首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
CDC37 is required for p60v-src activity in yeast.   总被引:6,自引:0,他引:6       下载免费PDF全文
Mutations in genes encoding the molecular chaperones Hsp90 and Ydj1p suppress the toxicity of the protein tyrosine kinase p60v-src in yeast by reducing its levels or its kinase activity. We describe isolation and characterization of novel p60v-src-resistant, temperature-sensitive cdc37 mutants, cdc37-34 and cdc37-17, which produce less p60v-src than the parental wild-type strain at 23 degrees C. However, p60v-src levels are not low enough to account for the resistance of these strains. Asynchronously growing cdc37-34 and cdc37-17 mutants arrest in G1 and G2/M when shifted from permissive temperatures (23 degrees C) to the restrictive temperature (37 degrees C), but hydroxyurea-synchronized cdc37-34 and cdc37-17 mutants arrest in G2/M when released from the hydroxyurea block and shifted from 23 to 37 degrees C. The previously described temperature-sensitive cdc37-1 mutant is p60v-src-sensitive and produces wild-type amounts of p60v-src at permissive temperatures but becomes p60v-src-resistant at its restrictive temperature, 38 degrees C. In all three cdc37 mutants, inactivation of Cdc37p by incubation at 38 degrees C reduces p60v-src-dependent tyrosine phosphorylation of yeast proteins to low or undetectable levels. Also, p60v-src levels are enriched in urea-solubilized extracts and depleted in detergent-solubilized extracts of all three cdc37 mutants prepared from cells incubated at the restrictive temperature. These results suggest that Cdc37p is required for maintenance of p60v-src in a soluble, biologically active form.  相似文献   

2.
Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 degrees C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +/- 0.07 and 5.7 +/- 0.6 single-strand breaks per 10(8) daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 degrees C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium and after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +/- 0.3 (at 23 degrees C) or 0.21 +/- 0.05 (at 37 degrees C) per 10(8) daltons in parental cells, but remained at 2.1 +/- 0.06 (at 23 degrees C) or 2.3 +/- 0.07 (at 37 degrees C) per 10(8) daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 degrees C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 degrees C, DNAs in both strains were completely rejoined.  相似文献   

3.
A panel screening using cdc mutants of Schizosaccharomyces pombe identified radicicol as a potent growth inhibitor of certain mutants at the permissive temperature. The strains sensitive to radicicol were cdc7, cdc11, and cdc14, all of which are defective in early septum formation. Cytokinesis but not nuclear division of these mutants was inhibited by radicicol, but that of cells with the wild-type background was not. A biologically active derivative of radicicol with a biotin moiety at the C-11 position bound Swo1, an Hsp90 homologue in S. pombe. Increased Swo1 expression partially suppressed radicicol sensitivity of cdc14 and almost completely rescued morphological abnormalities in cdc14 and cdc7 cells induced by radicicol at the permissive temperature. On the other hand, the increased Swo1 expression did not restore septum formation at the nonpermissive temperature. These results suggest that Swo1, as a molecular chaperone, plays a role in stabilizing these temperature-sensitive proteins at the permissive temperature or in activating the cytokinesis signaling cascade.  相似文献   

4.
A panel screening using cdc mutants of Schizosaccharomyces pombe identified radicicol as a potent growth inhibitor of certain mutants at the permissive temperature. The strains sensitive to radicicol were cdc7, cdc11, and cdc14, all of which are defective in early septum formation. Cytokinesis but not nuclear division of these mutants was inhibited by radicicol, but that of cells with the wild-type background was not. A biologically active derivative of radicicol with a biotin moiety at the C-11 position bound Swo1, an Hsp90 homologue in S. pombe. Increased Swo1 expresion partially suppressed radicicol sensitivity of cdc14 and almost completely rescued morphological abnormalities in cdc14 and cdc7 cells induced by radicicol at the permissive temperature. On the other hand, the increased Swo1 expression did not restore septum formation at the nonpermissive temperature. These results suggest that Swo1, as a molecular chaperone, plays a role in stabilizing these temperature-sensitive proteins at the permissive temperature or in activating the cytokinesis signaling cascade.  相似文献   

5.
Growth of Saccharomyces cerevisiae cell cycle mutants cdc3, cdc4, cdc7, cdc24, and cdc28 at a nonpermissive temperature (37 degrees C) resulted in increased accumulation of chitin relative to other cell wall components, as compared with that observed at a permissive temperature (25 degrees C). Wild-type cells showed the same chitin/carbohydrate ratio at both temperatures, whereas mutants cdc13 and cdc21 yielded only a small increase in the ratio at 37 degrees C. These results confirm and extend those reported by B. F. Sloat and J. R. Pringle (Science 200:1171-1173, 1978) for mutant cdc24. The distribution of chitin in the cell wall was studied by electron microscopy, by specific staining with wheat germ agglutinin-colloidal gold complexes. At the permissive temperature, chitin was restricted to the septal region in all strains, whereas at 37 degrees C a generalized distribution of chitin in the cell wall was observed in all mutants. These results do not support a unique interdependence between the product of the cdc24 gene and localization of chitin deposition; they suggest that unbalanced conditions created in the cell by arresting the cycle at different stages result in generalized activation of the chitin synthetase zymogen. Thus, blockage of an event in the cell cycle may lead to consequences that are not functionally related to that event under normal conditions.  相似文献   

6.
cdc9, a temperature-sensitive mutant defective in polynucleotide deoxyribonucleic acid (DNA) ligase activity, accumulates low-molecular-weight DNA fragments (as measured by sedimentation of DNA in alkaline sucrose gradients) at the nonpermissive temperature after irradiation with ultraviolet light. This phenotype of cdc9 is a sensitive indicator of successful incision during excision repair of dimers. In strains containing excision-defective mutations in any of nine genes in combination with the cdc9 mutation, the absence of low-molecular-weight DNA at the nonpermissive temperature after ultraviolet treatment suggests that these mutants are incision defective, whereas the presence of low-molecular-weight DNA indicates that the mutants are defective in a step after incision. With rad1, rad2, rad3, rad4, and rad10 mutants, the molecular weight of the DNA remained unchanged after ultraviolet irradiation and incubation at the restrictive temperature, despite the presence of the cdc9 mutation; these mutants are therefore incision defective. Low-molecular-weight DNA was observed in rad14 cdc9 and rad16 cdc9 strains. With the rad16 strain, the accumulation of low-molecular-weight DNA correlated with the amount of excision taking place, whereas in the rad14 mutant strain, no evidence of dimer removal was obtained. Therefore, rad14 is likely to be defective in a step after incision.  相似文献   

7.
S Ulaszewski  F Hilger  A Goffeau 《FEBS letters》1989,245(1-2):131-136
The thermosensitive G1-arrested cdc35-10 mutant from Saccharomyces cerevisiae, defective in adenylate cyclase activity, was shifted to restrictive temperature. After 1 h incubation at this temperature, the plasma membrane H+-ATPase activity of cdc35-10 was reduced to 50%, whereas that in mitochondria doubled. Similar data were obtained with cdc25, another thermosensitive G1-arrested mutant modified in the cAMP pathway. In contrast, the ATPase activities of the G1-arrested mutant cdc19, defective in pyruvate kinase, were not affected after 2 h incubation at restrictive temperature. In the double mutants cdc35-10 cas1 and cdc25 cas1, addition of extracellular cAMP prevented the modifications of ATPase activities observed in the single mutants cdc35-10 and cdc25. These data indicate that cAMP acts as a positive effector on the H+-ATPase activity of plasma membranes and as a negative effector on that of mitochondria.  相似文献   

8.
Regulation of mating in the cell cycle of Saccharomyces cerevisiae   总被引:19,自引:5,他引:14       下载免费PDF全文
The capacity of haploid a yeast cells to mate (fuse with a haploid strain of alpha mating type followed by nuclear fusion to produce a diploid cell) was assessed for a variety of temperature-sensitive cell division cycle (cdc) mutants at the permissive and restrictive temperatures. Asynchronous populations of some mutants do not mate at the restrictive temperature, and these mutants define genes (cdc 1, 4, 24, and 33) that are essential both for the cell cycle and for mating. For most cdc mutants, asynchronous populations mate well at the restrictive temperature while populations synchronized at the cdc block do not. Populations of a mutant carrying the cdc 28 mutation mate well at the restrictive temperature after synchronization at the cdc 28 step. These results suggest that mating can occur from the cdc 28 step, the same step at which mating factors arrest cell cycle progress. The cell cycle interval in which mating can occur may or may not extend to the immediately succeeding and diverging steps (cdc 4 and cdc 24). High frequency mating does not occur in the interval of the cell cycle extending from the step before the initiation of DNA synthesis (cdc 7) through DNA synthesis (cdc 2, 8, and 21), medial nuclear division (cdc 13), and late nuclear division (cdc 14 and 15).  相似文献   

9.
Summary The drug hydroxyurea has been found to affect the conditional DNA ligase mutant cdc9 in the same way as a wild type. Specific concentrations inhibit the joining of completed replicons leading to a substantial accumulation of these molecules. Upon removal of hydroxyurea and further incubation of cdc9 cells at the permissive temperature the replicons joined together, while in sharp contrast at the restrictive temperature no such joining occurred. However, a revertant of cdc9 able to grow at the restrictive temperature was also able to join replicons under these conditions, so the cdc9 ligase must be responsible for the assembly of completed replicons.  相似文献   

10.
Cdc2 and the Regulation of Mitosis: Six Interacting Mcs Genes   总被引:10,自引:2,他引:8       下载免费PDF全文
L. Molz  R. Booher  P. Young    D. Beach 《Genetics》1989,122(4):773-782
A cdc2-3w weel-50 double mutant of fission yeast displays a temperature-sensitive lethal phenotype that is associated with gross abnormalities of chromosome segregation and has been termed mitotic catastrophe. In order to identify new genetic elements that might interact with the cdc2 protein kinase in the regulation of mitosis, we have isolated revertants of the lethal double mutant. The suppressor mutations define six mcs genes (mcs: mitotic catastrophe suppressor) that are not allelic to any of the following mitotic control genes: cdc2, wee 1, cdc13, cdc25, suc1 or nim1. Each mcs mutation is recessive with respect to wild-type in its ability to suppress mitotic catastrophe. None confer a lethal phenotype as a single mutant but few of the mutants are expected to be nulls. A diverse range of genetic interactions between the mcs mutants and other mitotic regulators were uncovered, including the following examples. First, mcs2 cdc2w or mcs6 cdc2w double mutants display a cell cycle defect dependent on the specific wee allele of cdc2. Second, both mcs1 cdc25-22 or mcs4 cdc25-22 double mutants are nonconditionally lethal, even at a temperature normally permissive for cdc25-22. Finally, the characteristic suppression of the cdc25 phenotype by a loss-of-function wee1 mutation is reversed in a mcs3 mutant background. The mcs genes define new mitotic elements that might be activators or substrates of the cdc2 protein kinase.  相似文献   

11.
Zubko MK  Guillard S  Lydall D 《Genetics》2004,168(1):103-115
Cell cycle arrest in response to DNA damage depends upon coordinated interactions between DNA repair and checkpoint pathways. Here we examine the role of DNA repair and checkpoint genes in responding to unprotected telomeres in budding yeast cdc13-1 mutants. We show that Exo1 is unique among the repair genes tested because like Rad9 and Rad24 checkpoint proteins, Exo1 inhibits the growth of cdc13-1 mutants at the semipermissive temperatures. In contrast Mre11, Rad50, Xrs2, and Rad27 contribute to the vitality of cdc13-1 strains grown at permissive temperatures, while Din7, Msh2, Nuc1, Rad2, Rad52, and Yen1 show no effect. Exo1 is not required for cell cycle arrest of cdc13-1 mutants at 36 degrees but is required to maintain arrest. Exo1 affects but is not essential for the production of ssDNA in subtelomeric Y' repeats of cdc13-1 mutants. However, Exo1 is critical for generating ssDNA in subtelomeric X repeats and internal single-copy sequences. Surprisingly, and in contrast to Rad24, Exo1 is not essential to generate ssDNA in X or single-copy sequences in cdc13-1 rad9Delta mutants. We conclude that Rad24 and Exo1 regulate nucleases with different properties at uncapped telomeres and propose a model to explain our findings.  相似文献   

12.
A number of temperature-sensitive cdc- mutants ofSchizosaccharomyces pombe that are affected in septum formation were analyzed with respect to their ultrastructure and the composition of their cell wall polymers. One mutant strain, cdc 16–116, has a cell wall composition similar to the wild type (strain 972 h-). However two other mutants, cdc 4 and cdc 7, show a higher galactomannan content and a lower -glucan content. In all the mutants tested, total glucose incorporation, protein, RNA and DNA synthesis increased similarly to wild type over 3 1/2 h. After 2–3 h of incubation at the non permissive temperature-35°C-, cell numbers remained constant although, increases in optical densities at 600 nm were observed. According to scanning electron microscopy, the mutants had aberrant shapes after 5h of incubation at 35°C. Transmission electron microscopy showed that cdc 3 is unable to complete septum formation. cdc 4 showed the most varied morphological shapes and aberrant depositions of cell wall material. cdc 8 exhibited a deranged plasma membrane and cell wall regions near of cell poles; an abnormal septum and several nuclei. cdc 7 showed elongated cells with several nuclei and with an apparently normal cell wall completely lacking in septum and septal material. cdc 16 showed more than one septum per cell.  相似文献   

13.
The four temperature-sensitive mutants of Saccharomyces cerevisiae in the cell division cycle defective in cytokinesis (cdc, 3, 10, 11 and 12), have been analyzed with respect to the biosynthesis of the cell wall polymers. After 3 hours of incubation at the non-permissive temperature (37°C) these strains stop growing. The synthesis of glucan, mannan and chitin (wall polymers) level off in a similar time, but glucan, mannan and chitin synthases remained active for at least 4 hours.If the mutants are analyzed by transmission and scanning electron microscopy different pictures emerge. Two of the mutants cdc 10 and cdc 12, after 3 hours of incubation at 37°C present apparently normal cytoplasms and cell wall surfaces with multiple elongated buds. The other two mutants, cdc 3 and cdc 11, present a completely disarranged cytoplasmic content and damage at the level of the plasma membrane is evident.These and other observations, suggest that between the execution points of cdc 3 (0.27) and cdc 10 (0.58), essential processes in the assembly of cell membrane occur.This work was supported in part by a grant from la Comisión de Investigación Científica y Técnica of the Spanish Ministerio de Educación y Ciencia (Project no. 4593-1980).  相似文献   

14.
A series of yeast mutants were isolated that are sensitive to killing by the monofunctional DNA-alkylating agent methyl methanesulfonate (MMS) but not by UV or X-radiation. We have cloned and characterized one of the corresponding genes, MMS1, and show that the mms1 Delta mutant is dramatically sensitive to killing by MMS and mildly sensitive to UV radiation. mms1 Delta mutants display an elevated level of spontaneous DNA damage and genomic instability. Furthermore, the mms1 Delta cells are sensitive to killing by conditions that induce replication-dependent double-strand breaks, such as treatment with camptothecin, and incubation of a cdc2-2 strain at the restrictive temperature. rad52 Delta is epistatic to mms1 Delta for MMS and camptothecin sensitivity, indicating that Mms1 acts in concert with Rad52. However, unlike mutants of the RAD52 group, mms1 Delta cells are not sensitive to gamma-rays, which induce double-strand breaks independently of DNA replication. Together these results suggest a role for an Mms1-dependent, Rad52-mediated, pathway in protecting cells against replication-dependent DNA damage.  相似文献   

15.
In contrast to ligase-deficient (cdc9) Saccharomyces cerevisiae, which did not rejoin bleomycin-induced DNA breaks, ligase-proficient (CDC9) yeast cells eliminated approximately 90% of DNA breaks within 90 to 120 min after treatment. Experimental conditions restricted enzymatic removal of the unusual 3'-phosphoglycolate termini in DNA cleaved by bleomycin and involved doses producing equivalent numbers of DNA breaks or doses producing equivalent killing.  相似文献   

16.
In eucaryotes a cell cycle control called a checkpoint ensures that mitosis occurs only after chromosomes are completely replicated and any damage is repaired. The function of this checkpoint in budding yeast requires the RAD9 gene. Here we examine the role of the RAD9 gene in the arrest of the 12 cell division cycle (cdc) mutants, temperature-sensitive lethal mutants that arrest in specific phases of the cell cycle at a restrictive temperature. We found that in four cdc mutants the cdc rad9 cells failed to arrest after a shift to the restrictive temperature, rather they continued cell division and died rapidly, whereas the cdc RAD cells arrested and remained viable. The cell cycle and genetic phenotypes of the 12 cdc RAD mutants indicate the function of the RAD9 checkpoint is phase-specific and signal-specific. First, the four cdc RAD mutants that required RAD9 each arrested in the late S/G(2) phase after a shift to the restrictive temperature when DNA replication was complete or nearly complete, and second, each leaves DNA lesions when the CDC gene product is limiting for cell division. Three of the four CDC genes are known to encode DNA replication enzymes. We found that the RAD17 gene is also essential for the function of the RAD9 checkpoint because it is required for phase-specific arrest of the same four cdc mutants. We also show that both X- or UV-irradiated cells require the RAD9 and RAD17 genes for delay in the G(2) phase. Together, these results indicate that the RAD9 checkpoint is apparently activated only by DNA lesions and arrests cell division only in the late S/G(2) phase.  相似文献   

17.
Liang DT  Forsburg SL 《Genetics》2001,159(2):471-486
MCM proteins are required for the proper regulation of DNA replication. We cloned fission yeast mcm7(+) and showed it is essential for viability; spores lacking mcm7(+) begin S phase later than wild-type cells and arrest with an apparent 2C DNA content. We isolated a novel temperature-sensitive allele, mcm7-98, and also characterized two temperature-sensitive alleles of the fission yeast homolog of MCM10, cdc23(+). mcm7-98 and both cdc23ts alleles arrest with damaged chromosomes and an S phase delay. We find that mcm7-98 is synthetically lethal with the other mcmts mutants but does not interact genetically with either cdc23ts allele. However, cdc23-M36 interacts with mcm4ts. Unlike other mcm mutants or cdc23, mcm7-98 is synthetically lethal with checkpoint mutants Deltacds1, Deltachk1, or Deltarad3, suggesting chromosomal defects even at permissive temperature. Mcm7p is a nuclear protein throughout the cell cycle, and its localization is dependent on the other MCM proteins. Our data suggest that the Mcm3p-Mcm5p dimer interacts with the Mcm4p-Mcm6p-Mcm7p core complex through Mcm7p.  相似文献   

18.
A Blank  L A Loeb 《Biochemistry》1991,30(32):8092-8096
DNA polymerase III of the yeast Saccharomyces cerevisiae has been reported to be encoded at the CDC2 locus based on two observations. First, the CDC2 gene has homology to known DNA polymerase genes [Boulet et al. (1989) EMBO J. 8, 1849-1854], and second, the mutants cdc2-1 and cdc2-2 yield little or no DNA polymerase III activity in vitro [Boulet et al. (1989); Sitney et al. (1989) Cell 56, 599-605]. We describe here the isolation of temperature-sensitive DNA polymerase III from cdc2-2 strains. Our results provide direct experimental confirmation of the previously inferred gene/enzyme relationship and verify the conclusion that DNA polymerase III is required to replicate the genome. We isolated DNA polymerase III from two cdc2-2 strains, one containing the wild-type allele for DNA polymerase I (CDC17) and the other a mutant DNA polymerase I allele (cdc17-1). Yields from cdc2-2 cells of both DNA polymerase III activity and an associated 3'-5'-exonuclease activity [exonuclease III; Bauer et al. (1988) J. Biol. Chem. 263, 917-924] were decreased relative to yields from CDC2 cells. DNA polymerase III activity from cdc2-2 strains is thermolabile, displaying at least a 4-fold reduction in half-life at 44 degrees C. The activity is also labile at 37 degrees C, a temperature which is restrictive for growth of cdc2-2 but not CDC2 strains. At 23 degrees C, a temperature which is permissive for growth of both cdc2-2 and CDC2 strains, the mutant and wild-type DNA polymerase III activities display equal stability. These observations provide a demonstrable biochemical basis for the thermosensitive phenotype of cdc2-2 cells.  相似文献   

19.
Two X-ray-sensitive mutants of CHO-K1 cells, xrs 5 and xrs 6, were characterised with regard to their responses to genotoxic chemicals, namely bleomycin, MMS, EMS, MMC and DEB for induction of cell killing, chromosomal aberrations and SCEs at different stages of the cell cycle. In addition, induction of mutations at the HPRT and Na+/K+ ATPase (Oua) loci was evaluated after treatment with X-rays and MMS. Xrs 5 and xrs 6 cells were more sensitive than wild-type CHO-K1 to the cell killing effect of bleomycin (3 and 13 times respectively) and for induction of chromosomal aberrations (3 and 4.5 times). In these mutants a higher sensitivity for induction of chromosomal aberrations to MMS, EMS, MMC and DEB was observed (1.5-3.5 times). The mutants also showed increased sensitivity for cell killing effects of mono- and bi-functional alkylating agents (1.7-2.5 times). The high cell killing effect of X-rays in these mutants was accompanied by a slight increase in the frequency of HPRT mutation. The xrs mutants were also more sensitive to MMS for the increased frequency of TGr and Ouar mutants when compared to wild-type CHO-K1 cells. Though bleomycin is known to be a poor inducer of SCEs, an increase in the frequency of SCEs in xrs 6 cells (doubling at 1.2 micrograms/ml) was found in comparison to no significant increase in xrs 5 or CHO-K1 cells. The induced frequency of SCEs in all cell types increased in a similar way after the treatment with mono- or bi-functional alkylating agents. MMS treatment of G2-phase cells yielded a higher frequency of chromatid breaks in the mutants in a dose-dependent manner compared to no effect in wild-type CHO-K1 cells. Treatment of synchronised mutant cells at G1 stage with bleomycin resulted in both chromosome- and chromatid-type aberrations (similar to the response to X-ray treatment) in contrast to the induction of only chromosome-type aberrations in wild-type CHO-K1 cells. The frequency of chromosomal aberrations chromosome and chromatid types) also increased with MMC treatment in G1 cells of xrs mutants. DEB treatment of G1 cells induced mainly chromatid-type aberrations in all cell types. The possible reasons for the increased sensitivity of xrs mutants to the chemical mutagens studied are discussed and the results are compared to cells derived from radiosensitive ataxia telangiectasia patients.  相似文献   

20.
Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-protein-mediated cAMP signal, which induces a protein phosphorylation cascade. Yeast strains without a functional CDC25 gene were deficient in basal cAMP synthesis and in the glucose-induced cAMP signal. Addition of dinitrophenol, which in wild-type strains strongly stimulates in vivo cAMP synthesis by lowering intracellular pH, did not enhance the cAMP level. cdc25 disruption mutants, in which the basal cAMP level was restored by the RAS2val19 oncogene or by disruption of the gene (PDE2) coding for the high-affinity phosphodiesterase, were still deficient in the glucose- and acidification-induced cAMP responses. These results indicate that the CDC25 gene product is required not only for basal cAMP synthesis in yeast but also for specific activation of cAMP synthesis by the signal transmission pathway leading from glucose to adenyl cyclase. They also show that intracellular acidification stimulates the pathway at or upstream of the CDC25 protein. When shifted to the restrictive temperature, cells with the temperature sensitive cdc25-5 mutation lost their cAMP content within a few minutes. After prolonged incubation at the restrictive temperature, cells with this mutation, and also those with the temperature sensitive cdc25-1 mutation, arrested at the 'start' point (in G1) of the cell cycle, and subsequently accumulated in the resting state G0. In contrast with cdc25-5 cells, however, the cAMP level did not decrease and normal glucose- and acidification-induced cAMP responses were observed when cdc25-1 cells were shifted to the restrictive temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号