首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The relationship between transport and metabolism in synaptoneurosomes was examined to determine the metabolic stability of rapidly accumulated D-[3H]adenosine and L-[3H]adenosine and the degree to which metabolism of the accumulated purines affected measurements of apparent KT and Vmax values for adenosine transport. For D-[3H]adenosine, high- and low-affinity accumulation processes were present. For the high-affinity system an inverse relationship was found between transport reaction times and KT and Vmax values. For incubations of 5, 15, and 600 s, which corresponded to 24, 32, and 76% phosphorylation of accumulated D-[3H]adenosine to nucleotides, apparent KT values were 9.4, 8.4, and 4.5 microM, respectively, and Vmax values were 850, 70, and 12 pmol/min/mg of protein, respectively. Pretreatment with 10 microM erythro-9-(2-hydroxy-3-nonyl)adenine, an adenosine deaminase inhibitor, and 5'-iodotubercidin, an adenosine kinase inhibitor, decreased the phosphorylation of accumulated D-[3H]adenosine to 6% with 5-s and 9% with 15-s incubations. This resulted in significantly higher KT values: 36 microM at 5 s and 44 microM at 15 s. At 10-min incubations in the presence of these inhibitors, metabolism of accumulated D-[3H]adenosine was 32%, and apparent KT and Vmax values at this time were not significantly different from those obtained without inhibitors. For L-[3H]adenosine, apparent KT and Vmax values for 20-s incubations were 38.7 microM and 330 pmol/min/mg of protein, respectively. Metabolism (mainly phosphorylation) of accumulated L-[3H]adenosine was observed only at incubations of greater than 30 s.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract: The kinetic characteristics of [3H]adenosine uptake, the extent to which accumulated [3H]adenosine was metabolized, the effects such metabolism had on measurements of apparent Michaelis-Menten kinetic values of KT and Vmax, and the sensitivities with which nucleoside transport inhibitors blocked [3H]adenosine accumulations were determined in cultured human fetal astrocytes. KT and Vmax values for accumulations of [3H]-labeled purines using 15-s incubations in the absence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and the adenosine kinase inhibitor 5′-iodotubercidin (ITU) were 6.2 µM and 0.15 nmol/min/mg of protein for the high-affinity and 2.6 mM and 21 nmol/min/mg of protein for the low-affinity components respectively. In the presence of EHNA and ITU, where <4% of accumulated [3H]adenosine was metabolized, transport per se was measured, and kinetic values for KT and Vmax were 179 µM and 5.2 nmol/min/mg of protein, respectively. In the absence of EHNA and ITU, accumulated [3H]adenosine was rapidly metabolized to AMP, ADP, and ATP, and caused an appearance of “concentrative” uptake in that the intracellular levels of [3H]-labeled purines (adenosine plus its metabolites) were 1.4-fold higher than in the medium. No apparent concentrative accumulations of [3H]adenosine were found when assays were conducted using short incubation times in the absence or presence of EHNA and ITU. The nucleoside transport inhibitors dipyridamole (DPR), nitrobenzylthioinosine (NBI), and dilazep biphasically inhibited [3H]adenosine transport; for the inhibitor-sensitive components the IC50 values were 0.7 nM for NBI, 1.3 nM for DPR, and 3.3 nM for dilazep, and for the inhibitor-resistant component the IC50 values were 2.5 µM for NBI, 5.1 µM for dilazep, and 39.0 µM for DPR. These findings, in cultured human fetal astrocytes, represent the first demonstration of inhibitor-sensitive and -resistant adenosine transporters in nontransformed human cells.  相似文献   

3.
Abstract: The binding of the potent adenosine uptake inhibitor [3H]nitrobenzylthioinosine ([3H]NBI) to brain membrane fractions was investigated. Reversible, saturable, specific, high-affinity binding was demonstrated in both rat and human brain. The Kd in both was 0.15 nM with Bmax values of 140–200 fmol/mg protein. Linear Scatchard plots were routinely obtained, indicating a homogeneous population of binding sites in brain. The highest density of binding sites was found in the caudate and hypothalamus in both species. The binding site was heat labile and trypsin sensitive. Binding was also decreased by incubation of the membranes in 0.05% Triton X-100 and by treatment with dithiothreitol and iodoacetamide. Of the numerous salt and metal ions tested, only copper and zinc had significant effects on [3H]NBI binding. The inhibitory potencies of copper and zinc were IC50= 160 μM and 6 mM, respectively. Subcellular distribution studies revealed a high percentage of the [3H]NBI binding sites on synaptosomes, indicating that these sites were present in the synaptic region. A study of the tissue distribution of the [3H]NBI sites revealed very high densities of binding in erythrocyte, lung, and testis, with much lower binding densities in brain, kidney, liver, muscle, and heart. The binding affinity in the former group was approximately 1.5 nM, whereas that in the latter group was 0.15 nM, suggesting two types of binding sites. The pharmacologic profile of [3H]NBI binding was consistent with its function as the adenosine transport site, distinct from the adenosine receptor, since thiopurines were very potent inhibitors of binding whereas adenosine receptor ligands, such as cyclohexyladenosine and 2-chloroadenosine, were three to four orders of magnitude less potent. [3H]NBI binding in brain should provide a useful probe for the study of adenosine transport in the brain.  相似文献   

4.
Abstract: The modulation by adenosine analogues and endogenous adenosine of the electrically evoked release of [3H]acetylcholine ([3H]ACh) was compared in subslices of the three areas of the rat hippocampus (CA1, CA3, and dentate gyrus). The mixed A1/A2 agonist 2-chloroadenosine (CADO; 2–10 µM) inhibited, in a concentration-dependent manner, the release of [3H]ACh from the three hippocampal areas, being more potent in the CA1 and CA3 areas than in the dentate gyrus. The inhibitory effect of CADO (5 µM) on [3H]ACh release was prevented by the A1 antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM) in the three hippocampal areas and was converted in an excitatory effect in the CA3 and dentate gyrus areas. The A2A agonist CGS-21680 (30 nM) produced a greater increase of the evoked release of [3H]ACh in the CA3 than in the dentate gyrus areas, whereas no consistent effect was found in the CA1 area or in the whole hippocampal slice. The excitatory effect of CGS-21680 (30 nM) in the CA3 area was prevented by the adenosine receptor antagonist 3,7-dimethyl-1-propargylxanthine (10 µM). Both adenosine deaminase (2 U/ml) and DPCPX (250 nM) increased the evoked release of [3H]ACh in the CA1 and CA3 areas but not in the dentate gyrus. The amplitude of the effect of DPCPX and adenosine deaminase was similar in the CA1 area, but in the CA3 area DPCPX produced a greater effect than adenosine deaminase. It is concluded that the electrically evoked release of [3H]ACh in the three areas of the rat hippocampus can be differentially modulated by adenosine. In the CA1 area, only A1 inhibitory receptors modulate ACh release, whereas in the CA3 area, both A2A excitatory and A1 inhibitory adenosine receptors modulate ACh release. In the dentate gyrus, both A1 inhibitory and A2A excitatory adenosine receptors are present, but endogenous adenosine does not activate them.  相似文献   

5.
Abstract: Rat medullary brain segments containing primarily nucleus tractus solitarius (NTS) were used for superfusion studies of evoked transmitter release and for isotherm receptor binding assays. Isotherm binding assays with [3H]CGS-21680 on membranes prepared from NTS tissue blocks indicated a single high-affinity binding site with a KD of 5.1 ± 1.4 nM and a Bmax of 20.6 ± 2.4 fmol/mg of protein. The binding density for [3H]CGS-21680 on NTS membranes was 23 times less than comparable binding on membranes from striatal tissue. Electrically stimulated (1 min at 25 mA, 2 ms, 3 Hz) release of [3H]norepinephrine ([3H]NE) from 400-µm-thick NTS tissue slices resulted in an S2/S1 ratio of 0.96 ± 0.02. Superfusion of single tissue slices with 0.1–100 nM CGS-21680, a selective adenosine A2a receptor agonist, for 5 min before the S2 stimulus produced a significant concentration-dependent increase in the S2/S1 fractional release ratio that was maximal (31.3% increase) at 1.0 nM. However, superfusion of tissue slices with CGS-21680 over the same concentration range for 20 min before the S2 stimulus did not alter the S2/S1 ratio significantly from control release ratios. The augmented release of [3H]NE mediated by 1.0 nM CGS-21680 with a 5-min tissue exposure was abolished by 1.0 and 10 nM CGS-15943 as well as by 100 nM 8-(3-chlorostyryl)caffeine, both A2a receptor antagonists, but not by 1.0 nM 8-cyclopentyl-1,3-dipropylxanthine, the A1 receptor antagonist. Taken together, these results suggest that CGS-21680 augmented the evoked release of [3H]NE in the NTS via activation of presynaptic A2a receptors within the same concentration range as the binding affinity observed for [3H]CGS-21680. It was also apparent that this population of presynaptic adenosine A2a receptors in the NTS desensitized within 20 min because the augmenting action of CGS-21680 on evoked transmitter release was not evident at the longer interval.  相似文献   

6.
Abstract: Previous work from this laboratory has shown that retinal adenosine A2 binding sites are localized over outer and inner segments of photoreceptors in rabbit and mouse retinal sections. In the present study, adenosine receptor binding has been characterized and localized in membranes from bovine rod outer segments (ROS). Saturation studies with varying concentrations (10–150 nM) of 5′-(N-[2,8-3H]ethylcarboxamido)adenosine ([3H]NECA) and 100 μg of ROS membrane protein show a single site with a KD of 103 nM and a Bmax of 1.3 pM/mg of protein. Cold Scatchards, which used nonradiolabeled NECA (concentrations ranging from 10 nM to 250 nM) in competition with a fixed amount of [3H]NECA (30 nM), demonstrated the presence of a low-affinity site (KD, 50 μM) in addition to the high-affinity site. To confirm the presence of A2abinding sites, saturation analyses with 2-p-(2-[3H]-carboxyethyl)phenylamino-5′-N-ethylcarboxamido adenosine (0–80 nM) also revealed a single population of high-affinity A2a receptors (KD, 9.4 nM). The binding sites labeled by [3H]NECA appear to be A2 receptor sites because binding was displaced by increasing concentrations of 5′-(N-methylcarboxamido)adenosine and 2-chloroadenosine. ROS were fractionated into plasma and disk membranes for localization studies. Receptor binding assays, used to determine specific binding, showed that the greatest concentration of A2 receptors was on the plasma membranes. Therefore, adenosine A2 receptors are in a position to respond to changes in the concentration of extracellular adenosine, which may exhibit a circadian rhythm.  相似文献   

7.
The stereoenantimers D-[3H]adenosine and L-[3H]adenosine were used to study adenosine accumulation in rat cerebral cortical synaptoneurosomes. L-Adenosine very weakly inhibited rat brain adenosine deaminase (ADA) activity with a Ki value of 385 microM. It did not inhibit rat brain adenosine kinase (AK) activity, nor was it utilized as a substrate for either ADA or AK. The rate constants (fmol/mg of protein/s) for L-[3H]adenosine accumulation measured in assays where transport was stopped either with inhibitor-stop centrifugation or with rapid filtration methods were 82 +/- 14 and 75 +/- 10, respectively. Using the filtration method, the rates of L-[3H]adenosine accumulation were not significantly different from the value of 105 +/- 15 fmol/mg of protein/s measured for D-[3H]adenosine transport. Unlabeled D-adenosine and nitrobenzylthiolnosine, both at a concentration of 100 microM, reduced the levels and rates of L-[3H]adenosine accumulation by greater than 44%. These findings suggest that L-adenosine, a metabolically stable enantiomeric analog, and the naturally occurring D-adenosine are both taken up by rat brain synaptoneurosomes by similar processes, and as such L-adenosine may represent an important new probe with which adenosine uptake may be studied.  相似文献   

8.
Abstract: Adenosine transport inhibitors as enhancers of extracellular levels of endogenous adenosine would, presumably, only be effective if, for example, (1) the inhibitors block influx to a greater degree than efflux (release) of intracellular adenosine or (2) the inhibitors block equally well the influx and efflux of adenosine, but significant amounts of adenosine are formed as a result of dephosphorylation of released adenine nucleotides. Limited information is available regarding the directional symmetry of adenosine transporters in neural cells. Using rat brain crude P2 synaptosomal preparations preloaded with l -[3H]adenosine, our objectives here were to determine (1) if l -[3H]adenosine, a substrate for adenosine transporters that is more metabolically stable than physiological d -adenosine, was being released from synaptosomal preparations, (2) the optimal conditions necessary to observe the release, and (3) the degree to which this release was mediated by efflux through bidirectional nucleoside transporters. l -[3H]Adenosine release was found to be concentration and time dependent, temperature sensitive, and linear with synaptosomal protein. l -[3H]Adenosine release was inhibited dose-dependently by dipyridamole, nitrobenzylthioinosine, and dilazep; at concentrations of 100 µM inhibition was at least 40% for dipyridamole, 52% for nitrobenzylthioinosine, and 49% for dilazep. After loading with l -[3H]adenosine alone or l -[3H]adenosine plus unlabeled l -adenosine, d -adenosine, or uridine, l -[3H]-adenosine release was inhibited 42% by l -adenosine, 69% by uridine, and 81% by d -adenosine. The inhibition of l -[3H]adenosine release from the synaptosomal preparations by substrates for or inhibitors of nucleoside transporters suggests that a portion of the release was mediated by nucleoside transporters. This experimental system may prove useful for evaluating the effects of pharmacological agents on bidirectional transport of adenosine.  相似文献   

9.
Abstract: These experiments characterize the nucleoside transport and quantify the neurotoxicity of adenosine and 2′-deoxyadenosine (dAdo) in chick sympathetic neurons. We show that [3H]adenosine transport was sensitive to low temperature, specific inhibitors of nucleoside transport, and an excess concentration of adenosine. However, many of these treatments had a marginal effect on [3H]dAdo transport. Total retention of [3H]dAdo over short and long periods was ~10 times less than that of [3H]adenosine. These data suggest that adenosine and dAdo enter sympathetic neurons by different routes. Uptake of [3H]norepinephrine ([3H]NE) decreased in neurons damaged by nucleosides and increased to control levels when neurons were protected by various agents against adenosine or dAdo toxicity. These results indicate that [3H]NE uptake serves as a quantitative index of toxicity by the nucleosides. Using this approach we demonstrate that phosphorylation of both nucleosides is essential for their lethal action. For example, iodotubercidin prevented nucleoside-induced neuronal death, but the effect was much more pronounced in the case of dAdo toxicity (IC50 of 0.83 ± 0.4 vs. 30 ± 1.6 nM). Another kinase inhibitor, 5′-amino 5′-deoxyadenosine, was effective in protecting neurons against dAdo but had no effect against adenosine toxicity. These results suggest that specific kinases are associated with the phosphorylation of adenosine and dAdo in sympathetic neurons to produce toxic metabolic products. Finally, neurons were susceptible to dAdo toxicity from the time of plating to 4 weeks in culture but were resistant to adenosine toxicity 8 h after plating. In conclusion, our results highlight major differences in the mechanism of neurotoxicity by adenosine and dAdo and provide insights for identification of biochemical pathways leading to neuronal death.  相似文献   

10.
Abstract: In rat hippocampal synaptosomes, adenosine decreased the K+ (15 mM) or the kainate (1 mM) evoked release of glutamate and aspartate. An even more pronounced effect was observed in the presence of the stable adenosine analogue, R-phenylisopropyladenosine. All these effects were reversed by the selective adenosine A1 receptor antagonist 8-cyclo-pentyltheophylline. In the same synaptosomal preparation, K+ (30 mM) strongly stimulated the release of the preloaded [3H]adenosine in a partially Ca2+-dependent and tetrodotoxin (TTX)-sensitive manner. Moreover, in the same experimental conditions, both l -glutamate and l -aspartate enhanced the release of [3H]adenosine derivatives ([3H]ADD). The gluta-mate-evoked release was dose dependent and appeared to be Ca2+ independent and tetrodotoxin insensitive. This effect was not due to metabolism because even the nonmetabolizable isomers d -glutamate and d -aspartate were able to stimulate [3H]ADD release. In contrast, the specific glutamate agonists N-methyl-d -aspartate, kainate, and quisqualate failed to stimulate [3H]ADD release, suggesting that glutamate and aspartate effects were not mediated by known excitatory amino acid receptors. Moreover, NMDA was also ineffective in the absence of Mg2+ and l -glutamate-evoked release was not inhibited by adding the specific antagonists 2-amino-5-phosphonovaleric acid or 6–7-dinitroquinoxaline-2, 3-dione. The stimulatory effect did not appear specific for only excitatory amino acids, as γ-anunobutyric acid stimulated [3H]ADD release in a dose-related manner. These results suggest that, at least in synaptosomal preparations from rat hippocampus, adenosine and glutamate modulate each other's release. The exact mechanism of such interplay, although still, unknown, could help in the understanding of excitatory amino acid neurotoxicity.  相似文献   

11.
Dipyridamole (DPR) and nitrobenzylthioinosine (NBI) inhibition of adenosine accumulation in synaptoneurosomes derived from rat cerebral cortex, rat cerebellum, guinea pig cerebral cortex and guinea pig cerebellum was investigated. The inhibition of adenosine accumulation by NBI was observed to be distinctly biphasic in both guinea pig and rat synaptoneurosomes. Such biphasic inhibition consisted of a nM potency component to inhibition, accounting for 20–30% of the maximum inhibition, and a μM potency component, accounting for the remaining 70–80% maximum inhibition. Such an inhibitory profile contrasts sharply with that of DPR which appears monophasic, with a mean IC50 of between 10−7 M and 10−6 M, in all rat and guinea pig synaptoneurosomes preparations studied.Further differences between the potency of NBI and DPR in inhibiting [3H]adenosine accumulation were also noted. DPR was more potent in inhibiting [3H]adenosine accumulation in guinea pig cerebellar synaptoneurosomes than in cerebral cortex synaptoneurosomes. In rat synaptoneurosomes, the reverse selectivity was observed. DPR was also 2–6 fold (depending on brain region of comparison) more potent in inhibiting adenosine accumulation in guinea pig synaptoneurosomes than in inhibiting such accumulation in rat synaptoneurosomes. In contrast, NBI was approximately equipotent in inhibiting adenosine accumulation in rat and guinea pig synaptoneurosomes. Additional binding studies using [3H]NBI are also reported. The data presented are entirely consistent with the hypotheses that (1) NBI and DPR bind to functionally relevant sites and (2) there are different populations of nucleoside transporters in mammalian brain.  相似文献   

12.
Abstract: Membranes from adult chicken brain have high-affinity binding sites for N6-cyclohexyl[3H]adenosine (CHA) (KD= 4 nM, Bmax = 0.6 pmol/mg protein). This CHA binding could be attributed to adenosine receptors of the A1 type, since substituted adenosine analogs, e.g. N6-(l -2-phenylisopropyl)adeno sine (IC50 = 60 nM), were very potent displacers. Binding sites for 1,3-diethyl- 8-[3H]phenylxanthine (DPX) in adult brain membranes have a moderate affinity (KD= 50 nM, Bmax = 1.5 pmol/mg). The association of DPX with these sites could be completely displaced by 8-phenyltheophylline (IC50= 300 nM) and other xanthines, but only 45% of specific DPX binding could be displaced by phenylisopropyladenosine. This suggests that about half of DPX sites are putative A1 receptors and the other half are of the A2 type. Primary cultures of pure glial and neuronal cells from chick embryo brain were also examined for adenosine receptors. Specific binding of CHA could not be detected in these preparations, but both glial and neuronal membranes have specific sites for DPX. At a [3H]DPX concentration of 20 nM, specific binding was 50% higher (per mg protein) in glial than in neuronal membranes. The maximum binding of DPX to glial membranes (Bmax= 1.6 pmol/mg) was comparable to values for adult brain, but the glial affinity (KD= 90 nM) was somewhat less. Phenylisopropyladenosine was able to displace less than 20% of the total glial sites for DPX. This finding was in accord with the lack of CHA sites and demonstrates that A1 receptors make little contribution to DPX binding in glial membranes. In decreasing order of potency, 8-phenyltheophylline, CHA, theophylline, caffeine, and 3-isobutyl-I-methylxanthine completely displace DPX association with glia. DPX binding to glial membranes thus appears due to a single class of receptors, which may prove to be of the A2 type.  相似文献   

13.
Abstract: KCI (20–100 mM) and W-methyl-D-aspartate (NMDA, 100–1,000 μM) produce concomitant concentration-dependent increases in the release of previously captured [14C]acetylcholine and [3H]spermidine from rat striatal slices in vitro. The effects of NMDA (300μM) on striatal [14C]acetylcholine and [3H]spermidine release were blocked with equal potencies by the competitive NMDA antagonist CGP 37849, the glycine site antagonist L-689,560, and the NMDA channel blocker dizocilpine. In contrast, although NMDA-evoked [14C]acetylcholine release was antagonized by ifenprodil (IC50= 5.3 μM) and MgCl2, (IC50= 200 μM), neither compound antagonized the NMDA-evoked release of [3H]spermidine at concentrations up to 100 μM (ifenprodil) or 1 mM (MgCl2). Distinct NMDA receptor subtypes with different sensitivities to magnesium and ifenprodil therefore exist in the rat striaturn.  相似文献   

14.
Abstract: In this study, the interaction between 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) in [3H]adenine-or [3H]-guanine-prelabelled adult guinea-pig cerebellar slices was investigated. Basal levels of [3H]cGMP were enhanced by forskolin, although no plateau was reached over the concentration range tested (0.1-100 μM). However, forskolin elicited a concentration-dependent, saturable potentiation of sodium nitroprusside (SNP)-stimulated [3H]cGMP accumulation (forskolin EC50 value of 0.98 β 0.23 μM; 10 μM forskolin produced a 1.8 β 0.3-fold potentiation of the SNP response at 2.5 min). The forskolin potentiation was observed at all concentrations of SNP tested (0.001-10 mM). forskolin also elicited a large stimulation of [3H]-cAMP in [3H]adenine-prelabelled guinea-pig cerebellar slices; however, 1,9-dideoxyforskolin failed to elicit either a [3H]cAMP response or a potentiation of the SNP-induced [3H]cGMP response at concentrations up to 100 μM. Pretreatment with oxyhaemoglobin (50 μM) inhibited the response to SNP (1 mM) and forskolin (10 μM), as well as the response evoked by the combination of SNP and forskolih. AG-Nitro-l -arginine (100 μM) inhibited the response to forskolin alone, but did not change the response to SNP or the potentiation induced by forskolin on SNP-induced [3H]cGMP levels. The protein kinase inhibitors 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7; 100 μM), staurosporine (10 μM), polymyxin B (100 μM), and Ro 31-8220 (10 μM) had no effect on the [3H]cGMP response to either SNP or the combination of SNP plus forskolin. N6,2′-Dibutyryl cAMP, at concentrations up to 10 mM, was also without effect on [3H]cGMP levels induced by SNP. 3-lso-butyl-1-methylxanthine reproduced the effect of forskolin on SNP-induced [3H]cGMP levels, but a less-than-additive effect was observed when the response to SNP was studied in the presence of forskolin and 3-isobutyl-1-methylxanthine. Taken together, these results infer that crosstalk between cyclic nucleotides takes place in guinea-pig cerebellar slices, and that cAMP may regulate cGMP-mediated responses in this tissue.  相似文献   

15.
Abstract: Neuroleptics, which are potent dopamine receptor antagonists, are used to treat psychosis. In the striatum, dopamine subtype-2 (D2) receptors interact with high-affinity adenosine subtype-2 (A2a) receptors. To examine the effect of various neuroleptics on the major subtypes of striatal dopamine and adenosine receptors, rats received 28 daily intraperitoneal injections of these drugs. Haloperidol (1.5 mg/kg/day) increased the density of striatal D2 receptors by 24% without changing their affinity for [3H]sulpiride. Haloperidol increased the density of striatal A2a receptors by 33% (control, 522.4 ± 20.7 fmol/mg of protein; haloperidol, 694.6 ± 23.6 fmol/mg of protein; p < 0.001) without changing their affinity for [3H]CGS-21680 (control, 19.2 ± 2.2 nM; haloperidol, 21.4 ± 2.3 nM). In contrast, haloperidol had no such effect on striatal dopamine subtype-1 (D1) and adenosine subtype-1 (A1) receptors. Binding characteristics and the pharmacological displacement profile of the increased [3H]CGS-21680 binding sites confirmed them as A2a receptors. Comparing different classes of neuroleptics showed that the typical neuroleptics haloperidol and fluphenazine (1.5 mg/kg/day) increased D2 receptor densities, whereas the atypical neuroleptics sulpiride (100 mg/kg/day) and clozapine (20 mg/kg/day) did not (control, 290.3 ± 8.7 fmol/mg of protein; haloperidol, 358.1 ± 6.9 fmol/mg of protein; fluphenazine, 381.3 ± 13.6 fmol/mg of protein; sulpiride, 319.8 ± 18.9 fmol/mg of protein; clozapine, 309.2 ± 13.7 fmol/mg of protein). Similarly, the typical neuroleptics increased A2a receptor densities, whereas the atypical neuroleptics did not (control, 536.9 ± 8.7 fmol/mg of protein; haloperidol, 687.9 ± 28.0 fmol/mg of protein; fluphenazine, 701.1 ± 31.6 fmol/mg of protein; sulpiride, 563.3 ± 27.2 fmol/mg of protein; clozapine, 550.9 ± 40.9 fmol/mg of protein). There were no differences in affinities for [3H]CGS-21680 or [3H]sulpiride among the various treatment groups. This study demonstrates that typical neuroleptics induce comparable up-regulation in both striatal D2 and A2a receptors. Thus, A2a receptors might be a pharmacologic target for the development of novel therapeutic strategies to minimize the adverse effects of antipsychotic treatment.  相似文献   

16.
Abstract: Glutamic acid and glycine were quantified in cells and medium of cultured rostral rhombencephalic neurons derived from fetal rats. In the presence of 1 mM Mg2+, NMDA (50 μM) significantly stimulated (by 69%) release of newly synthesized 5-[3H]hydroxytryptamine ([3H]5-HT). d -2-Amino-5-phosphonopentanoate (AP-5; 50 μM) blocked the stimulatory effect of NMDA. AP-5 by itself inhibited [3H]5-HT release (by 25%), suggesting a tonic control of 5-HT by glutamate. In the absence of Mg2+, basal [3H]5-HT release was 60% higher as compared with release with Mg2+. AP-5 blocked the increased [3H]5-HT release observed without Mg2+, suggesting that this effect was due to the stimulation of NMDA receptors by endogenous glutamate. Glycine (100 μM) inhibited [3H]5-HT release in the absence of Mg2+. Strychnine (50 μM) blocked the inhibitory effect of glycine, indicating an action through strychnine-sensitive inhibitory glycine receptors. The [3H]5-HT release stimulated by NMDA was unaffected by glycine. In contrast, when tested in the presence of strychnine, glycine increased NMDA-evoked [3H]5-HT release (by 22%), and this effect was prevented by a selective antagonist of the NMDA-associated glycine receptor, 7-chlorokynurenate (100 μM). 7-Chlorokynuren-ate by itself induced a drastic decrease in [3H]5-HT release, indicating that under basal conditions these sites were stimulated by endogenous glycine. These results indicate that NMDA stimulated [3H]5-HT release in both the presence or absence of Mg2+. Use of selective antagonists allowed differentiation of a strychnine-sensitive glycine response (inhibition of [3H]5-HT release) from a 7-chlorokynurenate-sensitive response (potentiation of NMDA-evoked [3H]5-HT release).  相似文献   

17.
Abstract: Propentofylline is a novel neuroprotective agent that has been shown to act as an adenosine transport inhibitor as well as an adenosine receptor antagonist. In the present series of experiments we have compared the effects of propentofylline with those of known adenosine transport inhibitors and receptor antagonists on the formation of adenosine in rat hippocampal slices. The ATP stores were labeled by incubating the slices with [3H]-adenine. The total 3H overflow and the overflow of endogenous and 3H-labeled adenosine, inosine, and hypoxanthine were measured. Adenosine release, secondary to ATP breakdown, was induced both by hypoxia/hypoglycemia and by electrical field stimulation. Propentofylline (20–500 µM) increased the release of endogenous and radiolabeled adenosine, without increasing the total release of purines. Thus, the drug altered the pattern of released purines, i.e., increasing adenosine and decreasing inosine and hypoxanthine. This pattern, which was observed when purine release was induced both by electrical field stimulation and by hypoxia/hypoglycemia, was shared by the nucleoside transport inhibitor dipyridamole (1 µM) and by mioflazine (1 µM) and nitrobenzylthioinosine (1 µM). By contrast, other xanthines, including theophylline (100 µM) and 8-cyclopentyltheophylline (10 µM), enprofylline (100 µM), or torbafylline (300 µM), if anything, increased the total release of purines without alterations of the pattern of release. These results indicate that nucleoside transport inhibitors can decrease the release of purines from cells and at the same time increase the concentration of extracellular adenosine, possibly by preventing its uptake and subsequent metabolism. This change in purine metabolism may be beneficial with regard to cell damage after ischemia. The results also indicate that propentofylline behaves in such a potentially beneficial manner.  相似文献   

18.
Clonal cell line NCB-20 (a hybrid of mouse neuroblastoma N18TG2 and Chinese hamster 18-day embryonic brain expiant) expressed both high- (KD 180 nM) and low-affinity (>3000 nM) binding sites for [3H]serotonin (5-HT) which were absent from the parent neuroblastoma. The low-affinity binding site was eliminated by 1 μM spiperone. The order of drug potency for inhibition of high-affinity [3H]5-HT binding was consistent with a 5-HT1 receptor (5,6 - dihydroxytryptamine = 5-HT = methysergide = 5-methoxytryptamine > cyproheptadine = clozapine = mianserin > spiperone > dopamine = morphine = ketanserin = norepinephrine). [3H]5-HT binding was inhibited by guanine nucleotides (e.g., GTP and Gpp(NH)p), whereas antagonist binding was not; as-corbate was also inhibitory. A 30-min exposure of cells to 1—2 μM 5-HT or other agonists produced a three- to fivefold stimulation of cyclic AMP levels. The order of potency for 5-HT agonist stimulation of basal cyclic AMP levels and 5-HT antagonist reversal of agonist-stimulated levels was the same as the order of drug potency for inhibition of high-affinity [3H]5-HT binding, suggesting linkage of the 5-HT1 receptor to adenylate cyclase in NCB-20 cells.  相似文献   

19.
Abstract: We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 μM) and the nonmetabolized analogue of GTP, guanyl-5′-yl-imidodiphosphate (GppNHp; 100 μM). Competition studies with bradykinin and with [Hyp3]-bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 μM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]-bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 μM) and GDP (100 μM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 μM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides. These data provide further evidence for three subtypes of B2-type bradykinin receptors in guinea pig.  相似文献   

20.
Abstract: Potassium depolarization of rat brain synaptosomes (containing incorporated l-acyl-2-[14C]arachidonyl-phosphatidylcholine) stimulated endogenous phospholipase A1 (EC 3.1.1.32) and A2 (EC 3.1.1.4), as determined by the formation of [14C]lysophosphatidylcholine, [14C]arachidonate, and [14C]prostaglandins, and also stimulated the secretion of [3H]catecholamines. The phospholipase A2 stimulation, dependent on calcium, was elicited in resting synaptosomes by A23187 and was demonstrated with incorporated 1-acyl-2-[l4C]oleoyl-phosphatidylcholine but not with incorporated [I4C]phosphatidylethanolamine or [l4C]phosphatidylserine. Inhibitors of phospholipase A2 [p-bromophenacylbromide (10 μM), trifluoperazine (3 μM), and quinacrine (3 μM) reduced the potassium-stimulated [3H]catecholamine release from synaptosomes to 78, 39. and 55%, respectively, of depolarized controls. The addition of lysophosphatidylcholine increased the release of [3H]norepinephrine to levels observed with potassium depolarization, whereas lysophosphatidylethanolamine, lysophosphatidylserine, and sodium dodecyl sulfate were much less effective. Potassium stimulation of synaptosomes increased the endogenous levels of free arachidonic acid and prostaglandins E2 and F. Indomethacin and aspirin decreased the amounts of prostaglandins formed, allowed the accumulation of free arachidonic acid, and diminished the potassium-stimulated release of [3H]dopamine. p-Bromophenacylbromide inhibited the formation of prostaglandin F. Addition of prostaglandin E2 inhibited, whereas prostaglandin F enhanced the release of [3H]norepinephrine. These results suggest that calcium influx induced by synaptosomal depolarization activates endogenous phospholipase A2, with subsequent formation of lysophosphatidylcholine and prostaglandins, both of which may modulate neurosecretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号