首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in the dry weights of various parts of the castor bean seedling showed that the rates of transfer of material through the cotyledons to the embryonic axis exceeded 2 mg/hour after 5 to 6 days of germination. The sugar present in the endosperm was predominantly, and in the cotyledon almost exclusively, sucrose. Anatomical features were described which contribute to the efficiency of the cotyledons as organs of absorption and transmittal of sucrose to the embryonic axis, where hexoses are much more prevalent.  相似文献   

2.
The biosynthesis of nonspecific lipid transfer proteins (ns-LTPs) in germinating castor bean (Ricinus communis L.) seeds were investigated. Lipid transfer activities of ns-LTPs in the cotyledons, axis, and endosperm increased with growth after germination. The activity increases were accompanied by increased amounts of ns-LTPs in each tissue, as measured by immunoblot using anti-ns-LTP serum. These results suggest that the ns-LTPs are synthesized de novo in each tissue after germination and not activated from inactive proteins synthesized before germination. Comparison of the immunoblot products in each tissue from 4-day-old seedlings indicate the occurrence of tissue-specific isoforms of ns-LTPs; 9 kilodaltons (major) and 7 kilodaltons (minor) in the cotyledons, and 7 kilodaltons (major) and 9 kilodaltons (minor) in the axis, whereas only the 8-kilodalton ns-LTP is present in the endosperm. In vitro translation from poly(A)+ RNAs from three tissues of castor bean seedlings and the detection of immunoprecipitated products indicate that translatable mRNAs for ns-LTPs exist in the three tissues a day before the synthesis of ns-LTPs; the translation products, which are 3.5 to 4.0 kilodaltons larger than ns-LTPs, were processed to the mature ns-LTPs. The production of mature ns-LTPs from translatable mRNAs without any delay suggests that gene expression of ns-LTPs in castor bean seedlings is controlled at a step before the formation of translatable mRNAs.  相似文献   

3.
Post-germinative growth in castor bean ( Ricinus communis L. cv. Hale) seedlings was investigated to determine whether lipolytic enzyme synthesis and lipid breakdown was a function of the embryo axis or simply based on a source-sink mechanism connected with sucrose produced during mobilization of storage lipid. Endosperm and cotyledons were excised from the embryo axis at 24 h intervals and were then incubated in Petri dishes containing water or 0.1 M sucrose for 24 h. Excised endosperm showed similar or higher malate synthase (MS, EC 4.1.3.2) and isocitrate lyase (ICL, EC 4.1.3.1) activities and increased lipolysis when compared with endosperm obtained from similarly intact seedlings of the same age. In contrast, cotyledonary ICL and MS activity was up to 50% lower and lipolysis was only slightly affected in excised material when compared with cotyledons obtained from intact seedlings. Incubating endosperm in sucrose had no effect on the development of the above enzyme activities or lipid content, when compared with material incubated in water only. In contrast, cotyledonary MS and ICL activities were up to 70% lower in sucrose and lipolysis substantially inhibited. Lipid breakdown and the development of lipolytic enzyme activity in cotyledons seem to be dependent on the presence of the endosperm. It is concluded that enzyme regulation in castor bean seedlings cannot entirely be explained by axis control or source-sink relationships.  相似文献   

4.
The intracellular distribution of enzymes capable of catalyzing the reactions from oxaloacetate to sucrose in germinating castor bean endosperm has been studied by sucrose density gradient centrifugation. One set of glycolytic enzyme activities was detected in the plastids and another in the cytosol. The percentages of their activities in the plastids were less than 10% of total activities except for aldolase and fructose diphosphatase. The activities of several of the enzymes present in the plastids seem to be too low to account for the in vivo rate of gluconeogenesis whereas those in the cytosol are quite adequate. Furthermore, phosphoenolypyruvate carboxykinase, sucrose phosphate synthetase, and sucrose synthetase, which catalyze the first and final steps in the conversion of oxaloacetate to sucrose, were found only in the cytosol. It is deduced that in germinating castor bean endosperm the complete conversion of oxaloacetate to sucrose and CO2 occurs in the cytosol. The plastids contain some enzymes of the pentose phosphate pathway, pyruvate dehydrogenase and fatty acid synthetase in addition to the set of glycolytic enzymes. This suggests that the role of the plastid in the endosperm of germinating castor bean is the production of fatty acids from sugar phosphates, as it is known to be in the endosperm during seed development.  相似文献   

5.
Changes in the dry weights of various parts of the castor bean seedling showed that the rates of transfer of material through the cotyledons to the embryonic axis exceeded 2 mg/hour after 5 to 6 days of germination. The sugar present in the endosperm was predominantly, and in the cotyledon almost exclusively, sucrose. Anatomical features were described which contribute to the efficiency of the cotyledons as organs of absorption and transmittal of sucrose to the embryonic axis, where hexoses are much more prevalent.The ability of the cotyledons to absorb sucrose survived removal of the endosperm from the seedling. A series of experiments is described in which the cotyledons of such excised seedlings were immersed in sucrose-(14)C and measurements made of uptake and of translocation to various parts of the seedling. Increasing rates of absorption were observed as the sucrose concentration was raised to 0.5 m and these rates were maintained for several hours. Removal of the embryonic axis (hypocotyl plus roots) drastically altered both the response to sucrose concentration and the time course of absorption by the cotyledons.More than 80% of the sugar normally entering the cotyledons from the endosperm is transmitted to the embryonic axis and this extensive turnover was seen also in pulse/chase experiments with excised seedlings. The cotyledons of excised seedlings absorbed sucrose against high apparent concentration gradients. The absorption was stimulated by phosphate and had a pH optimum at about pH 6.4. It was inhibited by arsenate, azide and 2,4-dinitrophenol.  相似文献   

6.
Hydrolases in vacuoles from castor bean endosperm   总被引:22,自引:15,他引:7       下载免费PDF全文
Vacuoles were prepared from endosperm tissue of 4-day-old castor bean seedlings (Ricinus communis var. Hale) and purified on a stepped sucrose gradient. It was shown by assays of marker enzymes that there was only trace contamination of the final preparation by other organelles (mitochondria, glyoxysomes, nuclei, spherosomes, and plastids) and by cytoplasmic components. Hydrolytic enzymes (acid protease, carboxypeptidase, phosphodiesterase, RNAase, phytase and β-glucosidase) were present in the isolated vacuoles in amounts indicating a primarily vacuolar localization in vivo. The vacuoles also contained storage protein and high concentrations of sucrose. The over-all results indicate that the vacuoles from castor bean endosperm are the site of hydrolysis of the constituents of the protein bodies and are a temporary storage compartment for the sucrose produced from fat and protein reserves.  相似文献   

7.
Alpi A  Beevers H 《Plant physiology》1981,68(4):851-853
Leupeptin, a tripeptide inhibitor of some proteinases, was shown previously to maintain the stability of several enzymes (isocitrate lyase, fumarase, and catalase) in crude extracts of castor bean endosperm. This reagent is now shown to inhibit the breakdown of water-soluble and crystalloidstorage proteins of the protein bodies isolated from castor beans by the SH-proteinase and it also inhibits the endopeptidase from mung beans. When suitably introduced into the endosperm of dry castor beans it strongly inhibits germination and seedling development. Application of leupeptin to endosperm halves removed from the seed prevents the normal development of enzymes concerned with gluconeogenesis from fat and drastically curtails sugar production. The results suggest that the SH-proteinase is intimately involved in the mobilization of storage proteins.  相似文献   

8.
A substantial portion of the ribulose 1,5-diphosphate carboxylase activity in the endosperm of germinating castor beans (Ricinus communis var. Hale) is recovered in the proplastid fraction. The partially purified enzyme shows homology with the enzyme from spinach (Spinacia oleracea) leaves, as evidenced by its reaction against antibodies to the native spinach enzyme and to its catalytic subunit. The enzyme from the endosperm of castor beans has a molecular weight of about 500,000 and, with the exception of a higher affinity for ribulose 1,5-diphosphate, has similar kinetic properties to the spinach enzyme. The castor bean carboxylase is inhibited by oxygen and also displays ribulose 1,5-diphosphate oxygenase activity with an optimum at pH 7.5.  相似文献   

9.
Germinating peanut cotvledons and germinating castor bean endosperm have been compared with respect to their rates of fat dissimilation and with respect to the anatomical distribution of respiratory activity. The lipid mobilization is much slower in peanut cotyledons than in castor bean endosperm. Light has essentially no effect on either system. As germination progresses, the majority of the succinic dehydrogenase and cytochrome oxidase activities become localized in the vein regions of peanut cotyledons. In the castor bean endosperm these two activities are uniformly distributed throughout the storage parenchyma and increase with germination until the organ becomes soft and visibly senescent.  相似文献   

10.
Leucoplast pyruvate kinase from endosperm of developing castor oil seeds (Ricinus communis L.; cv Baker) has been purified 1370-fold to a specific activity of 41.1 micromoles pyruvate produced per minute per milligram protein. Nondenaturing polyacrylamide gel electrophoresis of the purified enzyme resulted in a single protein staining band that co-migrated with pyruvate kinase activity. However, following sodium dodecyl sulfate polyacrylamide electrophoresis, two major protein staining bands of 57.5 and 44 kilodaltons, which occurred in an approximate 2:1 ratio, respectively, were observed. The native molecular mass was approximately 305 kilodaltons. Rabbit antiserum raised against the final enzyme preparation effectively immunoprecipitated leucoplast pyruvate kinase. The 57.5- and 44-kilodalton polypeptides are immunologically related as both proteins cross-reacted strongly on Western blots probed with the rabbit anti-(developing castor seed endosperm leucoplast pyruvate kinase) immunoglobulin that had been affinity-purified against the 57.5-kilodalton polypeptide. In contrast, pyruvate kinases from the following sources showed no immunological cross-reactivity with the same immunoglobulin: the cytosolic enzyme from developing or germinating castor bean endosperm; chloroplastic pyruvate kinase from expanding leaves of the castor oil plant; chloroplastic or cytosolic pyruvate kinase from the green alga, Selenastrum minutum; and mammalian or bacterial pyruvate kinases.  相似文献   

11.
Redox activities, NADH:ferricyanide reductase, NAD(P)H:cytochrome reductases, and NADH:ascorbate free-radical reductase, are present in endoplasmic reticulum (ER) and glyoxysomal membranes from the endosperm of germinating castor bean (Ricinus comminus L. var Hale). The development of these functions was followed in glyoxysomes and ER isolated on sucrose gradients from castor bean endosperm daily from 0 through 6 days of germination. On a per seed basis, glyoxysomal and ER protein, glyoxysomal and ER membrane redox enzyme activities, and glyoxylate cycle activities peaked at day 4 as did the ER membrane content of cytochrome P-450. NADH:ferricyanide reductase was present in glyoxysomes and ER isolated from dry seed. This activity increased only about twofold in glyoxysomes and threefold in ER during germination relative to the amount of protein in the respective fractions. The other reductases, NADH:cytochrome reductase and NADH:ascorbate free-radical reductase, increased about 10-fold in the ER relative to protein up to 4 to 5 days, then declined. NADPH:cytochrome reductase reached maximum activity relative to protein at day 2 in both organelles. The increases in redox activities during germination indicate that the membranes of the ER and glyoxysome are being enriched with redox proteins during their development. The development of redox functions in glyoxysomes was found to be coordinated with development of the glyoxylate cycle.  相似文献   

12.
The stress inducibility of dehydrin protein production in seedlingsof castor bean was analysed by subjecting them to ABA and variouswater-deficit-related treatments including desiccation, waterstress, high salt, high osmolarity, and low temperature. A furthergoal was to determine whether the immature seed (at stages priorto major dehydrin synthesis) would respond in a similar mannerto these stresses. A number of dehydrin-like proteins increasedin seedlings subjected to the various stress treatments. Inthe endosperm, these appear to be different from the dehydrin-relatedpolypeptides that are induced during late seed development andwhich persist following germination/growth of mature seeds.In the endosperm of seedlings, ABA, water stress and desiccationinduced the same dehydrin polypeptides, while high osmolarity,high salt and low temperature induced a different set. Stress-specificdifferences in dehydrin synthesis were also found in the cotyledonsand radicle of castor bean seedlings; however, dehydrins indu-cibleby exogenous ABA were consistently produced. Immature seedstreated with ABA or subjected to stress responded by producingdehydrin-like proteins associated with late development; however,the same proteins were induced following detachment of immatureseeds from the parent plant and maintenance on water. When seedlingswere exposed simultaneously to GA and either ABA, high salt,or low temperature, dehydrin production was suppressed. It isconcluded that dehydrin production in castor bean is tissue-specificand is dependent upon the physiological stage of the seed. Inthe endosperm, the response to different stresses may rely uponmore than one signal trans-duction pathway. Key words: Dehydrin, castor bean, ABA, desiccation  相似文献   

13.
Kennode, A. R, and Bewley, J. D. 1988. The role of maturationdrying in the transition from seed development to germination.V. Responses of the immature castor bean embryo to isolationfrom the whole seed; a comparison with premature desiccation.—J.exp. Bot. 39: 487–497. Desiccation is an absolute requirement for germination and post-germinativegrowth of whole seeds of the castor bean, whether desiccationis imposed prematurely during development, at 35 d after pollination(DAP) or occurs naturally during late maturation (50–60DAP). Desiccation also plays a direct role in the inductionof post-germinative enzyme synthesis in the cotyledons of embryosin the intact seed; this event is not simply due to the presenceof a growing axis. Isolation of embryos from the developingcastor bean seed at 35 DAP results in both germination and growth,despite the absence of a desiccation event. We have comparedthe metabolic consequences of premature drying of whole seeds(35 DAP) and isolation of the developing 35 DAP embryos. Inboth cases, hydrolytic events involved in the mobilization ofstored protein reserves proceed in a similar manner and mirrorthose events occurring within germinated mature seeds. Thereare differences, however, for post-germinative enzyme (LeuNAaseand isocitrate lyase) production occurs to a lesser extent innon-dried isolated embryos than in those from prematurely dried(35 DAP) whole seeds, or from mature dry (whole) seeds. Desiccationof the 35 DAP whole seed does not alter the subsequent responseof the embryo upon isolation. Thus, while drying does not affectthe metabolism of isolated embryos, it has a profound effecton that of embryos within the intact seed. Tissues surroundingthe embryo in the developing intact seed (viz. the endosperm)maintain its metabolism in a developmental mode and inhibitgermination. This effect of the surrounding tissues can onlybe overcome by drying or by their removal. Key words: Metabolism, isolation, desiccation, embryo, endosperm, castor bean, development, germination  相似文献   

14.
Casbene is a macrocyclic diterpene hydrocarbon that is produced in young castor bean (Ricinus communis L.) seedlings after they are exposed to Rhizopus stolonifer or other fungi. The activities of enzymes that participate in casbene biosynthesis were measured in cell-free extracts of 67-hour castor bean seedlings (a) that had been exposed to R. stolonifer spores 18 hours prior to the preparation of extracts, and (b) that were maintained under aseptic conditions throughout. Activity for the conversion of mevalonate to isopentenyl pyrophosphate does not change significantly after infection. On the other hand, the activities of farnesyl pyrophosphate synthetase (geranyl transferase), geranylgeranyl pyrophosphate synthetase (farnesyl transferase), and casbene synthetase are all substantially greater in infected tissues in comparison with control seedlings maintained under sterile conditions. The subcellular localization of these enzymes of casbene biosynthesis was investigated in preparations of microsomes, mitochondria, glyoxysomes, and proplastids that were resolved by centrifugation in linear and step sucrose density gradients of homogenates of castor bean endosperm tissue from both infected and sterile castor bean seedlings. Isopentenyl pyrophosphate isomerase and geranyl transferase activities are associated with proplastids from both infected and sterile seedlings. Significant levels of farnesyl transferase and casbene synthetase are found only in association with the proplastids of infected tissues and not in the proplastids of sterile tissues. From these results, it appears that at least the last two steps of casbene biosynthesis, geranylgeranyl pyrophosphate synthetase and casbene synthetase, are induced during the process of infection, and that the enzymes responsible for the conversion of isopentenyl pyrophosphate to casbene are localized in proplastids.  相似文献   

15.
Abstract

Effects of inhibitors of protein synthesis on the development of metabolic activity in the endosperm during the germination of castor bean seeds. — The effect of chloramphenicol, streptomycin and actinomycin-C on the increase of the activities of glyceroaldehyde-phosphate dehydrogenase, aldolase, glucose-6-phosphate dehydrogenase, fructose 1–6 diphosphate-1-phosphatase, phosphomonoesterase, in the endosperm of germinating castor bean seeds was investigated.

In all cases, the protein synthesis inhibitors depressed the activation of the enzymes tested: in particular, actinomycin (50 μg/ml) completely suppressed the increase of the activities.

The development of the rate of oxygen uptake and the conversion of fats to sugars was strongly affected by the inhibitors.

These data suggest that the increase of the activities of several enzymes in the germinating endosperm is dependent on enzyme synthesis rather than on the conversion from the inactive to the active form of the enzymes.  相似文献   

16.
All the glutamate dehydrogenase activity in developing castor bean endosperm is shown to be located in the mitochondria. The enzyme can not be detected in the plastids, and this is probably not due to the inactivation of an unstable enzyme, since a stable enzyme can be isolated from castor bean leaf chloroplasts. The endosperm mitochondrial glutamate dehydrogenase consists of a series of differently charged forms which stain on polyacrylamide gel electrophoresis with both NAD+ and NADP+. The chloroplast and root enzymes differ from the endosperm enzyme on polyacrylamide gel electrophoresis. The amination reaction of all the enzymes is affected by high salt concentrations. For the endosperm enzyme, the ratio of activity with NADH to that with NADPH is 6.3 at 250 millimolar NH4Cl and 1.5 at 12.5 millimolar NH4Cl. Km values for NH4+ and NAD(P)H are reduced at low salt concentrations. The low Km values for the nucleotides may favor a role for glutamate dehydrogenase in ammonia assimilation in some situations.  相似文献   

17.
18.
A papain-type cysteine endopeptidase with a molecular mass of 35 kDa for the mature enzyme, was purified from germinating castor bean (Ricinus communis L.) endosperm by virtue of its capacity to process the glyoxysomal malate dehydrogenase precursor protein to the mature subunit in vitro (C. Gietl et al., 1997, Plant Physiol 113: 863–871). The cDNA clones from endosperm of germinating seedlings and from developing seeds were isolated and sequence analysis revealed that a very similar or identical peptidase is synthesised in both tissues. Sequencing established a presequence for co-translational targeting into the endoplasmic reticulum, an N-terminal propeptide and a C-terminal KDEL motif for the castor bean cysteine endopeptidase precursor. The 45-kDa pro-enzyme stably present in isolated organelles was enzymatically active. Immunocytochemistry with antibodies raised against the purified cysteine endopeptidase revealed highly specific labelling of ricinosomes, organelles which co-purify with glyoxysomes from germinating Ricinus endosperm. The cysteine endopeptidase from castor bean endosperm, which represents a senescing tissue, is homologous to cysteine endopeptidases from other senescing tissues such as the cotyledons of germinating mung bean (Vigna mungo) and vetch (Vicia sativa), the seed pods of maturing French bean (Phaseolus vulgaris) and the flowers of daylily (Hemerocallis sp.). Received: 20 December 1997 / Accepted: 18 March 1998  相似文献   

19.
Currently, the Annonaceae family is characterised by the production of acetogenins (ACGs), and also by the biosynthesis of alkaloids, primarily benzylisoquinolines derived from tyrosine. The objective of this study was to confirm the presence of alkaloids and acetogenins in the idioblasts of the endosperm and the embryonic axis of A. macroprophyllata seeds in germination. The Dragendorff, Dittmar, Ellram, and Lugol reagents were used to test for alkaloids, and Kedde’s reagent was used to determine the presence of acetogenins in fresh sections of the endosperm and embryonic axis of seeds after twelve days of germination. A positive reaction was observed for all the reagents, and the presence of alkaloids and acetogenins was confirmed in the idioblasts of the endosperm and those involved in the differentiation of the embryonic axis of the developing seedling. We concluded that the idioblasts store both metabolites, acetogenins and alkaloids. Beginning at differentiation, the idioblasts of the embryonic axis simultaneously biosynthesise acetogenins and alkaloids that are characteristic of the species during the development of the seedling. The method used here can be applied to histochemically confirm the presence of acetogenins and alkaloids in tissues and structures of the plant in different stages of its life cycle.Key words: Annona seeds, acetogenins, Kedde’s reagent, alkaloid’s reagents, histochemistry, idioblasts, embryonic axis  相似文献   

20.
Wang X  Moore TS 《Plant physiology》1990,93(1):250-255
Cytidine 5′-triphosphate:choline-phosphate cytidylyltransferase (EC 2.7.7.15) has been purified to near homogeneity (3350-fold) from castor bean (Ricinus communis L. var Hale) endosperm. The steps of purification included a differential solubilization of this enzyme with n-octyl β-d-glucopyranoside (OGP) and column chromatography on sequential DEAE-sepharose, sepharose-6B, and second DEAE-sepharose columns. The uses of appropriate concentrations of the detergent, OGP, in each step were crucial to obtain the highly purified enzyme. The purified enzyme gave a single protein band on nondenaturing polyacrylamide gel electrophoresis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed one major protein band of 40 kilodaltons. Gel filtration chromatography indicated that native cytidylyltransferase was approximately 155 kilodaltons, suggesting that it exists naturally as a tetramer. The purified enzyme used methylethanolamine-phosphate as a substrate but not ethanolamine-phosphate and dimethylethanolamine-phosphate. ATP and other nucleotides tested showed little effect on the purified enzyme. The purified enzyme activity was stimulated by both phospholipids extracted from castor bean endosperm and phosphatidylcholineoleate vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号