首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR–Cas systems, such as the Streptococcus pyogenes CRISPR–Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. Here we have developed and optimized CRISPR–Cas9 function in the lactic acid bacterium Lactobacillus reuteri ATCC PTA 6475. We established proof-of-concept showing that CRISPR–Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR–Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR–Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR–Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR–Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria.  相似文献   

2.
Recombineering is employed to modify large DNA clones such as fosmids, BACs and PACs. Subtle and seamless modifications can be achieved using counter-selection strategies in which a donor cassette carrying both positive and negative markers inserted in the target clone is replaced by the desired sequence change. We are applying counter-selection recombineering to modify bacmid bMON14272, a recombinant baculoviral genome, as we wish to engineer the virus into a therapeutically useful gene delivery vector with cell targeting characteristics. Initial attempts to replace gp64 with Fusion (F) genes from other baculoviruses resulted in many rearranged clones in which the counter-selection cassette had been deleted. Bacmid bMON14272 contains nine highly homologous regions (hrs) and deletions were mapped to recombination between hr pairs. Recombineering modifications were attempted to decrease intramolecular recombination and/or increase recombineering efficiency. Of these only the use of longer homology arms on the donor molecule proved effective permitting seamless modification. bMON14272, because of the presence of the hr sequences, can be considered equivalent to a highly repetitive BAC and, as such, the optimized method detailed here should prove useful to others applying counter-selection recombineering to modify BACs or PACs containing similar regions of significant repeating homologies.  相似文献   

3.
Xu J  Fonseca DM 《Mitochondrial DNA》2011,22(5-6):155-158
Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.  相似文献   

4.
A specially optimized restriction analysis of highly repetitive DNA elements, called DNA taxonprint, was applied for phylogenetic study of primates and lizards. It was shown that electrophoretic bands of DNA repeats revealed by the taxonprint technique have valuable properties for molecular systematics. Approximately half of taxonprint bands (TB) are invariable and do not disappear from the genomes during evolution or change spontaneously. Presumably these invariable bands are restriction fragments of dispersed DNA repeats. Another group represents variable taxonprint bands that differ even between closely related species. These variable bands are probably represented by tandem DNA repeats and could be used as species-specific markers. It was shown that taxonprint bands are independent characters since the appearance of a new taxonprint band does not change the previous band pattern. Phylogenetic reconstruction carried out on taxonprint data demonstrated that this approach could be of general utility for molecular systematics and species identification. Received: 12 January 1998 / Accepted: 16 May 1998  相似文献   

5.
Wide arrays of repetitive DNA sequences form an important part of eukaryotic genomes. These repeats appear to evolve as coherent families, where repeats within a family are more similar to each other than to other orthologous representatives in related species. The continuous homogenization of repeats, through selective and non-selective processes, is termed concerted evolution. Ascertaining the level of variation between repeats is crucial to determining which evolutionary model best explains the homogenization observed for these sequences. Here, for the grasshopper Eyprepocnemis plorans, we present the analysis of intragenomic diversity for two repetitive DNA sequences (a satellite DNA (satDNA) and the 45S rDNA) resulting from the independent microdissection of several chromosomes. Our results show different homogenization patterns for these two kinds of paralogous DNA sequences, with a high between-chromosome structure for rDNA but no structure at all for the satDNA. This difference is puzzling, considering the adjacent localization of the two repetitive DNAs on paracentromeric regions in most chromosomes. The disparate homogenization patterns detected for these two repetitive DNA sequences suggest that several processes participate in the concerted evolution in E. plorans, and that these mechanisms might not work as genome-wide processes but rather as sequence-specific ones.  相似文献   

6.
Repetitive DNA sequences play paramount biological roles, such as gene variation and regulatory functions on gene expressions. Until now, detection of various kinds of DNA repeats accurately is still an open problem. In this article, we propose a new method and a visualization tool for detecting DNA repeats in a 2D plane of location and frequency by using optimized moving window spectral analysis. The spectrogram can display the general distribution of repetitive sequences while showing the repeat period, length and location without any prior knowledge. Experimental results demonstrate that our method is accurate and robust even under the condition of excessive mutating and interleaving. AVAILABILITY: Available on http://www.hy8.com/~tec/sw01/omwsa01.zip. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

7.
8.
G  bor T  th  Jerzy Jurka 《Gene》1994,140(2):285-288
This paper describes systematic sequence studies of repetitive DNA in and around translocation breakpoints on chromosomes 9 and 22, which are involved in the formation of the Philadelphia chromosome in acute leukemias. In addition to Alu repeats described in previous studies, the breakpoint regions appear to contain many other repetitive elements, including a member of a new repetitive family (MER34) reported in this paper. Identification of these repeats broadens current studies on the possible involvement of repetitive DNA in this intensely studied chromosomal translocation.  相似文献   

9.
Three models describing frameshift mutations are "classical" Streisinger slippage, proposed for repetitive DNA, and "misincorporatation misalignment" and "dNTP-stabilized misalignment," proposed for non-repetitive DNA. We distinguish between models using pre-steady state fluorescence kinetics to visualize transiently misaligned DNA intermediates and nucleotide incorporation products formed by DNA polymerases adept at making small frameshift mutations in vivo. Human polymerase (pol) mu catalyzes Streisinger slippage exclusively in repetitive DNA, requiring as little as a dinucleotide repeat. Escherichia coli pol IV uses dNTP-stabilized misalignment in identical repetitive DNA sequences, revealing that pol mu and pol IV use different mechanisms in repetitive DNA to achieve the same mutational end point. In non-repeat sequences, pol mu switches to dNTP-stabilized misalignment. pol beta generates -1 frameshifts in "long" repeats and base substitutions in "short" repeats. Thus, two polymerases can use two different frameshift mechanisms on identical sequences, whereas one polymerase can alternate between frameshift mechanisms to process different sequences.  相似文献   

10.
A census of protein repeats.   总被引:20,自引:0,他引:20  
In this study, we analyzed all known protein sequences for repeating amino acid segments. Although duplicated sequence segments occur in 14 % of all proteins, eukaryotic proteins are three times more likely to have internal repeats than prokaryotic proteins. After clustering the repetitive sequence segments into families, we find repeats from eukaryotic proteins have little similarity with prokaryotic repeats, suggesting most repeats arose after the prokaryotic and eukaryotic lineages diverged. Consequently, protein classes with the highest incidence of repetitive sequences perform functions unique to eukaryotes. The frequency distribution of the repeating units shows only weak length dependence, implicating recombination rather than duplex melting or DNA hairpin formation as the limiting mechanism underlying repeat formation. The mechanism favors additional repeats once an initial duplication has been incorporated. Finally, we show that repetitive sequences are favored that contain small and relatively water-soluble residues. We propose that error-prone repeat expansion allows repetitive proteins to evolve more quickly than non-repeat-containing proteins.  相似文献   

11.
A total of 36 clones were randomly selected from a recombinant DNA library of small polydisperse circular DNA (spcDNA) molecules from HeLa cells and were shown to contain repetitive sequences of different reiteration frequencies that ranged from several hundred to several hundred thousand per genome. Sequencing of representative clones revealed tandem repeats of alphoid (alpha) satellite DNA, clustered repeats of the Alu family, KpnI family sequences, tandem repeats of an alpha satellite DNA specific to the X chromosome (alpha X), and A + T-rich segments carrying short stretches of poly(A) or poly(T). DNA rearrangement was frequently found in the repetitive sequences enriched in these spcDNA clones. Short regions of homology that were patchy and inverted were often found, especially at the novel joint where spcDNA sequences are circularized. The presence of these inverted repeats suggests that HeLa spcDNAs are formed by a mechanism that involves looping out of the spcDNA region and joining of the flanking DNA by illegitimate recombination.  相似文献   

12.
13.
We have characterized a family of repetitive DNA elements in the beta-globin locus of the goat. These sequences are structurally analogous to the Alu families of repeats of other mammals. Repetitive elements are located both in the intervening sequences and in the intergenic regions of the goat beta-globin locus. Nucleotide sequence analysis of five repetitive elements located within the large intervening sequence of the beta-like globin genes, and four repeats located 5' to the major developmentally regulated beta-globin genes has resulted in the definition of a consensus sequence for this family of repeats.  相似文献   

14.
We have isolated four repetitive DNA fragments from maize DNA. Only one of these sequences showed homology to sequences within the EMBL database, despite each having an estimated copy number of between 3 x 104 and 5 x 104 per haploid genome. Hybridization of the four repeats to maize mitotic chromosomes showed that the sequences are evenly dispersed throughout most, but not all, of the maize genome, whereas hybridization to yeast colonies containing random maize DNA fragments inserted into yeast artificial chromosomes (YACs) indicated that there was considerable clustering of the repeats at a local level. We have exploited the distribution of the repeats to produce repetitive sequence fingerprints of individual YAC clones. These fingerprints not only provide information about the occurrence and organization of the repetitive sequences within the maize genome, but they can also be used to determine the organization of overlapping maize YAC clones within a contiguous fragment (contigs). Key words : maize, repetitive DNA, YACs.  相似文献   

15.
16.
Genomic DNA contains a wide variety of repetitive sequences. In Escherichia coli, there have been several classes of repetitive sequences reported, some of which cluster as tandem repeats. We propose a novel method for analyzing symbolic sequences by two-dimensional pattern formation with color-coding. We applied this method for searching tandem repeats in the E. coli genome and found approximately 50 repeats with periods longer than 30 bases. The longest repeat has a period of 1267 bases.  相似文献   

17.
Recombineering is an in vivo genetic engineering technique involving homologous recombination mediated by phage recombination proteins. The use of recombineering methodology is not limited by size and sequence constraints and therefore has enabled the streamlined construction of bacterial strains and multi-component plasmids. Recombineering applications commonly utilize singleplex strategies and the parameters are extensively tested. However, singleplex recombineering is not suitable for the modification of several loci in genome recoding and strain engineering exercises, which requires a multiplex recombineering design. Defining the main parameters affecting multiplex efficiency especially the insertion of multiple large genes is necessary to enable efficient large-scale modification of the genome. Here, we have tested different recombineering operational parameters of the lambda phage Red recombination system and compared singleplex and multiplex recombineering of large gene sized DNA cassettes. We have found that optimal multiplex recombination required long homology lengths in excess of 120 bp. However, efficient multiplexing was possible with only 60 bp of homology. Multiplex recombination was more limited by lower amounts of DNA than singleplex recombineering and was greatly enhanced by use of phosphorothioate protection of DNA. Exploring the mechanism of multiplexing revealed that efficient recombination required co-selection of an antibiotic marker and the presence of all three Red proteins. Building on these results, we substantially increased multiplex efficiency using an ExoVII deletion strain. Our findings elucidate key differences between singleplex and multiplex recombineering and provide important clues for further improving multiplex recombination efficiency.  相似文献   

18.
A Source of Small Repeats in Genomic DNA   总被引:4,自引:0,他引:4       下载免费PDF全文
D. Fieldhouse  B. Golding 《Genetics》1991,129(2):563-572
The processes of spontaneous mutation are known to be influenced by neighboring DNA. Imperfect nearby repeats in the neighboring DNA have been observed to mutate to form perfect repeats. The repeats may be either direct or inverted. Such a mutational process should create perfect direct and inverted repeats in intergenic DNA. A larger than expected number of direct repeats has generally been observed in a wide range of species in both coding and noncoding DNA. Simulations are carried out to determine how this process might influence the repetitive structure of genomic DNA. These simulations show that small repeats created by this kind of a mutational process can explain the excess number of repeats in intergenic DNA. The simulations suggest that this mechanism may be a common cause of mutations, including single-base changes. The influences of the distance between imperfect repeats and of their degree of similarity are investigated.  相似文献   

19.
Two fractions of the repeats belonging to intermediate frequency repetitive DNA were isolated from the total pigeon nuclear DNA fragmented to about 450 nucleotides. One fraction was designated as rare repeats (repetition frequency about 35 per haploid genome) and another termed as moderate repeats (repetition frequency about 2500 per haploid genome). The rare repeats, which constitute about 7% of the total DNA, include at least 75% of the repetitive DNA sequences transcribed into the high molecular fraction (>45S) of HnRNA in erythroid cells. These repeats have properties compatible with the characteristics of the class of low frequency interspersed DNA found in genomes of many other Metazoan species. The moderate repeats contribute only about 10–20% of the total repetitive DNA copies present in >45S HnRNA and differ from the rare repeats in some other properties. — The possible role of the rare repeats in the genome is discussed.  相似文献   

20.
Zhang D  Yang Q  Ding Y  Cao X  Xue Y  Cheng Z 《Genomics》2008,92(2):107-114
Tandem repetitive sequences are DNA motifs common in the genomes of eukaryotic species and are often embedded in heterochromatic regions. In most eukaryotes, ribosomal genes, as well as centromeres and telomeres or subtelomeres, are associated with abundant tandem arrays of repetitive sequences and typically represent the final barriers to completion of whole-genome sequencing. The nature of these repeats makes it difficult to estimate their actual sizes. In this study, combining the two cytological techniques DNA fiber-FISH and pachytene chromosome FISH allowed us to characterize the tandem repeats distributed genome wide in Antirrhinum majus and identify four types of tandem repeats, 45S rDNA, 5S rDNA, CentA1, and CentA2, representing the major tandem repetitive components, which were estimated to have a total length of 18.50 Mb and account for 3.59% of the A. majus genome. FISH examination revealed that all the tandem repeats correspond to heterochromatic knobs along the pachytene chromosomes. Moreover, the methylation status of the tandem repeats was investigated in both somatic cells and pollen mother cells from anther tissues using an antibody against 5-methylcytosine combined with sequential FISH analyses. Our results showed that these repeats were hypomethylated in anther tissues, especially in the pollen mother cells at pachytene stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号