provide a molecular explanation for the absence of the alpha3, alpha4, alpha5, and alpha6 chains in Alport syndrome.  相似文献   

3.
Anti-glomerular basement membrane (GBM) antibody nephritis is caused by an autoimmune or alloimmune reaction to the NC1 domains of alpha3alpha4alpha5(IV) collagen. Some patients with X-linked Alport syndrome (XLAS) develop post-transplant nephritis mediated by pathogenic anti-GBM alloantibodies to collagen IV chains present in the renal allograft but absent from the tissues of the patient. In this work, the epitopes targeted by alloantibodies from these patients were identified and characterized. All XLAS alloantibodies recognized conformational epitopes in the NC1 domain of alpha5(IV) collagen, which were mapped using chimeric alpha1/alpha5 NC1 domains expressed in mammalian cells. Allograft-eluted alloantibodies mainly targeted two conformational alloepitopes mapping to alpha5NC1 residues 1-45 and 114-168. These regions also encompassed the major epitopes of circulating XLAS alloantibodies, which in some patients additionally targeted alpha5NC1 residues 169-229. Both kidney-eluted and circulating alloantibodies to alpha5NC1 distinctively targeted epitopes accessible in the alpha3alpha4alpha5NC1 hexamers of human GBM, unlike anti-GBM autoantibodies, which targeted sequestered alpha3NC1 epitopes. The results identify two immunodominant alpha5NC1 epitopes as major alloantigenic sites of alpha3alpha4alpha5(IV) collagen specifically implicated in the pathogenesis of post-transplant nephritis in XLAS patients. The contrast between the accessibility of these alloepitopes and the crypticity of autoepitopes indicates that distinct molecular forms of antigen may initiate the immunopathogenic processes in the two forms of anti-GBM disease.  相似文献   

4.
Type IV collagen alpha1-alpha6 chains have important roles in the assembly of basement membranes and are implicated in the pathogenesis of Goodpasture syndrome, an autoimmune disorder, and Alport syndrome, a hereditary renal disease. We report comparative sequence analyses and structural predictions of the noncollagenous C-terminal globular NC1 domain (28 sequences). The inferred tree verified that type IV collagen sequences fall into two groups, alpha1-like and alpha2-like, and suggested that vertebrate alpha3/alpha4 sequences evolved before alpha1/alpha2 and alpha5/alpha6. About one fifth of NC1 residues were identified to confer either the alpha1 or alpha2 group-specificity. These residues accumulate opposite charge in subdomain B of alpha1 (positive) and alpha2 (negative) sequences and may play a role in the stoichiometric chain selection upon type IV collagen assembly. Neural network secondary structure prediction on multiple aligned sequences revealed a subdomain core structure consisting of six hydrophobic beta-strands and one short alpha-helix with a significant hydrophobic moment. The existence of opposite charges in the alpha-helices may carry implications for intersubdomain interactions. The results provide a rationale for defining the epitope that binds Goodpasture autoantibodies and a framework for understanding how certain NC1 mutations may lead to Alport syndrome. A search algorithm, based entirely on amino acid properties, yielded a possible similarity of NC1 to tissue inhibitor of metalloproteinases (TIMP) and prompted an investigation of a possible functional relationship. The results indicate that NC1 preparations decrease the activity of matrix metalloproteinases 2 and 3 (MMP-2, MMP-3) toward a peptide substrate, though not to [14C]-gelatin. We suggest that an ancestral NC1 may have been incorporated into type IV collagen as an evolutionarily mobile domain carrying proteinase inhibitor function.  相似文献   

5.
Patients and rodents with Goodpasture's syndrome (GPS) develop severe autoimmune crescentic glomerulonephritis, kidney failure, and lung hemorrhage due to binding of pathogenic autoantibodies to the NC1 domain of the alpha3 chain of type IV collagen. Target epitopes are cryptic, normally hidden from circulating Abs by protein-protein interactions and the highly tissue-restricted expression of the alpha3(IV) collagen chain. Based on this limited Ag exposure, it has been suggested that target epitopes are not available as B cell tolerogens. To determine how pathogenic anti-GPS autoantibody responses are regulated, we generated an Ig transgenic (Tg) mouse model that expresses an Ig that binds alpha3(IV)NC1 collagen epitopes recognized by serum IgG of patients with GPS. Phenotypic analysis reveals B cell depletion and L chain editing in Tg mice. To determine the default tolerance phenotype in the absence of receptor editing and endogenous lymphocyte populations, we crossed Tg mice two generations with mice deficient in Rag. Resulting Tg Rag-deficient mice have central B cell deletion. Thus, development of Tg anti-alpha3(IV)NC1 collagen B cells is halted in the bone marrow, at which point the cells are deleted unless rescued by a Rag enzyme-dependent process, such as editing. The central tolerance phenotype implies that tolerizing self-Ag is expressed in bone marrow.  相似文献   

6.
Goodpasture (GP) autoimmune disease is caused by autoantibodies to type IV collagen that bind to the glomerular basement membrane, causing rapidly progressing glomerulonephritis. The immunodominant GP(A) autoepitope is encompassed by residues 17-31 (the E(A) region) within the noncollagenous (NC1) domain of the alpha 3(IV) chain. The GP epitope is cryptic in the NC1 hexamer complex that occurs in the type IV collagen network found in tissues and inaccessible to autoantibodies unless the hexamer dissociates. In contrast, the epitope for the Mab3 monoclonal antibody is also located within the E(A) region, but is fully accessible in the hexamer complex. In this study, the identity of residues that compose the GP(A) autoepitope was determined, and the molecular basis of its cryptic nature was explored. This was achieved using site-directed mutagenesis to exchange the alpha3(IV) residues in the E(A) region with the corresponding residues of the homologous but non-immunoreactive alpha1(IV) NC1 domain and then comparing the reactivity of the mutated chimeras with GP(A) and Mab3 antibodies. It was shown that three hydrophobic residues (Ala(18), Ile(19), and Val(27)) and Pro(28) are critical for the GP(A) autoepitope, whereas two hydrophilic residues (Ser(21) and Ser(31)) along with Pro(28) are critical for the Mab3 epitope. These results suggest that the cryptic nature of the GP(A) autoepitope is the result of quaternary interactions of the alpha 3, alpha 4, and alpha 5 NC1 domains of the hexamer complex that bury the one or more hydrophobic residues. These findings provide critical information for understanding the etiology and pathogenesis of the disease as well as for designing drugs that would mimic the epitope and thus block the binding of GP autoantibodies to autoantigen.  相似文献   

7.
Rapidly progressive glomerulonephritis in Goodpasture disease is mediated by autoantibodies binding to the non-collagenous NC1 domain of alpha3(IV) collagen in the glomerular basement membrane. Goodpasture epitopes in the native autoantigen are cryptic (sequestered) within the NC1 hexamers of the alpha3alpha4alpha5(IV) collagen network. The biochemical mechanism for crypticity and exposure for autoantibody binding is not known. We now report that crypticity is a feature of the quaternary structure of two distinct subsets of alpha3alpha4alpha5(IV) NC1 hexamers: autoantibody-reactive M-hexamers containing only monomer subunits and autoantibody-impenetrable D-hexamers composed of both dimer and monomer subunits. Goodpasture antibodies only breach the quaternary structure of M-hexamers, unmasking the cryptic epitopes, whereas D-hexamers are resistant to autoantibodies under native conditions. The epitopes of D-hexamers are structurally sequestered by dimer reinforcement of the quaternary complex, which represents a new molecular solution for conferring immunologic privilege to a potential autoantigen. Dissociation of non-reinforced M-alpha3alpha4alpha5(IV) hexamers by Goodpasture antibodies is a novel mechanism whereby pathogenic autoantibodies gain access to cryptic B cell epitopes. These findings provide fundamental new insights into immune privilege and the molecular mechanisms underlying the pathogenesis of human autoimmune Goodpasture disease.  相似文献   

8.
Type IV collagen, which has long been assumed to contain two alpha 1(IV) and one alpha 2(IV) chains, also contains alpha 3(IV), alpha 4(IV), and alpha 5(IV) chains. Stoichiometry of collagenous alpha(IV) chains differs among tissues, suggesting the existence of subclasses of type IV collagen, each with a unique chain composition. This study seeks to define, by characterization of subunit compositions of NC1 domain populations, the structural organization of type IV collagen from bovine glomerular basement membrane. NC1 hexamers from type IV collagen were separated on two affinity chromatography columns, one containing monoclonal antibodies to the alpha 3 chain, and another, to the alpha 1 chain. SDS-polyacrylamide gel electrophoresis, immunoblotting, reversed phase high-performance liquid chromatography, and enzyme-linked immunosorbent assay identified three NC1 hexamer populations: 1) a hexamer composed of (alpha 1)2 and (alpha 2)2 homodimers; 2) a hexamer composed of (alpha 3)2 and (alpha 4)2 homodimers; 3) a hexamer containing all four alpha chains connected in heterodimers, alpha 1-alpha 3 and alpha 2-alpha 4. Results suggest that there are two distinct type IV collagen molecules, one composed of alpha 1(IV) and alpha 2(IV) chains and another composed of alpha 3(IV) and alpha 4(IV) chains. Furthermore, polymerization occurs between molecules with the same chain composition and between molecules with different chain composition. Moreover, crosslinking between different alpha chains is restricted, thus limiting the number of possible macromolecular structures.  相似文献   

9.
The Goodpasture (GP) autoantigen has been identified as the alpha3(IV) collagen chain, one of six homologous chains designated alpha1-alpha6 that comprise type IV collagen (Hudson, B. G., Reeders, S. T., and Tryggvason, K. (1993) J. Biol. Chem. 268, 26033-26036). In this study, chimeric proteins were used to map the location of the major conformational, disulfide bond-dependent GP autoepitope(s) that has been previously localized to the noncollagenous (NC1) domain of alpha3(IV) chain. Fourteen alpha1/alpha3 NC1 chimeras were constructed by substituting one or more short sequences of alpha3(IV)NC1 at the corresponding positions in the non-immunoreactive alpha1(IV)NC1 domain and expressed in mammalian cells for proper folding. The interaction between the chimeras and eight GP sera was assessed by both direct and inhibition enzyme-linked immunosorbent assay. Two chimeras, C2 containing residues 17-31 of alpha3(IV)NC1 and C6 containing residues 127-141 of alpha3(IV)NC1, bound autoantibodies, as did combination chimeras containing these regions. The epitope(s) that encompasses these sequences is immunodominant, showing strong reactivity with all GP sera and accounting for 50-90% of the autoantibody reactivity toward alpha3(IV)NC1. The conformational nature of the epitope(s) in the C2 and C6 chimeras was established by reduction of the disulfide bonds and by PEPSCAN analysis of overlapping 12-mer peptides derived from alpha1- and alpha3(IV)NC1 sequences. The amino acid sequences 17-31 and 127-141 in alpha3(IV)NC1 have thus been shown to contain the critical residues of one or two disulfide bond-dependent conformational autoepitopes that bind GP autoantibodies.  相似文献   

10.
The organizational relationship between the recently identified alpha 3 chain of basement membrane collagen (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B.G. (1987) J. Biol. Chem. 262, 7874-7877) and collagen IV was determined. This was accomplished by the identification of subunits in hexamers of the NC1 domain of collagen IV that were immunoprecipitated with antibodies prepared against subunits M1, corresponding to alpha 1(IV)NC1 and alpha 2(IV)NC1, and M2, corresponding to alpha 3NC1, and by amino acid sequence analysis. The presence of at least two distinct types of hexamers was revealed, one enriched in M1 and the other enriched in M2, but in both types, M1 and M2 coexist. Evidence was also obtained for the existence of heterodimers comprised of M1 and M2. These results indicate that M2 is an integral component of the NC1 hexamer of collagen IV. The amino acid sequence of the NH2-terminal region of M2 was found to be highly related to the collagenous-NC1 junctional region of the alpha 1 chain of collagen IV. Therefore, M2 is designated alpha 3(IV)NC1 and its parent chain alpha 3(IV). These findings lead to a new concept about the structure of collagen IV: namely, 1) collagen IV is comprised of a third chain (alpha 3) together with the two classical ones (alpha 1 and alpha 2); the alpha 3(IV) chain exists within the same triple-helical molecule together with the alpha 1(IV) and alpha 2(IV) chains and/or within a separate triple-helical molecule, exclusive of alpha 1(IV) and alpha 2(IV) chains, but connected through the NC1 domains to the classical triple-helical molecule comprised of alpha 1(IV) and alpha 2(IV) chains. Additionally, a portion of those triple-helical molecules exclusive of alpha 1(IV) and alpha 2(IV) chains may be connected to each other through their NC1 domains; and 3) the epitope to which the major reactivity of autoantibodies are targeted in glomerular basement membrane in patients with Goodpasture syndrome is localized to the NC1 domain of the alpha 3(IV) chain.  相似文献   

11.
The ultrafiltration function of the glomerular basement membrane (GBM) of the kidney is impaired in genetic and acquired diseases that affect type IV collagen. The GBM is composed of five (alpha1 to alpha5) of the six chains of type IV collagen, organized into an alpha1.alpha2(IV) and an alpha3.alpha4.alpha5(IV) network. In Alport syndrome, mutations in any of the genes encoding the alpha3(IV), alpha4(IV), and alpha5(IV) chains cause the absence of the alpha3. alpha4.alpha5 network, which leads to progressive renal failure. In the present study, the molecular mechanism underlying the network defect was explored by further characterization of the chain organization and elucidation of the discriminatory interactions that govern network assembly. The existence of the two networks was further established by analysis of the hexameric complex of the noncollagenous (NC1) domains, and the alpha5 chain was shown to be linked to the alpha3 and alpha4 chains by interaction through their respective NC1 domains. The potential recognition function of the NC1 domains in network assembly was investigated by comparing the composition of native NC1 hexamers with hexamers that were dissociated and reconstituted in vitro and with hexamers assembled in vitro from purified alpha1-alpha5(IV) NC1 monomers. The results showed that NC1 monomers associate to form native-like hexamers characterized by two distinct populations, an alpha1.alpha2 and alpha3.alpha4.alpha5 heterohexamer. These findings indicate that the NC1 monomers contain recognition sequences for selection of chains and protomers that are sufficient to encode the assembly of the alpha1.alpha2 and alpha3.alpha4.alpha5 networks of GBM. Moreover, hexamer formation from the alpha3, alpha4, and alpha5 NC1 monomers required co-assembly of all three monomers, suggesting that mutations in the NC1 domain in Alport syndrome may disrupt the assembly of the alpha3.alpha4.alpha5 network by interfering with the assembly of the alpha3.alpha4.alpha5 NC1 hexamer.  相似文献   

12.
Production of an unusual collagenous protein was observed in culture of dermal fibroblasts from four patients with Marfan syndrome. The apparent molecular weight of the protein was about 185 kDa after reduction with 2-mercaptoethanol and 175 kDa after limited pepsin treatment. The 185 kDa protein was susceptible to the bacterial collagenase but resistant to the animal collagenase. Immunoprecipitation revealed the specific interaction of the pepsin-treated 175 kDa collagenous protein with monoclonal and polyclonal antibodies to human type IV collagen. From the patterns of CNBr peptide mapping the 185 kDa band was identified as alpha 1 (IV) chain. Type IV collagen in the skin is generally considered to be of non-fibroblastic origin. However, in "diseased" condition, dermal fibroblasts might produce type IV collagen. The clinical manifestation in relation to production of type IV collagen by cultured skin fibroblasts from Marfan patients is discussed.  相似文献   

13.
Vascular basement membrane is an important structural component of blood vessels. During angiogenesis this membrane undergoes many alterations and these changes are speculated to influence the formation of new capillaries. Type IV collagen is a major component of vascular basement membrane, and recently we identified a fragment of type IV collagen alpha2 chain with specific anti-angiogenic properties (Kamphaus, G. D., Colorado, P. C., Panka, D. J., Hopfer, H., Ramchandran, R., Torre, A., Maeshima, Y., Mier, J. W., Sukhatme, V. P., and Kalluri, R. (2000) J. Biol. Chem. 275, 1209-1215). In the present study we characterize two different antitumor activities associated with the noncollagenous 1 (NC1) domain of the alpha3 chain of type IV collagen. This domain was previously discovered to possess a C-terminal peptide sequence (amino acids 185-203) that inhibits melanoma cell proliferation (Han, J., Ohno, N., Pasco, S., Monboisse, J. C., Borel, J. P., and Kefalides, N. A. (1997) J. Biol. Chem. 272, 20395-20401). In the present study, we identify the anti-angiogenic capacity of this domain using several in vitro and in vivo assays. The alpha3(IV)NC1 inhibited in vivo neovascularization in matrigel plug assays and suppressed tumor growth of human renal cell carcinoma (786-O) and prostate carcinoma (PC-3) in mouse xenograft models associated with in vivo endothelial cell-specific apoptosis. The anti-angiogenic activity was localized to amino acids 54-132 using deletion mutagenesis. This anti-angiogenic region is separate from the 185-203 amino acid region responsible for the antitumor cell activity. Additionally, our experiments indicate that the antitumor cell activity is not realized until the peptide region is exposed by truncation of the alpha3(IV)NC1 domain, a requirement not essential for the anti-angiogenic activity of this domain. Collectively, these results effectively highlight the distinct and unique antitumor properties of the alpha3(IV)NC1 domain and the potential use of this molecule for inhibition of tumor growth.  相似文献   

14.
Goodpasture (GP) disease is an autoimmune disorder in which autoantibodies against the alpha3(IV) chain of type IV collagen bind to the glomerular and alveolar basement membranes, causing progressive glomerulonephritis and pulmonary hemorrhage. Two major conformational epitope regions have been identified on the noncollagenous domain of type IV collagen (NC1 domain) of the alpha3(IV) chain as residues 17-31 (E(A)) and 127-141 (E(B)) (Netzer, K.-O. et al. (1999) J. Biol. Chem. 274, 11267-11274). To determine whether these regions are two distinct epitopes or form a single epitope, three GP sera were fractionated by affinity chromatography on immobilized NC1 chimeras containing the E(A) and/or the E(B) region. Four subpopulations of GP antibodies with distinct epitope specificity for the alpha3(IV)NC1 domain were thus separated and characterized. They were designated GP(A), GP(B), GP(AB), and GP(X), to reflect their reactivity with E(A) only, E(B) only, both regions, and neither, respectively. Hence, regions E(A) and E(B) encompass critical amino acids that constitute three distinct epitopes for GP(A), GP(B), and GP(AB) antibodies, respectively, whereas the epitope for GP(X) antibodies is located in a different unknown region. The GP(A) antibodies were consistently immunodominant, accounting for 60-65% of the total immunoreactivity to alpha3(IV)NC1; thus, they probably play a major role in pathogenesis. Regions E(A) and E(B) are held in close proximity because they jointly form the epitope for Mab3, a monoclonal antibody that competes for binding with GP autoantibodies. All GP epitopes are sequestered in the hexamer configuration of the NC1 domain found in tissues and are inaccessible for antibody binding unless dissociation of the hexamer occurs, suggesting a possible mechanism for etiology of GP disease. GP antibodies have the capacity to extract alpha3(IV)NC1 monomers, but not dimers, from native human glomerular basement membrane hexamers, a property that may be of fundamental importance for the pathogenesis of the disease.  相似文献   

15.
Tumor progression may be controlled by various fragments derived from noncollagenous 1 (NC1) C-terminal domains of type IV collagen. We demonstrated previously that a peptide sequence from the NC1 domain of the alpha3(IV) collagen chain inhibits the in vitro expression of matrix metalloproteinases in human melanoma cells through RGD-independent binding to alpha(v)beta(3) integrin. In the present paper, we demonstrate that in a mouse melanoma model, the NC1 alpha3(IV)-(185-203) peptide inhibits in vivo tumor growth in a conformation-dependent manner. The decrease of tumor growth is the result of an inhibition of cell proliferation and a decrease of cell invasive properties by down-regulation of proteolytic cascades, mainly matrix metalloproteinases and the plasminogen activation system. A shorter peptide comprising the seven N-terminal residues 185-191 (CNYYSNS) shares the same inhibitory profile. The three-dimensional structures of the CNYYSNS and NC1 alpha3(IV)-(185-203) peptides show a beta-turn at the YSNS (188-191) sequence level, which is crucial for biological activity. As well, the homologous MNYYSNS heptapeptide keeps the beta-turn and the inhibitory activity. In contrast, the DNYYSNS heptapeptide, which does not form the beta-turn at the YSNS level, is devoid of inhibitory activity. Structural studies indicate a strong structure-function relationship of the peptides and point to the YSNS turn as necessary for biological activity. These peptides could act as potent and specific antitumor antagonists of alpha(v)beta(3) integrin in melanoma progression.  相似文献   

16.
Three distinctive heparin-binding sites were observed in type IV collagen by the use of rotary shadowing: in the NC1 domain and at distances 100 and 300 nm from the NC1 domain. Scatchard analysis indicated different affinities for these sites. Electron microscopic analysis of heparin-type IV collagen interaction with increasing salt concentrations showed the different affinities to be NC1 greater than 100 nm greater than 300 nm. The NC1 domain bound specifically to chondroitin/dermatan sulfate side chains as well. This binding was observed at the electron microscope and in solid-phase binding assays (where chondroitin sulfate could compete for the binding of [3H]heparin to NC1-coated substrata). The triple helix-rich, rod-like domain of type IV collagen did not bind to chondroitin/dermatan sulfate side chains. In solid-phase binding assays only heparin could compete for the binding of [3H]heparin to this domain. In order to more precisely map potential heparin-binding sites in type IV collagen, we chemically synthesized 17 arginine- and lysine-containing peptides from the alpha 1(IV) and alpha 2(IV) chains. Three peptides from the known sequence of the alpha 1(IV) and alpha 2(IV) chains were shown to specifically bind heparin: peptide Hep-I (TAGSCLRKFSTM), from the alpha 1(NC1) chain, peptide Hep-II (LAGSCLARFSTM), a peptide corresponding to the same sequence in peptide Hep-I from the alpha 2 (NC1) chain, and peptide Hep-III (GEFYFDLRLKGDK) which contained an interruption of the triple helical sequence of the alpha 1(IV) chain at about 300 nm from the NC1 domain, were demonstrated to bind heparin in solid-phase binding assays and compete for the binding of [3H]heparin to type IV collagen-coated substrata. Therefore, each of these peptides may represent a potential heparin-binding site in type IV collagen. The mapping of the binding of heparin or related structures, such as heparan sulfate proteoglycan, to specific sequences of type IV collagen could help the understanding of several structural and functional properties of this basement membrane protein as well as interactions with other basement membrane and/or cell surface-associated macromolecules.  相似文献   

17.
A large, alternate form of type XII collagen has been identified in cultures of the human epidermoid cell line WISH. This form, designated XIIA, is comprised of alpha chains that are approximately 90 kDa larger than the 220-kDa alpha chain previously characterized in extracts of fetal chicken and bovine tissues. Results from both collagenase digestion and rotary shadow analysis of partially purified material show that the increase is due to a larger NC3 domain. While both the large (XIIA) and the small (XIIB) forms of type XII collagen are identified in pulse-chase radiolabeling of fetal bovine skin explant culture, they are not related in a precursor-product fashion. Inhibition studies with alpha, alpha'-dipyridyl indicate that proper folding of the collagen helix is required for complete assembly and secretion of type XIIA in WISH cell culture. The 310-kDa alpha 1A chain is likely to represent the bovine equivalent of a second translation product, estimated to be 340 kDa, predicted from analysis of one complete chick cDNA sequence. Additionally, the amino-terminal amino acid sequence of the 220-kDa bovine alpha 1B chain was determined. This sequence is very near a potential alternate splice site predicted from analysis of chicken type XII cDNA.  相似文献   

18.
We have isolated and characterized overlapping cDNA clones which code for a previously unidentified human collagen chain. Although the cDNA-derived primary structure of this new polypeptide is very similar to the basement membrane collagen alpha 1(IV) and alpha 2(IV) chains, the carboxyl-terminal collagenous/non-collagenous junction sequence does not correspond to the junction sequence in either of the newly described alpha 3(IV) or alpha 4(IV) chains (Butkowski, R.J., Langeveld, J.P.M., Wieslander, J., Hamilton, J., and Hudson, B. G. (1987) J. Biol. Chem. 262, 7874-7877). Thus the protein presented here has been designated the alpha 5 chain of type IV collagen. Four clones encode an open reading frame of 1602 amino acids that cover about 95% of the entire chain including half of the amino-terminal 7S domain and all of the central triple-helical region and carboxyl-terminal NC1 domain. The collagenous region of the alpha 5(IV) chain contains 22 interruptions which are in most cases identical in distribution to those in both the alpha 1(IV) and alpha 2(IV) chains. Despite the relatively low degree of conservation among the amino acids in the triple-helical region of the three type IV collagen chains, analysis of the sequences clearly showed that alpha 5(IV) is more related to alpha 1(IV) than to alpha 2(IV). This similarity between the alpha 5(IV) and alpha 1(IV) chains is particularly evident in the NC1 domains where the two polypeptides are 83% identical in contrast to the alpha 5(IV) and alpha 2(IV) identity of 63%. In addition to greatly increasing the complexity of basement membranes, the alpha 5 chain of type IV collagen may be responsible for specialized functions of some of these extracellular matrices. In this regard, it is important to note that we have recently assigned the alpha 5(IV) gene to the region of the X chromosome containing the locus for a familial type of hereditary nephritis known as Alport syndrome (Myers, J.C., Jones, T.A., Pohjalainen, E.-R., Kadri, A.S., Goddard, A.D., Sheer, D., Solomon, E., and Pihlajaniemi, T. (1990) Am. J. Hum. Genet. 46, 1024-1033). Consequently, the newly discovered alpha 5(IV) collagen chain may have a critical role in inherited diseases of connective tissue.  相似文献   

19.
The COOH-terminal non-collagenous domains (NC1) of type IV collagen from glomerular basement membranes (GBM), lens capsule basement membranes, and Descemet's membrane varied in the distribution of their NC1 subunits. All of these basement membranes (BMs) contained both classical (alpha 1(IV) and alpha 2(IV)) and novel collagen chains (alpha 3(IV), alpha 4(IV) and the Alport antigen). Whereas GBM had a predominance of disulfide-bonded subunits, the lens capsule and Descemet's membrane were primarily monomeric, differences that are likely related to the functional and structural diversity of collagen in various tissues. A heterodimer formed from monomeric subunits of alpha 3(IV) and the Alport antigen exists in human and bovine GBM. This dimer represents an important cross-link of the NC1 domain of novel collagen. Additionally, immunoaffinity methodology showed that the novel BM collagen hexamers segregate into populations containing only novel BM subunits without the participation of the classical subunits (alpha 1(IV) and alpha 2(IV)). These data provided evidence for the presence of two separate networks of BM collagen: one containing alpha 1(IV) and alpha 2(IV), and the other consisting of the novel collagen chains.  相似文献   

20.
The Goodpasture antigen has been identified as the non-collagenous (NC1) domain of alpha 3(IV), a novel collagen IV chain (Saus, J., Wieslander, J., Langeveld, J., Quinones, S., and Hudson, B.G. (1988) J. Biol. Chem. 263, 13374-13380). In the present study, the exon/intron structure and sequence for 285 amino acids of human alpha 3(IV), comprising 53 amino acids of the triple-helical domain and the complete NC1 domain (232 amino acids), were determined. Based on the comparison of the amino acid sequences of the alpha 1(IV), alpha 2(IV), alpha 3(IV), and alpha 5(IV) NC1 domains, a phylogenetic tree was constructed which indicates that alpha 2(IV) was the first chain to evolve, followed by alpha 3(IV), and then by alpha 1(IV) and alpha 5(IV). The exon/intron structure of these domains is consistent with this evolution model. In addition, it appears that alpha 3(IV) changed most after diverging from the parental gene. Analysis of its primary structure reveals that, at the junction between the triple-helical and NC1 domains, there exists a previously unrecognized, highly hydrophilic region (GLKGKRGDSGSPATWTTR) which is unique to the human alpha 3(IV) chain, containing a cell adhesion motif (RGD) as an integral part of a sequence (KRGDSGSP) conforming to a number of protein kinase recognition sites. Based on primary structure data, we outline new aspects to be explored concerning the molecular basis of collagen IV function and Goodpasture syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号