首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino-terminal domain containing the ligand binding site of the G protein-coupled metabotropic glutamate receptors (mGluRs) consists of two lobes that close upon agonist binding. In this study, we explored the ligand binding pocket of the Group III mGluR4 receptor subtype using site-directed mutagenesis and radioligand binding. The selection of 16 mutations was guided by a molecular model of mGluR4, which was based on the crystal structure of the mGluR1 receptor. Lysines 74 and 405 are present on lobe I of mGluR4. The mutation of lysine 405 to alanine virtually eliminated the binding of the agonist [(3)H]l-amino-4-phosphonobutyrate ([(3)H]l-AP4). Thus lysine 405, which is conserved in all eight mGluRs, likely represents a fundamental recognition residue for ligand binding to the mGluRs. Single point mutations of lysines 74 or 317, which are not conserved in the mGluRs, to alanine had no effect on agonist affinity, whereas mutation of both residues together caused a loss of ligand binding. Mutation of lysine 74 in mGluR4, or the analogous lysine in mGluR8, to tyrosine (mimicking mGluR1 at this position) produced a large decrease in binding. The reduction in binding is likely due to steric hindrance of the phenolic side chain of tyrosine. The mutation of glutamate 287 to alanine, which is present on lobe II and is not conserved in the mGluR family, caused a loss of [(3)H]l-AP4 binding. We conclude that the determinants of high affinity ligand binding are dispersed across lobes I and II. Our results define a microenvironment within the binding pocket that encompasses several positively charged amino acids that recognize the negatively charged phosphonate group of l-AP4 or the endogenous compound l-serine-O-phosphate.  相似文献   

2.
The protein design rules for engineering allosteric regulation are not well understood. A fundamental understanding of the determinants of ligand binding in an allosteric context could facilitate the design and construction of versatile protein switches and biosensors. Here, we conducted extensive in vitro and in vivo characterization of the effects of 285 unique point mutations at 15 residues in the maltose‐binding pocket of the maltose‐activated β‐lactamase MBP317‐347. MBP317‐347 is an allosteric enzyme formed by the insertion of TEM‐1 β‐lactamase into the E. coli maltose binding protein (MBP). We find that the maltose‐dependent resistance to ampicillin conferred to the cells by the MBP317‐347 switch gene (the switch phenotype) is very robust to mutations, with most mutations slightly improving the switch phenotype. We identified 15 mutations that improved switch performance from twofold to 22‐fold, primarily by decreasing the catalytic activity in the absence of maltose, perhaps by disrupting interactions that cause a small fraction of MBP in solution to exist in a partially closed state in the absence of maltose. Other notable mutations include K15D and K15H that increased maltose affinity 30‐fold and Y155K and Y155R that compromised switching by diminishing the ability of maltose to increase catalytic activity. The data also provided insights into normal MBP physiology, as select mutations at D14, W62, and F156 retained high maltose affinity but abolished the switch's ability to substitute for MBP in the transport of maltose into the cell. The results reveal the complex relationship between ligand binding and allostery in this engineered switch.  相似文献   

3.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

4.
Family C G-protein coupled receptors (GPCRs) consist of the metabotropic glutamate receptors (mGluRs), the calcium-sensing receptor (CaSR), the T1R taste receptors, the GABA(B) receptor, the V2R pheromone receptors, and several chemosensory receptors. A common feature of Family C receptors is the presence of an amino acid binding pocket. The objective of this study was to evaluate the ability of the automatic docking program FlexX to predict the favored amino acid ligand at several Family C GPCRs. The docking process was optimized using the crystal structure of mGluR1 and the 20 amino acids were docked into homology models of the CaSR, the 5.24 chemosensory receptor, and the GPRC6A amino acid receptor. Under optimized docking conditions, glutamate was docked in the binding pocket of mGluR1 with a root mean square deviation of 1.56 angstroms from the co-crystallized glutamate structure and was ranked as the best ligand with a significantly better FlexX score compared to all other amino acids. Ligand docking to a homology model of the 5.24 receptor gave generally correct predictions of the favored amino acids, while the results obtained with models of GPRC6A and the CaSR showed that some of the favored amino acids at these receptors were correctly predicted, while a few other top scoring amino acids appeared to be false positives. We conclude that with certain caveats, FlexX can be successfully used to predict preferred ligands at Family C GPCRs.  相似文献   

5.
Powl AM  East JM  Lee AG 《Biochemistry》2005,44(15):5873-5883
We have introduced single Trp residues into the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and used fluorescence quenching by brominated phospholipids to detect the presence of a binding site of high affinity for anionic phospholipids. A cluster of three positively charged residues, Arg-98, Lys-99, and Lys-100, is located on the cytoplasmic side of MscL, in a position where they could interact with the headgroup of an anionic phospholipid. Single mutations of these charged residues in the Trp-containing mutant F80W results in a decreased affinity for phosphatidic acid. Single mutations of the charged residues also result in a significant shift in the fluorescence emission spectrum in dioleoylphosphatidylcholine [di(C18:1)PC] but smaller shifts in dioleoylphosphatidic acid [di(C18:1)PA], suggesting that single mutations result in a conformational change for the protein that is reversed by interaction with anionic phospholipids. This is consistent with the observation that single mutations of the charged residues do not result in a gain of function phenotype. In contrast, simultaneous mutation of all three charged residues results in a gain of function phenotype, and a shift in fluorescence emission spectrum in di(C18:1)PC not reversed in di(C18:1)PA. The gain of function mutant F80W:V21K also shows a shifted fluorescence emission spectrum in both di(C18:1)PC and di(C18:1)PA and binds di(C18:1)PC and di(C18:1)PA with equal affinity, suggesting that the conformational change caused by the V21K mutation results in a breakup of the cluster of three positive charges. Experiments with the Trp mutants L69W and Y87W allow us to measure lipid binding constants on the periplasmic and cytoplasmic sides of the membrane, respectively. On both sides of the membrane the affinity for di(C18:1)PC is equal to that for dioleoylphosphatidylethanolamine. On the periplasmic side of the membrane, there is no selectivity for anionic phospholipids. In contrast, quenching data for Y87W provides evidence for the existence of two lipid binding sites on the cytoplasmic side of the membrane close to the Trp residue at position 87, with binding to one of these sites showing a marked preference for anionic lipid over zwitterionic lipid, presumably involving the charged cluster Arg-98, Lys-99, and Lys-100.  相似文献   

6.
Polyunsaturated fatty acids such as arachidonic acid (AA) exhibit inhibitory modulation of Kv4 potassium channels. Molecular docking approaches using a Kv4.2 homology model predicted a membrane-embedded binding pocket for AA comprised of the S4-S5 linker on one subunit and several hydrophobic residues within S3, S5 and S6 from an adjacent subunit. The pocket is conserved among Kv4 channels. We tested the hypothesis that modulatory effects of AA on Kv4.2/KChIP channels require access to this site. Targeted mutation of a polar residue (K318) and a nonpolar residue (G314) within the S4-S5 linker as well as a nonpolar residue in S3 (V261) significantly impaired the effects of AA on K+ currents in Xenopus oocytes. These residues may be important in stabilizing (K318) or regulating access to (V261, G314) the negatively charged carboxylate moiety on the fatty acid. Structural specificity was supported by the lack of disruption of AA effects observed with mutations at residues located near, but not within the predicted binding pocket. Furthermore, we found that the crystal structure of the related Kv1.2/2.1 chimera lacks the structural features present in the proposed AA docking site of Kv4.2 and the Kv1.2/2.1 K+ currents were unaffected by AA. We simulated the mutagenic substitutions in our Kv4.2 model to demonstrate how specific mutations may disrupt the putative AA binding pocket. We conclude that AA inhibits Kv4 channel currents and facilitates current decay by binding within a hydrophobic pocket in the channel in which K318 within the S4-S5 linker is a critical residue for AA interaction.  相似文献   

7.
The purinergic 12 receptor (P2Y12) is a major drug target for anticoagulant therapies, but little is known about the regions involved in ligand binding and activation of this receptor. We generated four randomized P2Y12 libraries and investigated their ligand binding characteristics. P2Y12 was expressed in a Saccharomyces cerevisiae model system. Four libraries were generated with randomized amino acids at positions 181, 256, 265 and 280. Mutant variants were screened for functional activity in yeast using the natural P2Y12 ligand ADP. Activation results were investigated using quantitative structure-activity relationship (QSAR) models and ligand-receptor docking. We screened four positions in P2Y12 for functional activity by substitution with amino acids with diverse physiochemical properties. This analysis revealed that positions E181, R256 and R265 alter the functional activity of P2Y12 in a specific manner. QSAR models for E181 and R256 mutant libraries strongly supported the experimental data. All substitutions of amino acid K280 were completely inactive, highlighting the crucial role of this residue in P2Y12 function. Ligand-receptor docking revealed that K280 is likely to be a key element in the ligand-binding pocket of P2Y12. The results of this study demonstrate that positions 181, 256, 265 and 280 of P2Y12 are important for the functional integrity of the receptor. Moreover, K280 appears to be a crucial feature of the P2Y12 ligand-binding pocket. These results are important for rational design of novel antiplatelet agents.  相似文献   

8.
We have investigated the mechanism of inhibition and site of action of the novel human metabotropic glutamate receptor 5 (hmGluR5) antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP), which is structurally unrelated to classical metabotropic glutamate receptor (mGluR) ligands. Schild analysis indicated that MPEP acts in a non-competitive manner. MPEP also inhibited to a large extent constitutive receptor activity in cells transiently overexpressing rat mGluR5, suggesting that MPEP acts as an inverse agonist. To investigate the molecular determinants that govern selective ligand binding, a mutagenesis study was performed using chimeras and single amino acid substitutions of hmGluR1 and hmGluR5. The mutants were tested for binding of the novel mGluR5 radioligand [(3)H]2-methyl-6-(3-methoxyphenyl)ethynyl pyridine (M-MPEP), a close analog of MPEP. Replacement of Ala-810 in transmembrane (TM) VII or Pro-655 and Ser-658 in TMIII with the homologous residues of hmGluR1 abolished radioligand binding. In contrast, the reciprocal hmGluR1 mutant bearing these three residues of hmGluR5 showed high affinity for [(3)H]M-MPEP. Radioligand binding to these mutants was also inhibited by 7-hydroxyiminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester (CPCCOEt), a structurally unrelated non-competitive mGluR1 antagonist previously shown to interact with residues Thr-815 and Ala-818 in TMVII of hmGluR1. These results indicate that MPEP and CPCCOEt bind to overlapping binding pockets in the TM region of group I mGluRs but interact with different non-conserved residues.  相似文献   

9.
The 5.24 odorant receptor is an amino acid sensing receptor that is expressed in the olfactory epithelium of fish. The 5.24 receptor is a G-protein-coupled receptor that shares amino acid sequence identity to mammalian pheromone receptors, the calcium-sensing receptor, the T1R taste receptors, and the metabotropic glutamate receptors (mGluRs). It is most potently activated by the basic amino acids L-lysine and L-arginine. In this study we generated a homology model of the ligand binding domain of the 5.24 receptor based on the crystal structure of mGluR1 and examined the proposed lysine binding pocket using site-directed mutagenesis. Mutants of truncated glycosylated versions of the receptor containing only the extracellular domain were analyzed in a radioligand binding assay, whereas the analogous full-length membrane-bound mutants were studied using a fluorescence-based functional assay. In silico analysis predicted that aspartate 388 interacts with the terminal amino group on the side chain of the docked lysine molecule. This prediction was supported by experimental observations demonstrating that mutation of this residue caused a 26-fold reduction in the affinity for L-lysine but virtually no change in the affinity for the polar amino acid L-glutamine. In addition, mutations in four highly conserved residues (threonine 175, tyrosine 223, and aspartates 195 and 309) predicted to establish interactions with the alpha amino group of the bound lysine ligand greatly reduced or eliminated binding and receptor activation. These results define the essential features of amino acid selectivity within the 5.24 receptor binding pocket and highlight an evolutionarily conserved motif required for ligand recognition in amino acid activated receptors in the G-protein-coupled receptor superfamily.  相似文献   

10.
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9-39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9-39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues.  相似文献   

11.
To investigate the relationship between the high and the low affinity ATP-binding site, which appears during the Na(+)/K(+)-ATPase reaction, four amino acids were mutated, the side chains of which are exposed to inside of the ATP-binding pocket. Six mutants, F475Y, K480A, K480E, K501A, K501E, and R544A, where the numbers correspond to the pig Na(+)/K(+)-ATPase alpha-chain, were expressed in HeLa cells. The apparent affinities were determined by high affinity ATP-dependent phosphorylation and by the low affinity activation of Na(+)/K(+)-ATPase or low affinity ATP inhibition of K(+)-para-nitrophenylphosphatase (pNPPase). For the mutants K480A and K501A, little affinity change was detected for either the high affinity or the low affinity effect. In contrast, the other four mutants reduced both apparent affinities. Strikingly, R544A had a 30-fold greater effect on the high affinity ATP site than the low affinity site. For the F475Y mutant, it is likely that there was a greater effect on the low affinity site than the high affinity site, but for both F475Y and K480E the affinity for the low affinity ATP effect was reduced so much that it was not possible to estimate a K(0.5). However, both the affinities for the K480E were reduced to approximately 1/20. The turnover number of the Na(+)/K(+)-ATPase and the apparent affinity for Na(+) and pNPP was reduced slightly or not at all for these mutants, but the turnover number of K(+)-pNPPase and the apparent affinity for K(+) were increased. These and other data suggest the presence of only one ATP-binding site, which can change its conformation to accept ATP with a high and low affinity. The requirement of Arg-544 and possibly Lys-501 is more important in forming a high affinity ATP binding conformation, and Phe-475 and possibly Lys-480 are more important in forming the low affinity ATP binding conformation.  相似文献   

12.
The brain's major inhibitory neuroreceptor is the ligand-gated ion channel γ-aminobutyric acid (GABA) type A receptor (GABAR). GABARs exist in a variety of different subunit combinations that act to modulate the physiological behavior of GABAR by altering its pharmacological profile, as well as its affinity for GABA. While the α(1)β(2)γ(2) subtype is one of the most prevalent GABARs, the less populous α(6)β(3)δ subtype has much higher GABA sensitivity. Previous studies identified residues crucial for GABA binding; however, the specific molecular differences responsible for this diverse sensitivity are not known. Furthermore, the role of loop F is a divisive subject, with conflicting evidence for ligand binding function. Using homology modeling, ligand docking, and molecular dynamics simulations, we investigated the GABA binding sites of the two receptor subtypes. Simulations identified seven residues that consistently interacted with GABA in both subtypes: αF65, αR132, βL99, βE155, βR/K196, βY205, and βR207. Residue substitution at position β196 (arginine in α(6)β(3)δ, lysine in α(1)β(2)γ(2)) resulted in a shift in GABA binding. However, the major difference between the two binding sites was the magnitude of loop F involvement, with a greater contribution in the α(6)β(3)δ receptor. Free energy calculations confirm that the α(6)β(3)δ binding pocket has an increased affinity for GABA. Thus, the possible role for loop F across the GABAR family is to modulate GABA affinity.  相似文献   

13.
Since its discovery in 1992, mGluR5 has attracted significant attention and been linked to several neurological and psychiatric diseases. Ligand development was initially focused on the orthosteric binding pocket, but lack of subtype selective ligands changed the focus to the transmembrane allosteric binding pocket. This strategy has resulted in several drug candidates in clinical testing. In the present article we explore the orthosteric and allosteric binding pockets in terms of structure and ligand recognition across the mGluR subtypes and groups, and discuss the clinical potential of ligands targeting these pockets. We have performed binding mode analyses of non- and group-selective orthosteric ligands based on molecular docking in mGluR crystal structures and models. For the analysis of the allosteric binding pocket we have combined data from all mGluR5-mutagenesis studies, collectively reporting five negative allosteric modulators and 47 unique mutations, and compared it to the closest related homolog, mGluR1.  相似文献   

14.
Y receptors (YRs) are G protein-coupled receptors whose Y(1)R, Y(2)R, and Y(5)R subtypes preferentially bind neuropeptide Y (NPY) and peptide YY, whereas mammalian Y(4)Rs show a higher affinity for pancreatic polypeptide (PP). Comparison of YR orthologs and paralogs revealed Asp(6.59) to be fully conserved throughout all of the YRs reported so far. By replacing this conserved aspartic acid residue with alanine, asparagine, glutamate, and arginine, we now show that this residue plays a crucial role in binding and signal transduction of NPY/PP at all YRs. Sensitivity to distinct replacements is, however, receptor subtype-specific. Next, we performed a complementary mutagenesis approach to identify the contact site of the ligand. Surprisingly, this conserved residue interacts with two different ligand arginine residues by ionic interactions; although in Y(2)R and Y(5)R, Arg(33) is the binding partner of Asp(6.59), in Y(1)R and Y(4)R, Arg(35) of human PP and NPY interacts with Asp(6.59). Furthermore, Arg(25) of PP and NPY is involved in ligand binding only at Y(2)R and Y(5)R. This suggests significant differences in the docking of YR ligands between Y(1/4)R and Y(2/5)R and provides new insights into the molecular binding mode of peptide agonists at GPCRs. Furthermore, the proposed model of a subtype-specific binding mode is in agreement with the evolution of YRs.  相似文献   

15.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) has been recognized as an important activator of certain transient receptor potential (TRP) channels. More specifically, TRPV1 is a pain receptor activated by a wide range of stimuli. However, whether or not PI(4,5)P2 is a TRPV1 agonist remains open to debate. Utilizing a combined approach of mutagenesis and molecular modeling, we identified a PI(4,5)P2 binding site located between the TRP box and the S4-S5 linker. At this site, PI(4,5)P2 interacts with the amino acid residues Arg-575 and Arg-579 in the S4-S5 linker and with Lys-694 in the TRP box. We confirmed that PI(4,5)P2 behaves as a channel agonist and found that Arg-575, Arg-579, and Lys-694 mutations to alanine reduce PI(4,5)P2 binding affinity. Additionally, in silico mutations R575A, R579A, and K694A showed that the reduction in binding affinity results from the delocalization of PI(4,5)P2 in the binding pocket. Molecular dynamics simulations indicate that PI(4,5)P2 binding induces conformational rearrangements of the structure formed by S6 and the TRP domain, which cause an opening of the lower TRPV1 channel gate.  相似文献   

16.
Promiscuous ligand binding by hen egg-white avidin has been demonstrated and studied by using circular dichroism (CD) spectroscopy complemented by molecular docking calculations. It has been shown that the biotin-binding pocket of avidin is able to accommodate a wide variety of chemical compounds including therapeutic drugs (e.g., thalidomide, NSAIDs, antihistamines), natural compounds (bilirubin, myristic acid), and synthetic agents (xanthenone dyes). The cluster of aromatic residues located at the biotin-binding pocket renders the intrinsic CD spectrum of avidin sensitive to ligand binding that results in the increase of the vibronic components of the (1) L(b) transition of the Trp residues. Extrinsic (induced) CD bands measured with chemically diverse avidin ligands are generated by intramolecular coupled oscillator (e.g., bilirubin) or by intermolecular ligand-Trp exciton coupling mechanism [e.g., 2-(4'-hydroxyazobenzene)-benzoic acid (HABA)]. Among the compounds of which avidin-binding affinity constants have been calculated, two novel high-affinity ligands, flufenamic acid and an enzyme inhibitor thiazole derivative have been identified (K(d) ≈ 1 μM). Avidin binding mode of the ligand molecules has been discussed in the light of docking results. The induced CD profile of the thiazole derivative has been correlated with the stereochemistry of its docked conformation. The important role in the ligand binding of a polar side-chain cluster at the bottom of the biotin-binding cavity as well as the analogous avidin-binding mode of HABA and fenamic acid type NSAIDs have been proposed.  相似文献   

17.
Metabotropic glutamate receptors (mGluRs) are G-protein-coupled glutamate receptors that subserve a number of diverse functions in the central nervous system. The large extracellular amino-terminal domains (ATDs) of mGluRs are homologous to the periplasmic binding proteins in bacteria. In this study, a region in the ATD of the mGluR4 subtype of mGluR postulated to contain the ligand-binding pocket was explored by site-directed mutagenesis using a molecular model of the tertiary structure of the ATD as a guiding tool. Although the conversion of Arg(78), Ser(159), or Thr(182) to Ala did not affect the level of protein expression or cell-surface expression, all three mutations severely impaired the ability of the receptor to bind the agonist L-[(3)H]amino-4-phosphonobutyric acid. Mutation of other residues within or in close proximity to the proposed binding pocket produced either no effect (Ser(157) and Ser(160)) or a relatively modest effect (Ser(181)) on ligand affinity compared with the Arg(78), Ser(159), and Thr(182) mutations. Based on these experimental findings, together with information obtained from the model in which the glutamate analog L-serine O-phosphate (L-SOP) was "docked" into the binding pocket, we suggest that the hydroxyl groups on the side chains of Ser(159) and Thr(182) of mGluR4 form hydrogen bonds with the alpha-carboxyl and alpha-amino groups on L-SOP, respectively, whereas Arg(78) forms an electrostatic interaction with the acidic side chains of L-SOP or glutamate. The conservation of Arg(78), Ser(159), and Thr(182) in all members of the mGluR family indicates that these amino acids may be fundamental recognition motifs for the binding of agonists to this class of receptors.  相似文献   

18.
alpha-Glucuronidases are key components of the ensemble of enzymes that degrade the plant cell wall. They hydrolyze the alpha1,2-glycosidic bond between 4-O-methyl-d-glucuronic acid (4-O-MeGlcA) and the xylan or xylooligosaccharide backbone. Here we report the crystal structure of an inactive mutant (E292A) of the alpha-glucuronidase, GlcA67A, from Cellvibrio japonicus in complex with its substrate. The data show that the 4-O-methyl group of the substrate is accommodated within a hydrophobic sheath flanked by Val-210 and Trp-160, whereas the carboxylate moiety is located within a positively charged region of the substrate-binding pocket. The carboxylate side chains of Glu-393 and Asp-365, on the "beta-face" of 4-O-MeGlcA, form hydrogen bonds with a water molecule that is perfectly positioned to mount a nucleophilic attack at the anomeric carbon of the target glycosidic bond, providing further support for the view that, singly or together, these amino acids function as the catalytic base. The capacity of reaction products and product analogues to inhibit GlcA67A shows that the 4-O-methyl group, the carboxylate, and the xylose sugar of aldobiouronic acid all play an important role in substrate binding. Site-directed mutagenesis informed by the crystal structure of enzyme-ligand complexes was used to probe the importance of highly conserved residues at the active site of GlcA67A. The biochemical properties of K288A, R325A, and K360A show that a constellation of three basic amino acids (Lys-288, Arg-325, and Lys-360) plays a critical role in binding the carboxylate moiety of 4-O-MeGlcA. Disruption of the apolar nature of the pocket created by Val-210 (V210N and V210S) has a detrimental effect on substrate binding, although the reduction in affinity is not reflected by an inability to accommodate the 4-O-methyl group. Replacing the two tryptophan residues that stack against the sugar rings of the substrate with alanine (W160A and W543A) greatly reduced activity.  相似文献   

19.
V P Chitnis  A Ke    P R Chitnis 《Plant physiology》1997,115(4):1699-1705
The PsaD subunit of photosystem I (PSI) is a peripheral protein that provides a docking site for ferredoxin and interacts with the PsaB, PsaC, and PsaL subunits of PSI. We used site-directed mutagenesis to determine the function of a basic region in PsaD of the cyanobacterium Synechocystis sp. PCC 6803. We generated five mutant strains in which one or more charged residues were altered. Western blotting showed that replacement of lysine (Lys)-74 with glutamine or glutamic acid led to a substantial decrease in the level of PsaD in the membranes. The mutant PSI complexes showed reduced NADP+ photoreduction activity mediated by ferredoxin; the decrease in activity correlated with the reduced level of PsaD. Using protein synthesis inhibitors we showed that the degradation rates of the mutant and wild-type PsaD were similar, indicating a defect in the assembly of the mutant protein. Treatment of the mutant PSI complexes with a different concentration of NaI showed that the mutations decreased affinity between PsaD and the transmembrane components of PSI. With glutaraldehyde, the mutant and wild-type PsaD proteins could be cross-linked with PsaC, but the PsaD-PsaL cross-linked product was reduced drastically when arginine-72, Lys-74, and Lys-76 were mutated simultaneously. These studies demonstrate that the basic residues in the central region of PsaD, especially Lys-74, are crucial in the assembly of PsaD into the PSI complex.  相似文献   

20.
Lys-112 and Tyr-113 in pig kidney fructose-1,6-bisphosphatase (FBPase) make direct interactions with AMP in the allosteric binding site. Both residues interact with the phosphate moiety of AMP while Tyr-113 also interacts with the 3'-hydroxyl of the ribose ring. The role of these two residues in AMP binding and allosteric inhibition was investigated. Site-specific mutagenesis was used to convert Lys-112 to glutamine (K112Q) and Tyr-113 to phenylalanine (Y113F). These amino acid substitutions result in small alterations in k(cat) and increases in K(m). However, both the K112Q and Y113F enzymes show alterations in Mg(2+) affinity and dramatic reductions in AMP affinity. For both mutant enzymes, the AMP concentration required to reduced the enzyme activity by one-half, [AMP](0.5), was increased more than a 1000-fold as compared to the wild-type enzyme. The K112Q enzyme also showed a 10-fold reduction in affinity for Mg(2+). Although the allosteric site is approximately 28 A from the metal binding sites, which comprise part of the active site, these site-specific mutations in the AMP site influence metal binding and suggest a direct connection between the allosteric and the active sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号