首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 387 毫秒
1.
Procollagen C-proteinase enhancer (PCOLCE) proteins are extracellular matrix proteins that enhance the activities of procollagen C-proteinases by binding to the C-propeptide of procollagen I. PCOLCE proteins are built of three structural modules, consisting of two CUB domains followed by a C-terminal netrin-like (NTR) domain. While the enhancement of proteinase activity can be ascribed solely to the CUB domains, sequence homology of the NTR domain with tissue inhibitors of metalloproteinases suggest proteinase inhibitory activity for the NTR domain. Here we present the three-dimensional structure of the NTR domain of human PCOLCE1 as the first example of a structural domain with the canonical features of an NTR module. The structure rules out a binding mode to metalloproteinases similar to that of tissue inhibitors of metalloproteinases but suggests possible inhibitory function toward specific serine proteinases. Sequence conservation between 13 PCOLCE proteins from different organisms suggests a conserved binding surface for other protein partners.  相似文献   

2.
Bone morphogenetic protein-1 (BMP-1) is a shorter spliced variant of mammalian tolloid (mTld), both of which cleave the C-propeptides of type I procollagen during the synthesis of extracellular matrix collagen fibrils. The fact that BMP-1 and mTld both exhibit procollagen C-proteinase (PCP) activity and that BMP-1 is the smaller variant might indicate that BMP-1 comprises the minimal required sequences for PCP activity. BMP-1 comprises a metalloproteinase domain, three CUB domains, and an epidermal growth factor (EGF)-like domain, which is located between the second and third CUB (complement components C1r/C1s, the sea urchin protein Uegf, and BMP-1) domains. In this study we showed the following. 1) The CUB1 domain is required for secretion of the molecule. Domain swapping experiments, in which CUB1 and other CUB domains were interchanged, resulted in retention of the proteins by cells. Therefore, CUB1 and its location immediately adjacent to the metalloproteinase domain are essential for secretion of the protein. 2) Mutants lacking the EGF-like and CUB3 domains exhibited full C-proteinase activity. In contrast, mutants lacking the CUB2 domain were poor C-proteinases. 3) Further studies showed that Glu-483 on the beta4-beta5 loop of CUB2 is essential for C-proteinase activity of BMP-1. In conclusion, the study showed that the minimal domain structure for PCP activity is considerably shorter than expected and comprises the metalloproteinase domain and the CUB1 and CUB2 domains of BMP-1.  相似文献   

3.
Procollagen C-proteinase (PCP) removes the C-terminal pro-peptides of procollagens and also processes other matrix proteins. The major splice form of the PCP is termed BMP1 (bone morphogenetic protein 1). Active BMP1 is composed of an astacin-like protease domain, three CUB (complement, sea urchin Uegf, BMP1) domains and one EGF-like domain. Here we compare the recombinant human full-length BMP1 with its isolated proteolytic domain to further unravel the functional influence of the CUB and EGF domains. We show that the protease domain alone cleaves truncated procollagen VII within the short telopeptide region into fragments of similar size as the full-length enzyme does. However, unlike full-length BMP1, the protease domain does not stop at this point, but degrades its substrate completely. Moreover, the protease domain cleaves other matrix proteins such as fibronectin, collagen I and collagen IV, which are left intact by the full-length enzyme. In addition, we show for the first time that thrombospondin-1 is differently cleaved by both BMP1 and its catalytic domain. In summary, our data support the concept that the C-terminal domains of BMP1 are important for substrate recognition and for controlling and restricting its proteolytic activity via exosite binding.  相似文献   

4.
The procollagen C-proteinase (PCP) is a zinc peptidase of the astacin family and the metzincin superfamily. The enzyme removes the C-terminal propeptides of fibrillar procollagens and activates other matrix proteins. Besides its catalytic protease domain, the procollagen C-proteinase contains several C-terminal CUB modules (named after complement factors C1r and C1s, the sea urchin UEGF protein, and BMP-1) and EGF-like domains. The two major splice forms of the C-proteinase differ in their overall domain composition. The longer variant, termed mammalian tolloid (mTld, i.e., PCP-2), has the protease-CUB1-CUB2-EGF1-CUB3-EGF2-CUB4-CUB5 composition, whereas the shorter form termed bone morphogenetic protein 1 (BMP-1, i.e., PCP-1) ends after the CUB3 domain. Two related genes encode proteases similar to mTld in humans and have been termed mammalian tolloid like-1 and -2 (mTll-1 and mTll-2, respectively). For mTll-1, it has been shown that it has C-proteinase activity. We demonstrate that recombinant EGF1-CUB3, CUB3, CUB3-EGF2, EGF2-CUB4, and CUB4-CUB5 modules of the procollagen C-proteinase can be expressed in bacteria and adopt a functional antiparallel beta-sheet conformation. As shown by surface plasmon resonance analysis, the modules bind to procollagen I in a 1:1 stoichiometry with dissociation constants (K(D)) ranging from 622.0 to 1.0 nM. Their binding to mature collagen I is weaker by at least 1 order of magnitude. Constructs containing EGF domains bind more strongly than those consisting of CUB domains only. This suggests that a combination of CUB and EGF domains serves as the minimal functional unit. The binding affinities of the EGF-containing modules for procollagen increase in the order EGF1-CUB3 < CUB3-EGF2 < EGF2-CUB4. In the context of the full length PCP, this implies that a given module has an affinity that continues to increase the more C-terminally the module is located within the PCP. The tightest binding module, EGF2-CUB4 (K(D) = 1.0 nM), is only present in mTld, which might provide a quantitative explanation for the different efficiencies of BMP-1 and mTld in procollagen C-proteinase activity.  相似文献   

5.
Xu H  Acott TS  Wirtz MK 《Genomics》2000,66(3):264-273
A novel human Type I procollagen C-proteinase enhancer protein-like gene, PCOLCE2, was identified by sequencing an EST in the primary open-angle glaucoma (POAG) region on 3q21. The total cDNA encoded a 415-amino-acid protein that has 43% identity to the Type I procollagen C-proteinase enhancer protein (PCOLCE1). PCOLCE2 contains two CUB domains, which are thought to be involved in protein-protein interactions, and an NTR module. PCOLCE2 message is expressed in the trabecular meshwork, lungs, heart, brain, liver, skeletal muscle, kidney, pancreas, and placenta as a 2-kb message. PCOLCE2, a 52-kDa protein, is expressed in the trabecular meshwork. A novel gene, PCOLCE2, has been identified and characterized. Based upon its homology with collagen-binding proteins, its expression in the trabecular meshwork, and its chromosome location, PCOLCE2 is a candidate gene for GLC1C. However, no coding sequence mutations were detected in PCOLCE2 in a POAG patient from the GLC1C family.  相似文献   

6.
Bone morphogenetic protein 1 (BMP-1), which is a tolloid member of the astacin-like family of zinc metalloproteinases, is a highly effective procollagen C-proteinase (PCP) and chordinase. On the other hand, mammalian tolloid like-2 (mTLL-2) does not cleave chordin or procollagen; procollagen is cleaved by mTLL-2 in the presence of high levels of procollagen C-proteinase enhancer-1 (PCPE-1), for reasons that are unknown. We used these differences in activity between BMP-1 and mTLL-2 to narrow in on the domains in BMP-1 that specify PCP and chordinase activity. Using a domain swap approach, we showed that: 1) the metalloproteinase and CUB2 domains of BMP-1 are absolutely required for PCP activity; swaps with either of the corresponding domains in BMP-1 and mTLL-2 did not result in procollagen cleavage and 2) the proteinase domain of mTLL-2 can cleave chordin if coupled to the CUB1 domain of BMP-1. Therefore, the minimal structure for chordinase activity comprises a metalloproteinase domain (either from BMP-1 or from mTLL-2) and the CUB1 domain of BMP-1 (the CUB1 domain of mTLL-2 cannot substitute for the CUB1 domain of BMP-1). We showed that the minimal procollagen C-proteinase (BMP-1 lacking the EGF and CUB3 domain) was enhanced by PCPE-1 but not as well as BMP-1 retaining the CUB3 domain. Further studies showed that PCPE-1 had no effect on the ability of BMP-1 to cleave chordin. The data support a previously suggested mechanism of PCPE-1 whereby PCPE-1 interacts with procollagen, but in addition, the CUB3 domain of BMP-1 appears to augment the interaction.  相似文献   

7.
A novel human Type I procollagen C-proteinase enhancer protein-like gene, PCOLCE2, was identified by sequencing an EST in the primary open-angle glaucoma (POAG) region on 3q21. The total cDNA encoded a 415-amino-acid protein that has 43% identity to the Type I procollagen C-proteinase enhancer protein (PCOLCE1). PCOLCE2 contains two CUB domains, which are thought to be involved in protein–protein interactions, and an NTR module. PCOLCE2 message is expressed in the trabecular meshwork, lungs, heart, brain, liver, skeletal muscle, kidney, pancreas, and placenta as a 2-kb message. PCOLCE2, a 52-kDa protein, is expressed in the trabecular meshwork. A novel gene, PCOLCE2, has been identified and characterized. Based upon its homology with collagen-binding proteins, its expression in the trabecular meshwork, and its chromosome location, PCOLCE2 is a candidate gene for GLC1C. However, no coding sequence mutations were detected in PCOLCE2 in a POAG patient from the GLC1C family.  相似文献   

8.
The backbone mobility of the C-terminal domain of procollagen C-proteinase enhancer (NTR PCOLCE1), part of a connective tissue glycoprotein, was determined using 15N NMR spectroscopy. NTR PCOLCE1 has been shown to be a netrin-like domain and adopts an OB-fold such as that found in the N-terminal domain of tissue inhibitors of metalloproteinases-1 (N-TIMP-1), N-TIMP-2, the laminin-binding domain of agrin and the C-terminal domain of complement protein C5. NMR relaxation dynamics of NTR PCOLCE1 highlight conformational flexibility in the N-terminus, strand A and the proximal CD loop. This region in N-TIMP is known to be essential for inhibitory activity against the matrix metalloproteinases and suggests that this region is of equal importance for NTR PCOLCE1, although the specific functional activity of the NTR PCOLCE1 domain is still unknown. Dynamics observed within the structural core of NTR PCOLCE1 that are not observed in N-TIMP molecules suggest that although the two domains have a similar architecture, the NTR PCOLCE1 domain will show different thermodynamic properties on binding and hence the target molecule could be somewhat different from that observed for the TIMPs. ModelFree order parameters show that NTR PCOLCE1 has more flexibility than both N-TIMP-1 and N-TIMP-2.  相似文献   

9.
Procollagen C-proteinase enhancers (PCPE-1 and -2) specifically activate bone morphogenetic protein-1 (BMP-1) and other members of the tolloid proteinase family during C-terminal processing of fibrillar collagen precursors. PCPEs consist of two CUB domains (CUB1 and CUB2) and one NTR domain separated by one short and one long linker. It was previously shown that PCPEs can strongly interact with procollagen molecules, but the exact mechanism by which they enhance BMP-1 activity remains largely unknown. Here, we used a series of deletion mutants of PCPE-1 and two chimeric constructs with repetitions of the same CUB domain to study the role of each domain and linker. Out of all the forms tested, only those containing both CUB1 and CUB2 were capable of enhancing BMP-1 activity and binding to a mini-procollagen substrate with nanomolar affinity. Both these properties were lost by individual CUB domains, which had dissociation constants at least three orders of magnitude higher. In addition, none of the constructs tested could inhibit PCPE activity, although CUB2CUB2NTR was found to modulate BMP-1 activity through direct complex formation with the enzyme, resulting in a decreased rate of substrate processing. Finally, increasing the length of the short linker between CUB1 and CUB2 was without detrimental effect on both activity and substrate binding. These data support the conclusion that CUB1 and CUB2 bind to the procollagen substrate in a cooperative manner, involving the short linker that provides a flexible tether linking the two binding regions.  相似文献   

10.
Bone morphogenetic protein (BMP)-1 is a glycosylated metalloproteinase that is fundamental to the synthesis of a normal extracellular matrix because it cleaves type I procollagen, as well as other precursor proteins. Sequence analysis suggests that BMP-1 has six potential N-linked glycosylation sites (i.e. NXS/T) namely: Asn(91) (prodomain), Asn(142) (metalloproteinase domain), Asn(332) and Asn(363) (CUB1 domain), Asn(599) (CUB3 domain), and Asn(726) in the C-terminal-specific domain. In this study we showed that all these sites are N-glycosylated with complex-type oligosaccharides containing sialic acid, except Asn(726) presumably because proline occurs immediately C-terminal of threonine in the consensus sequence. Recombinant BMP-1 molecules lacking all glycosylation sites or the three CUB-specific sites were not secreted. BMP-1 lacking CUB glycosylation was translocated to the proteasome for degradation. BMP-1 molecules lacking individual glycosylation sites were efficiently secreted and exhibited full procollagen C-proteinase activity, but N332Q and N599Q exhibited a slower rate of cleavage. BMP-1 molecules lacking any one of the CUB-specific glycosylation sites were sensitive to thermal denaturation. The study showed that the glycosylation sites in the CUB domains of BMP-1 are important for secretion and stability of the molecule.  相似文献   

11.
Signal peptide CUB (complement proteins C1r/C1s, Uegf, and Bmp 1)-EGF domain-containing protein 2 (SCUBE2) is a secreted, membrane-associated multidomain protein composed of five recognizable motifs: an NH(2)-terminal signal peptide sequence, nine copies of epidermal growth factor (EGF)-like repeats, a spacer region, three cysteine-rich repeats, and one CUB domain at the COOH terminus. Our previous clinical study showed that SCUBE2 may act as a novel breast tumor suppressor gene and serve as a useful prognostic marker. However, the specific domain responsible for its tumor suppressor activity and the precise mechanisms of its anti-tumor effect remain unknown. Using a combination of biochemical, molecular, and cell biology techniques, we further dissected the molecular functions and signal pathways mediated by the NH(2)-terminal EGF-like repeats or COOH-terminal CUB domain of SCUBE2. Independent overexpression of the NH(2)-terminal EGF-like repeats or COOH-terminal CUB domain resulted in suppression of MCF-7 breast cancer cell proliferation and reduced MCF-7 xenograft tumor growth in nude mice. Molecular and biochemical analyses revealed that the COOH-terminal CUB domain could directly bind to and antagonize bone morphogenetic protein activity in an autocrine manner, whereas the NH(2)-terminal EGF-like repeats could mediate cell-cell homophilic adhesions in a calcium-dependent fashion, interact with E-cadherin (a master tumor suppressor), and decrease the β-catenin signaling pathway. Together, our data demonstrate that SCUBE2 has growth inhibitory effects through a coordinated regulation of two distinct mechanisms: antagonizing bone morphogenetic protein and suppressing the β-catenin pathway in breast cancer cells.  相似文献   

12.
Xld (Xolloid) is a member of the Tolloid family of metalloproteases found in embryos of the frog Xenopus laevis. It cleaves Chordin, an inhibitory binding protein for BMP2/4, releasing fragments with reduced affinity for these important ventralizing signals. As a consequence, increasing Xld activity ventralizes Xenopus embryos. We have used this phenotype as an assay to determine the requirement for the C-terminal, nonprotease component of Xld for in vivo activity. This part of the protein is composed of five complement C1r/C1s-sea urchin epidermal growth factor-BMP1 (CUB) and two epidermal growth factor domains, which are thought to be involved in protein-protein interactions and may confer substrate specificity. Our results show that the protease coupled to CUB1 and CUB2 is the minimum domain structure required to ventralize Xenopus embryos and to block the dorsal axis-inducing activity of Chordin. Xld-CUB1-CUB2 cleaves Chordin, and a protease-inactive version co-precipitates Chordin. Our results indicate that the first and second CUB domains bind Chordin and present it to the protease domain. Protease-inactive Xld blocks the cleavage of Chordin by wild-type Xld and dorsalizes injected Xenopus embryos. We find that protease-inactive Xld-CUB1-CUB2 does not share this activity and that all of the C-terminal domains are required to generate the dorsalized phenotype.  相似文献   

13.
Bone morphogenetic protein 1 (BMP-1) and mammalian Tolloid (mTLD), two proteinases encoded by Bmp1, provide procollagen C-proteinase (pCP) activity that converts procollagens I to III into the major fibrous components of mammalian extracellular matrix (ECM). Yet, although Bmp1(-/-) mice have aberrant collagen fibrils, they have residual pCP activity, indicative of genetic redundancy. Mammals possess two additional proteinases structurally similar to BMP-1 and mTLD: the genetically distinct mammalian Tolloid-like 1 (mTLL-1) and mTLL-2. Mice lacking the mTLL-1 gene Tll1 are embryonic lethal but have pCP activity levels similar to those of the wild type, suggesting that mTLL-1 might not be an in vivo pCP. In vitro studies have shown BMP-1 and mTLL-1 capable of cleaving Chordin, an extracellular antagonist of BMP signaling, suggesting that these proteases might also serve to modulate BMP signaling and to coordinate the latter with ECM formation. However, in vivo evidence of roles for BMP-1 and mTLL-1 in BMP signaling in mammals is lacking. To remove functional redundancy obscuring the in vivo functions of BMP-1-related proteases in mammals, we here characterize Bmp1 Tll1 doubly null mouse embryos. Although these appear morphologically indistinguishable from Tll1(-/-) embryos, biochemical analysis of cells derived from doubly null embryos shows functional redundancy removed to an extent enabling us to demonstrate that (i) products of Bmp1 and Tll1 are responsible for in vivo cleavage of Chordin in mammals and (ii) mTLL-1 is an in vivo pCP that provides residual activity observed in Bmp1(-/-) embryos. Removal of functional redundancy also enabled use of Bmp1(-/-) Tll1(-/-) cells in a proteomics approach for identifying novel substrates of Bmp1 and Tll1 products.  相似文献   

14.
Thrombomodulin, an endothelial thrombin receptor, acts as a cofactor for the thrombin-catalyzed activation of anticoagulant protein C. The extracellular region of human thrombomodulin consists of three tentative domains, a NH2-terminal domain (D1), a domain involving six consecutive epidermal growth factor-like structures (D2), and an O-glycosylation-rich domain (D3). To identify the domain onto which thrombin binds, a series of recombinant proteins corresponding to the entire protein, D1, D2, D1 + D2, D1 + D2 + D3, and D2 + D3 were expressed in simian COS-1 cells. The proteins were partially purified by rabbit anti-thrombomodulin-F(ab')2-agarose chromatography. Western blotting analysis showed the expression of the respective recombinant proteins. All proteins involving D2, as well as D2 alone, had cofactor activity that allowed binding directly to thrombin, but D1 did not. The cofactor activity of the entire protein but not the mutants is increased in the presence of phospholipids and this is the only protein that binds to the phospholipid layer. These results indicate that the domain involving the epidermal growth factor-like structures of thrombomodulin is essential for thrombin binding and expression of the cofactor activity for protein C activation and that none of the extracellular domains interact with phospholipids.  相似文献   

15.
ST14 (suppression of tumorigenicity 14) is a transmembrane serine protease that contains a serine protease catalytic (SP) domain, an SEA domain, two complement subcomponent C1r/s (CUB) domains, and four low density lipoprotein receptor class A domains. Glutathione S-transferase fusion proteins with SP, CUB, and low density lipoprotein receptor domains and their corresponding mutants were generated to analyze protein interactions with these domains. Modified glutathione S-transferase pull-down assays demonstrated the interaction between the SP domain and hepatocyte growth factor activator inhibitor-1. With the same method, a CUB domain-interacting protein was isolated and turned out to be the transmembrane protein with epidermal growth factor-like and two follistatin-like domains 1 (TMEFF1). Quantitative real time PCR revealed that the expression of the TMEFF1 gene was dependent on the transfection of the ST14 gene in the RKO cell line. Our results also suggested that ST14 and TMEFF1 were co-expressed in the human breast cancer cell line MCF7, human placenta, kidney, and liver tissues. Interestingly, these two genes were co-up-regulated in kidney tumors versus normal tissues, consistent with our results that showed the dependence of TMEFF1 expression on ST14 in RKO cells. Finally, homology modeling studies suggested that TMEFF1 might form a complex with ST14 by an interaction between epidermal growth factor and CUB domains.  相似文献   

16.
Bone morphogenetic protein (BMP)-1 and mammalian tolloid (mTld) are Ca(2+)-dependent metalloproteinases that result from alternative splicing of the bmp1 gene. They have different proteinase activities, e.g. BMP-1 effectively cleaves procollagen (an extracellular matrix protein) and chordin (a BMP antagonist), whereas mTld is a poor procollagen proteinase and will not cleave chordin in the absence of twisted gastrulation. This is perplexing because mTld (being the longer variant) might be expected to cleave all substrates cleaved by BMP-1. Studies have shown that the minimal structure for procollagen proteinase activity is proteinase-CUB1-CUB2 (BMP-1DeltaEC3) and therefore lacking the epidermal growth factor (EGF)-like domain thought to account for the Ca(2+) dependence of BMP-1. In this study we generated three deletion mutants of mTld that lacked either one or both EGF-like domains (referred to as "mTld-DeltaEGF"). The mutated proteins were poorly but sufficiently secreted from 293-EBNA cells for in vitro assays of procollagen and chordin cleavage. Most surprisingly, the mTld-DeltaEGF mutants required Ca(2+) for proteolytic activity, thereby showing that the EGF-like domains do not account for the Ca(2+) dependence of BMP-1/mTld. Moreover, the mTld-DeltaEGFs are effective procollagen proteinases and cleave chordin. Furthermore, BMP-1DeltaEC3 cleaves chordin and requires Ca(2+) for activity. Studies using nondenaturing gels showed that mTld molecules lacking EGF-like domains have a loose conformation such that in the presence of Ca(2+) binding sites for chordin and procollagen on the "BMP-1-part" of the molecule are exposed. We propose that the EGF-like domains could hold CUB4/5 domains in locations that exclude substrates cleavable by BMP-1.  相似文献   

17.
Dialysis related amyloidosis (DRA) is a progressive and serious complication in patients under long-term hemodialysis and mainly leads to osteo-articular diseases. Although beta(2)-microglobulin (beta2-m) is the major structural component of beta2-m amyloid fibrils, the initiation of amyloid formation is not clearly understood. Here, we have identified procollagen C-proteinase enhancer-1 (PCPE-1) as a new interacting protein with beta2-m by screening a human synovium cDNA library. The interaction of beta2-m with full-length PCPE-1 was confirmed by immunoprecipitation, solid-phase binding and pull-down assays. By yeast two-hybrid analysis and pull-down assay, beta2-m appeared to interact with PCPE-1 via the NTR (netrin-like) domain and not via the CUB (C1r/C1s, Uegf and BMP-1) domain region. In synovial tissues derived from hemodialysis patients with DRA, beta2-m co-localized and formed a complex with PCPE-1. beta2-m did not alter the basal activity of bone morphogenetic protein-1/procollagen C-proteinase (BMP-1/PCP) nor BMP-1/PCP activity enhanced by PCPE-1. PCPE-1 did not stimulate beta2-m amyloid fibril formation from monomeric beta2-m in vitro under acidic and neutral conditions as revealed by thioflavin T fluorescence spectroscopy and electron microscopy. Since PCPE-1 is abundantly expressed in connective tissues rich in type I collagen, it may be involved in the initial accumulation of beta2-m in selected tissues such as tendon, synovium and bone. Furthermore, since such preferential deposition of beta2-m may be linked to subsequent beta2-m amyloid fibril formation, the disruption of the interaction between beta2-m and PCPE-1 may prevent beta2-m amyloid fibril formation and therefore PCPE-1 could be a new target for the treatment of DRA.  相似文献   

18.
Cardiac interstitial fibrillar collagen accumulation, such as that associated with chronic pressure overload (PO), has been shown to impair left ventricular diastolic function. Therefore, insight into cellular mechanisms that mediate excessive collagen deposition in the myocardium is pivotal to this important area of research. Collagen is secreted as a soluble procollagen molecule with NH(2)- and COOH (C)-terminal propeptides. Cleavage of these propeptides is required for collagen incorporation to insoluble collagen fibrils. The C-procollagen proteinase, bone morphogenic protein 1, cleaves the C-propeptide of procollagen. Procollagen C-endopeptidase enhancer (PCOLCE) 2, an enhancer of bone morphogenic protein-1 activity in vitro, is expressed at high levels in the myocardium. However, whether the absence of PCOLCE2 affects collagen content at baseline or after PO induced by transverse aortic constriction (TAC) has never been examined. Accordingly, in vivo procollagen processing and deposition were examined in wild-type (WT) and PCOLCE2-null mice. No significant differences in collagen content or myocardial stiffness were detected in non-TAC (control) PCOLCE2-null versus WT mice. After TAC-induced PO, PCOLCE2-null hearts demonstrated a lesser collagen content (PCOLCE2-null TAC collagen volume fraction, 0.41% ± 0.07 vs. WT TAC, 1.2% ± 0.3) and lower muscle stiffness compared with WT PO hearts [PCOLCE2-null myocardial stiffness (β), 0.041 ± 0.002 vs. WT myocardial stiffness, 0.065 ± 0.001]. In addition, in vitro, PCOLCE2-null cardiac fibroblasts exhibited reductions in efficiency of C-propeptide cleavage, as demonstrated by increases in procollagen α1(I) and decreased levels of processed collagen α1(I) versus WT cardiac fibroblasts. Hence, PCOLCE2 is required for efficient procollagen processing and deposition of fibrillar collagen in the PO myocardium. These results support a critical role for procollagen processing in the regulation of collagen deposition in the heart.  相似文献   

19.
Procollagen C-proteinase enhancer-1 (PCPE-1) is an extracellular matrix (ECM) glycoprotein that can stimulate procollagen processing by procollagen C-proteinases (PCPs) such as bone morphogenetic protein-1 (BMP-1). The PCPs can process additional extracellular protein precursors and play fundamental roles in developmental processes and assembly of the ECM. The stimulatory activity of PCPE-1 is restricted to the processing of fibrillar procollagens, suggesting PCPE-1 is a specific regulator of collagen deposition. PCPE-1 consists of two CUB domains that bind to the procollagen C-propeptides and are required for PCP enhancing activity, and one NTR domain that binds heparin. To understand the biological role of the NTR domain, we performed surface plasmon resonance (SPR) binding assays, cell attachment assays as well as immunofluorescence and activity assays, all indicating that the NTR domain can mediate PCPE-1 binding to cell surface heparan sulfate proteoglycans (HSPGs). The SPR data revealed binding affinities to heparin/HSPGs in the high nanomolar range and dependence on calcium. Both 3T3 mouse fibroblasts and human embryonic kidney cells (HEK-293) attached to PCPE-1, an interaction that was inhibited by heparin. Cell attachment was also inhibited by an NTR-specific antibody and the NTR fragment. Immunofluorescence analysis revealed that PCPE-Flag binds to mouse fibroblasts and heparin competes for this binding. Cell-associated PCPE-Flag stimulated procollagen processing by BMP-1 several fold. Our data suggest that through interaction with cell surface HSPGs, the NTR domain can anchor PCPE-1 to the cell membrane, permitting pericellular enhancement of PCP activity. This points to the cell surface as a physiological site of PCPE-1 action.  相似文献   

20.
Procollagen C-proteinase enhancers (PCPE-1 and -2) are extracellular glycoproteins that can stimulate the C-terminal processing of fibrillar procollagens by tolloid proteinases such as bone morphogenetic protein-1. They consist of two CUB domains (CUB1 and -2) that alone account for PCPE-enhancing activity and one C-terminal NTR domain. CUB domains are found in several extracellular and plasma membrane-associated proteins, many of which are proteases. We have modeled the structure of the CUB1 domain of PCPE-1 based on known three-dimensional structures of CUB-containing proteins. Sequence alignment shows conserved amino acids, notably two acidic residues (Asp-68 and Asp-109) involved in a putative surface-located calcium binding site, as well as a conserved tyrosine residue (Tyr-67). In addition, three residues (Glu-26, Thr-89, and Phe-90) are found only in PCPE CUB1 domains, in putative surface-exposed loops. Among the conserved residues, it was found that mutations of Asp-68 and Asp-109 to alanine almost completely abolished PCPE-1 stimulating activity, whereas mutation of Tyr-67 led to a smaller reduction of activity. Among residues specific to PCPEs, mutation of Glu-26 and Thr-89 had little effect, whereas mutation of Phe-90 dramatically decreased the activity. Changes in activity were paralleled by changes in binding of different PCPE-1 mutants to a mini-procollagen III substrate, as shown by surface plasmon resonance. We conclude that PCPE-stimulating activity requires a calcium binding motif in the CUB1 domain that is highly conserved among CUB-containing proteins but also that PCPEs contain specific sites that could become targets for the development of novel anti-fibrotic therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号